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H-colorings
Graph homomorphism (H-coloring): A map from V(G) to V(H) that
preserves edge adjacency.
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H-colorings
Graph homomorphism (H-coloring): A map from V(G) to V(H) that
preserves edge adjacency.

G: H = Heomp :

— WY

Examples: independent sets, proper g-colorings, bipartite,
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H-colorings
Graph homomorphism (H-coloring): A map from V(G) to V(H) that
preserves edge adjacency.

G: H=Hyg:

— WY

Examples: independent sets, proper g-colorings, bipartite,
components, Widom-Rowlinson

@ Terminology: map/color the vertices of G
@ H is a ‘blueprint’; it encodes the coloring scheme
@ Natural for H to have loops
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Notation and conventions
Notations:

Hom(G, H) = {H-colorings of G}
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Notation and conventions
Notations:
Hom(G, H) = {H-colorings of G}
hom(G, H) = [Hom(G, H)|

Note:
P hom(G, Hcomp) — p# components of G
P hom(G, Kz) — 1{G bipartite}z# bipartite components of G
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Notation and conventions

Also: d(v) is the degree of v (where loops count once)
Why?
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Notation and conventions

Also: d(v) is the degree of v (where loops count once)
Why?

H = Hinq :

W — e

@ wisred = each neighbor of w has 1 choice (d(red) = 1)
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Notation and conventions

Also: d(v) is the degree of v (where loops count once)
Why?

H = Hinq :

W — e

@ wisred = each neighbor of w has 1 choice (d(red) = 1)
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Notation and conventions

Also: d(v) is the degree of v (where loops count once)
Why?

H = Hinq :

W — e

@ wisred = each neighbor of w has 1 choice (d(red) = 1)
@ wis gray — each neighbor of w has 2 choices (d(gray) = 2)
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Statistical physics interpretation
Hard constraint spin systems:

Imagine V(G) = particles, E(G) = adjacency (e.g. spatial proximity)
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‘compatible’ spins

Spins:
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G: Spins:

— WYY

@ Spins = colors; a spin configuration is an H-coloring
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Statistical physics interpretation
Hard constraint spin systems:

Imagine V(G) = particles, E(G) = adjacency (e.g. spatial proximity)

Place spins on those particles so that adjacent particles receive
‘compatible’ spins

G: Spins:

— WYY

@ Spins = colors; a spin configuration is an H-coloring
@ Can put weights on the spins

@ This idea generalizes to putting objects (with relationships) into
classes with hard rules
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Existential
@ Given a G and H, does an H-coloring of G exist? [hard]
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Questions to ask

Existential

@ Given a G and H, does an H-coloring of G exist? [hard]
Algorithmic

@ Can we easily produce an H-coloring of G?

@ Can we obtain a (uniform) random H-coloring of G?

@ Can we quickly move from one H-coloring of G to another via
random local updating algorithms?

Structural

@ e.g. What does the typical H-coloring of G look like?
Enumerative

@ What is hom(G, H)? [hard]
Extremal

@ Rest of this talk...
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An extremal question

Question

Fix H. Given a family of graphs G, which G € G maximizes hom(G,H)?

H = Hinq :

o v
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Fix H. Given a family of graphs G, which G € G maximizes hom(G, H)? J

o v

Remarks:
@ PickG andH
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o v

Remarks:
@ Pick G and H
@ Often: Consider H (e.g. Hing), answer for G, then G,, ...
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An extremal question

Question
Fix H. Given a family of graphs G, which G € G maximizes hom(G, H)? J

o v

Remarks:
@ Pick G and H
@ Often: Consider H (e.g. Hing), answer for G, then G,, ...
@ Perspective switch: Consider G, answer for H{, then H>, ...
@ Hope: A small list of graphs G maximize hom(G, H) for every H.
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Fix H. Given a family of graphs G, which G € G maximizes hom(G, H)?

J

John Engbers (Notre Dame)

Extremal H-colorings



Various families
Question

Fix H. Given a family of graphs G, which G € G maximizes hom(G, H)?
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Question
Fix H. Given a family of graphs G, which G € G maximizes hom(G,H) ? J

@ G = n-vertex graphs
» For any H, hom(G, H) is maximized when G = E,

E,: O O
O O
o O

hom(E,, H) = |V(H)|"
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Various families

Question
Fix H. Given a family of graphs G, which G € G maximizes hom (G, H)? J

@ G = n-vertex graphs
» For any H, hom(G, H) is maximized when G = E,

E,: O O
O O
O O

hom(E,,H) = |V(H)|"

@ Interesting families force each graph G to have a large number of
edges.
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Various families

Question
Fix H. Given a family of graphs G, which G € G maximizes hom(G,H)? J

@ G = n-vertex m-edge graphs

» H = Hing
6 5
7 4
8 3
1 2
Lex(8,11)
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Various families

Question
Fix H. Given a family of graphs G, which G € G maximizes hom(G. H ) ?J

@ G = n-vertex m-edge graphs
» H = Hinq, H = Hwr, class of H (Cutler-Radcliffe)

6 5 6 5
7 4 70 4
8 3 8O 3
1 2 1 2
Lex(8,11) Colex(8,11)
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» H = K, : various results, still open in general
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Various families

Question
Fix H. Given a family of graphs G, which G € G maximizes hom(G. H ) ?J

@ G = n-vertex m-edge graphs
» H = Hinq, H = Hwr, class of H (Cutler-Radcliffe)

6 5 6 5
7 4 70 4
8 3 8O 3
1 2 1 2
Lex(8,11) Colex(8,11)

» H = K, : various results, still open in general
@ Extremal graphs can be non-homogeneous
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Various families

Question
Fix H. Given a family of graphs G, which G € G maximizes hom(G, H)? J

@ G = n-vertex d-regular bipartite graphs
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Various families

Question
Fix H. Given a family of graphs G, which G € G maximizes hom(G, H)? J

@ G = n-vertex d-regular bipartite graphs
» H = Hipg (Kahn)
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@ G = n-vertex d-regular bipartite graphs
» H = Hjnq (Kahn), generalized to all(!!/) H (Galvin-Tetali)
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Fix H. Given a family of graphs G, which G € G maximizes hom(G, H)? J

@ G = n-vertex d-regular bipartite graphs
» H = Hjnq (Kahn), generalized to all(!!/) H (Galvin-Tetali)

ek

@ G = n-vertex d-regular graphs
> Hing (Zhao)
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Various families

Question
Fix H. Given a family of graphs G, which G € G maximizes hom(G, H)? J

@ G = n-vertex d-regular bipartite graphs
» H = Hjnq (Kahn), generalized to all(!!/) H (Galvin-Tetali)

ek

@ G = n-vertex d-regular graphs
» Hing (Zhao), class of H (Zhao, Galvin)

FEE HEG SO

Open Conjecture

Fix H. For G = n-vertex d-regular graphs, hom(G, H) is maximized
when G = 5;K44 or dLHKdH.
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Today’s family

G = G(n,9) = n-vertex graphs with minimum degree ¢
Today’s Question

Fix H. Which G € G(n, ) maximizes hom(G, H) ?
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Today’s family
G = G(n,9) = n-vertex graphs with minimum degree ¢

Today’s Question

Fix H. Which G € G(n,0) maximizes hom(G,H)?

Intuition: Maximizing graph is é-regular (so likely either J5K;s s or
sriKs+1)-
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G = G(n,9) = n-vertex graphs with minimum degree ¢

Today’s Question
Fix H. Which G € G(n,0) maximizes hom(G,H)?

Intuition: Maximizing graph is é-regular (so likely either J5K;s s or
sriKs41). FALSE!

Theorem (Galvin, 2011)

Forall G € G(n,§) andn > 8%, hom(G, Hj,y) is maximized when
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Today’s family
G = G(n,9) = n-vertex graphs with minimum degree ¢

Today’s Question
Fix H. Which G € G(n,0) maximizes hom(G,H)? J

Intuition: Maximizing graph is é-regular (so likely either J5K;s s or
sriKs41). FALSE!

Theorem (Galvin, 2011)

Forall G € G(n,§) andn > 8%, hom(G, Hj,y) is maximized when

Note: hom(K(;’n_(;,Hind) > P
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Today’s family

Conjecture

Fix H. For all G € G(n,0) and n large enough, hom(G, H) is maximized
when G = Kg’n_g, 2"—5K575, or #K&H-

o
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Today’s family

Conjecture

Fix H. For all G € G(n,0) and n large enough, hom(G, H) is maximized
when G = Ksn—s, 35Ks.6, OF 557 Ks11-

Sharpness:

@ H = Hi,g maximized by Ks,_s

o's
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Today’s family
Conjecture

Fix H. For all G € G(n,0) and n large enough, hom(G, H) is maximized
when G = Ksn—s, 35Ks.6, OF 557 Ks11-

Sharpness:
@ H = Hi,g maximized by Ks,_s
@ H = K, maximized by 75Ks 5

@ H = Hcomp maximized by s Ks+1

'
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Today’s family
Conjecture

Fix H. For all G € G(n,0) and n large enough, hom(G, H) is maximized
when G = Ksn—s, 35Ks.6, OF 557 Ks11-

Sharpness:
@ H = Hi,g maximized by Ks,_s
@ H = K, maximized by 75Ks 5

@ H = Hcomp maximized by s Ks+1

'

Emphasis: Infinite collection of H, small # of maximizing graphs
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Today’s family
Progress:
Theorem (E., 2012)

@ Conjecture is true for§ =1, 6 = 2.

© Suppose that H satisfies Y- ,cy ) d(v) < (An)*. Then, forn > ¢
and G € G(n,0), hom(G, H) is maximized when G = K; ,_s.
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Today’s family
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Theorem (E., 2012)

@ Conjecture is true for§ =1, 6 = 2.

© Suppose that H satisfies Y- ,cy ) d(v) < (An)*. Then, forn > ¢
and G € G(n,0), hom(G, H) is maximized when G = K; ,_s.

Examples:
@ Hing: S d(v) = 3: (Ap)> =4 v

o v
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© Suppose that H satisfies Y- ,cy ) d(v) < (An)*. Then, forn > ¢
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Examples:
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Today’s family
Progress:

Theorem (E., 2012)
@ Conjecture is true for§ =1, 6 = 2.

© Suppose that H satisfies Y- ,cy ) d(v) < (An)*. Then, forn > ¢

and G € G(n,0), hom(G, H) is maximized when G = K; ,_s.

Examples:
® Hig: Y d(v) =3 (Ap)> =4 v
® Ky: > d(v)=q(g—1);(Ap)* = (g 1) X

) =
® Kr: Y d(v) =2 (Ap) = 1X Q @
® Hoomp : Y d(v) = 2: (M) = 1 X
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Today’s family
Progress:
Theorem (E., 2012)

@ Conjecture is true for§ =1, 6 = 2.

© Suppose that H satisfies Y- ,cy ) d(v) < (An)*. Then, forn > ¢
and G € G(n,0), hom(G, H) is maximized when G = K ,_;.

Examples:
® Hing: >, d(v) =3;(An)* =4V
® K;: > d(v) =q(g—1);(An)* = (g 1)* X
@ K):> dv)=2;(Ap)?=1X m
@ Hoomp: . d(v) =2;(Ap)>=1X
@ Hyr:>.d(v) =7;(An)?* =9 v
@ Any* H with looped dominating vertex
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Today’s family
Progress:
Theorem (E., 2012)

@ Conjecture is true for§ =1, 6 = 2.

© Suppose that H satisfies Y- ,cy ) d(v) < (An)*. Then, forn > ¢
and G € G(n,0), hom(G, H) is maximized when G = K ,_;.

Examples:
@ Hipg:>.d(v)=3;(Ap)? =4V
® K,: Y d(v) =qlg—1);(An) = (g— 1> ¥
@ K):> dv)=2;(Ap)?=1X
® Heomp: Y d(v) = 2; (An)> = 1 X Q—@—Q
® Hwr: ) d(v)=T;(Ay)* =9V
@ Any* H with looped dominating vertex

Blue condition is combination of local (Ag) and global (ZvEV(H) d(v)).
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Idea of proof for H = Hwgr
Goal: 3° yy d(v) < (Ay)*> = hom(G, H) maximized for G = K ,;
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Idea of proof for H = Hwgr
Goal: 3° yy d(v) < (Ay)*> = hom(G, H) maximized for G = K ,;

hom(Kjs s, Hwr) > 3"~

John Engbers (Notre Dame) Extremal H-colorings November 2012 14/18



Idea of proof for H = Hwgr
Goal: 3° yy d(v) < (Ay)*> = hom(G, H) maximized for G = K ,;

hom(Kjs s, Hwr) > 3"~

Idea: Partition G(n,¢) by the size of maximum matching M.
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Idea of proof for H = Hwgr

Goal: 3° yy d(v) < (Ay)*> = hom(G, H) maximized for G = K ,;

hom(Kjs s, Hwr) > 3"~

Idea: Partition G(n,¢) by the size of maximum matching M.

iiii 00 00Ok

M 2|\M l |M|
hom(G, Hys) < 7MI3n-21 — (3_2) 3
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Idea of proof for H = Hwgr

Goal: 3° yy d(v) < (Ay)*> = hom(G, H) maximized for G = K ,;

hom(Kjs s, Hwr) > 3"~

Idea: Partition G(n,¢) by the size of maximum matching M.

iiii 00 00Ok

hom(G, Hyr) < 7MI3n=2M| = (%)W' 3 <%:Ad() )>|M| -
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Idea of proof for H = Hwgr

Goal: 3° yy d(v) < (Ay)*> = hom(G, H) maximized for G = K ,;

hom(Kjs s, Hwr) > 3"~

Idea: Partition G(n,¢) by the size of maximum matching M.

iiii 00 00Ok

M| M|
hom(G, Hiyg) < T3] = (%) ’ = <(2Ad() )> M o
H

Any maximizing graph G has |[M| < ¢
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Idea of proof for H = Hwgr

Graphs with |//| < §: Short argument gives K;,_; maximizes
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Idea of proof for H = Hwgr
Graphs with || < §: Short argument gives K; ,_; maximizes

Graphs with 6 + 1 < |M| < ¢4:
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Idea of proof for H = Hwgr
Graphs with || < §: Short argument gives K; ,_; maximizes

Graphs with 6 + 1 < |M| < ¢4:

W83 0770 QuY

Facts:
@ /is an independent set
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Idea of proof for H = Hwgr
Graphs with || < §: Short argument gives K; ,_; maximizes

Graphs with 6 + 1 < |M| < ¢4:

W83 0770 QuY

Facts:
@ /is an independent set
» There are at least §(n — 2|M|) edges from I to J U K.
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Idea of proof for H = Hwgr
Graphs with || < §: Short argument gives K; ,_; maximizes

Graphs with 6 + 1 < |M| < ¢4:

17338 02 Qug

Facts:
@ /is an independent set
» There are at least §(n — 2|M|) edges from I to J U K.

@ Both endpoints of edge in M cannot have degree > 2to 1
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Idea of proof for H = Hwgr
Graphs with || < §: Short argument gives K; ,_; maximizes

Graphs with 6 + 1 < |M| < ¢4:

W83 0770 QuY

Facts:
@ [ is an independent set
» There are at least §(n — 2|M|) edges from I to J U K.

@ Both endpoints of edge in M cannot have degree > 2to 1
@ Choose K to be vertices with smallest degree to 1
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Idea of proof for H = Hwgr
Graphs with || < §: Short argument gives K; ,_; maximizes

Graphs with 6 + 1 < |M| < ¢4:

Facts:
@ [ is an independent set
» There are at least §(n — 2|M|) edges from I to J U K.

@ Both endpoints of edge in M cannot have degree > 2to 1
@ Choose K to be vertices with smallest degree to 1
@ — Most vertices in I have all neighbors in J
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Idea of proof for H = Hwgr
Graphs with || < §: Short argument gives K; ,_; maximizes

Graphs with 6 + 1 < |M| < ¢4:

Facts:
@ [ is an independent set
» There are at least §(n — 2|M|) edges from I to J U K.

@ Both endpoints of edge in M cannot have degree > 2to 1

@ Choose K to be vertices with smallest degree to 1

@ — Most vertices in I have all neighbors in J

@ Some set of § vertices in J has ~ % = Q(n) neighbors in 1.
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Idea of proof for H = Hwgr
Graphs with 6 + 1 < |M| < ¢4:

@ Some set of ¢ vertices in J has ~ " 2

Q(n) neighbors in 1

("5)
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Idea of proof for H = Hwgr
Graphs with 6 + 1 < |M| < ¢4:

@ Some set of ¢ vertices in J has ~ " 2

Q(n) neighbors in 1

("5)

Then:
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Idea of proof for H = Hwgr
Graphs with 6 + 1 < |M| < ¢4:

@ Some set of § vertices in J has ~ -/

Q(n) neighbors in I

("5)

Then:
@ Case 1: All § vertices get color gray (< (/) 3" )

@ Case 2: At least 1 of ¢ vertices gets color blue/red (< (%)m”) 31)
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Idea of proof for H = Hwgr
Graphs with 6 + 1 < |M| < ¢4:

@ Some set of § vertices in J has ~ -/

Q(n) neighbors in I

("5)

Then:
@ Case 1: All § vertices get color gray (< (/) 3" )

@ Case 2: At least 1 of ¢ vertices gets color blue/red (< (%)m”) 31)

And:
7

) Q(n)
(9) 30 4 <3> 3" < 30 < hom(Ks,—s, HWR)
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Concluding remarks
Result for 6 = 1, 2:
@ Analyze structural properties of edge-critical graphs G (remove
any edge = minimum degree drops)
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@ Notice:
H < 2
> d(v)=5:(Ay)* =4 | Maximizedin G(n,2) by K>, >
veV(H)
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Concluding remarks
Result for 6 = 1, 2:
@ Analyze structural properties of edge-critical graphs G (remove
any edge = minimum degree drops)
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@ Notice:
H < 2
> d(v)=5:(Ay)* =4 | Maximizedin G(n,2) by K>, >
veV(H)

Sufficient (Kgyn,g)i hom(K(;’(;,H)% <Ay & hom(K(;Jrl,H)‘S%” < Ap?

@ § = 3? Other small values of §7?
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Concluding remarks
Result for 6 = 1, 2:
@ Analyze structural properties of edge-critical graphs G (remove
any edge = minimum degree drops)
Future directions:

@ Notice:
H: ( ?
Z d(\;) =35; (AH)Z =4 | Maximized in g(n,2) by KZ,an
veV(H)

Sufficient (Kgyn,g)i hom(K(;’(;,H)% <Ay & hom(K(;H,H)é%Ll < Ag?

@ ¢ = 37 Other small values of 67
@ Meaningful structural properties of edge-critical graphs (6 > 3)?
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Concluding remarks
Result for 6 = 1, 2:
@ Analyze structural properties of edge-critical graphs G (remove
any edge = minimum degree drops)
Future directions:

@ Notice:
H: < ?
Z d(v) =5;(Ag)* =4 | Maximizedin G(n,2) by K>, >
veV(H)

Sufficient (Kgyn,g)i hom(K(;’(;,H)% <Ay & hom(K(;H,H)é%Ll < Ag?

@ ¢ = 37 Other small values of 67

@ Meaningful structural properties of edge-critical graphs (6 > 3)?

@ Results for G = n-vertex graphs with min degree §, max degree at
most A?
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