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Abstract

For graphs G and H, an H-coloring of G is an adjacency-preserving map from the
vertex set of G to the vertex set of H. The number of H-colorings of G is denoted
hom(G,H). Given a fixed graph H and family of graphs G, what is the maximum value
of hom(G,H) over all G ∈ G?

For the family of n-vertex d-regular graphs, it has been conjectured that

hom(G,H) ≤ max
G∗

hom(G∗, H)
n

|V (G∗)| ,

where the maximum is taken over all d-regular graphs G∗ with at most κ(d) vertices. This
has been verified for various classes of H, but remains open in general.

We consider the related family of n-vertex graphs with minimum degree at least δ.
For fixed δ and H, we show that

hom(G,H) ≤ max
G∗

hom(G∗, H)
n

|V (G∗)|

where the maximum is taken over all graphs G∗ with minimum degree δ on at most κ(δ,H)
vertices and the graph G∗ = Kδ,n−δ. For fixed δ, we also find new conditions on H for
which hom(G,H) ≤ hom(Kδ,n−δ, H) for all n-vertex graphs G with minimum degree at
least δ when n is sufficiently large.

1 Introduction and Statement of Results

Let G = (V (G), E(G)) be a finite simple graph, and let H = (V (H), E(H)) be a finite graph
that may have loops but does not have multi-edges. An H-coloring of G, or homomorphism
from G to H, is an adjacency-preserving map f : V (G) → V (H), that is, a map satisfying
f(v)f(w) ∈ E(H) whenever vw ∈ E(G). We let Hom(G,H) denote the set of all H-colorings
of G, and let hom(G,H) = |Hom(G,H)|, i.e., hom(G,H) is the number of H-colorings of G.

The notion of H-coloring is a generalization of some important concepts in graph theory.
For example, when H = Hind = , the H-colorings of G correspond to independent sets (or
stable sets) in G via the vertices mapped to the unlooped vertex of Hind. And when H = Kq,
the complete graph on q vertices, the H-colorings of G correspond to proper q-colorings of
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the vertices of G. Motivated by the latter example, it can be useful to think of the vertices
of the graph H as the allowable colors to use on the vertices of G, and the edges of the
graph H encoding the allowable color pairs that can appear on the endpoints of an edge
in G. H-colorings also have a natural interpretation as hard-constraint spin models from
statistical physics (see e.g. [1] and have connections to graph limits, property testing, and
quasi-randomness (see e.g. [9]).

Given a family of graphs G and a fixed graph H, a natural extremal question is to
determine the maximum and minimum values of hom(G,H) over all G ∈ G. One family that
is particularly relevant to the present work is the family of all n-vertex d-regular graphs. Kahn
considered all bipartite graphs G in this family and H = Hind = , and showed that

hom(G,Hind) ≤ hom(Kd,d, Hind)
n
2d .

In a generalization of Kahn’s work, Galvin and Tetali [7] proved that

hom(G,H) ≤ hom(Kd,d, H)
n
2d (1)

holds for all H and all n-vertex d-regular bipartite graphs. The question then was asked
about what holds when considering larger collections of graphs G in the family.

Recently, Sah, Sawhney, Stoner and Zhao [12] proved that (1) is true for all H and all
triangle-free graphs G in this family, and they furthermore showed that the triangle-free
assumption is needed. In particular, they illustrated that if G contains a triangle, then there
exists some graph H so that (1) is false. When considering H = Kq (i.e. proper colorings),
they also proved that (1) holds over all graphs in the family (i.e. over all n-vertex d-regular
graphs G); other graphs H for which (1) holds true over all n-vertex d-regular graphs, including
H = Hind, can be found in e.g. [13, 15, 16].

When H = , the number of H-colorings is maximized by a graph with the largest
number of components, and so for this particular H and all n-vertex d-regular G where d+ 1
divides n we have

hom(G,H) ≤ hom(Kd+1, H)
n
d+1 , (2)

where equality is achieved by G consisting of n
d+1 disjoint copies of Kd+1. Other H have been

shown to satisfy (2) for all n-vertex d-regular graphs G [2, 13]. Further, Sernau [13] produced

graphs H for which neither hom(Kd,d, H)
n
2d nor hom(Kd+1, H)

n
d+1 is the maximizing value

of hom(G,H) over all n-vertex d-regular G. It is unknown if there is a finite list of graphs

so that for any H and any n-vertex d-regular G we have hom(G,H) ≤ hom(G∗, H)
n

|V (G∗)| for
some graph G∗ on the list. The following conjecture is an equivalent formulation of Conjecture
2.9 in [17].

Conjecture 1.1. Fix d ≥ 1. Then there is a constant κ = κ(d) such that for any n-vertex
d-regular graph G and any H we have

hom(G,H) ≤ max
G∗

hom(G∗, H)
n

|V (G∗)| ,

where the maximum is taken over all d-regular graphs G∗ with at most κ vertices.

Conjecture 1.1 is known to be true for d = 1 (trivial) and d = 2 [4]. For further results and
questions, see the survey [17] and the references therein. We note that to date the maximizing
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value of hom(G,H) over all n-vertex d-regular graphs G for a particular H has been of the

form hom(G,H)
n

|V (G)| where we can take d+ 1 ≤ |V (G)| ≤ 2d, and so it would be interesting
to either show κ = 2d or find an example of an H where the maximum value comes only from
a graph G∗ with |V (G∗)| > 2d.

By relaxing the condition that requires all degrees to be equal, we arrive at the family of
interest in this note.

Notation. Let G(n, δ) denote the set of all n-vertex graphs with minimum degree at least δ.

Since edges in G give restrictions on the possible colors on the endpoints of the edge, it is
natural to think that a regular (or close to regular) graph G would maximize hom(G,H) for any

H and all G ∈ G(n, δ), but this turns out not to be the case. For the graph H = Hind =
and all G ∈ G(n, δ) with n ≥ 2δ, Cutler and Radcliffe [3] showed that

hom(G,Hind) ≤ hom(Kδ,n−δ, Hind).

The graph Kδ,n−δ turns out to maximize the number of H-colorings for a large class of H
over all G ∈ G(n, δ) with n large [4], and also when considering the subfamily of connected
n-vertex graphs G with minimum degree δ ≥ 3 with n large [10]. However, there are also
examples of H for which

hom(G,H) ≤ hom(Kδ+1, H)
n
δ+1

(use e.g. H = ) or
hom(G,H) ≤ hom(Kδ,δ, H)

n
2δ

(use e.g. H = ) for all G ∈ G(n, δ). Furthermore, Guggiari and Scott [10] built on the ideas

of Sernau [13] to produce examples of H for which hom(Kδ,n−δ, H), hom(Kδ+1, H)
n
δ+1 , and

hom(Kδ,δ, H)
n
2δ are not the maximizing value of hom(G,H) over all G ∈ G(n, δ). We remark

that their examples produce a different graph G∗ ∈ G(|V (G∗)|, δ), with δ + 1 < |V (G∗)| < 2δ,
so that

hom(G,H) ≤ hom(G∗, H)
n

|V (G∗)|

for all G ∈ G(n, δ). This leads to the corresponding conjecture for n-vertex graphs with
minimum degree at least δ.

Conjecture 1.2. Fix δ ≥ 1. Then there a constant κ = κ(δ) such that for all G ∈ G(n, δ)
and all H we have

hom(G,H) ≤ max
G∗

hom(G∗, H)
n

|V (G∗)| ,

where the maximum is taken over all graphs G∗ with minimum degree δ on at most κ vertices
and the graph G∗ = Kδ,n−δ.

Conjecture 1.2 is known to be true when δ = 1 [4]. To discuss further related results, we
introduce the following convention that we will use here and throughout the remainder of this
note.

Convention. Given a graph H, we let ∆ denote the maximum degree of a vertex in H,
where by convention a loop adds one to the degree of a vertex (i.e. dH(v) = |N [v]|).
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When δ = 2, it is known [4] that if H satisfies hom(C3, H) ≥ ∆3 or hom(C4, H) ≥ ∆4,
then hom(G,H) ≤ max{hom(C3, H)

n
3 ,hom(C4, H)

n
4 } for all G ∈ G(n, δ), and otherwise

hom(G,H) ≤ hom(K2,n−2, H) for all G ∈ G(n, δ) when n ≥ cH , with cH some constant that
depends on H. This does not quite resolve Conjecture 1.2 in the case δ = 2, as the constant
cH in the latter case depends on H.

Further related results appear in [10], where they consider fixed H and δ large (depending
on H) and n large relative to H and δ; and also fixed δ and H large (depending on δ) with n
large relative to H and δ. For all δ and H that are considered in these families, the inequality
of Conjecture 1.2 holds.

In this paper we aim to study fixed δ and fixed H. Our first result is the following.

Theorem 1.3. Let H and δ ≥ 1 be fixed. Then there is a constant κ = κ(δ,H) such that for
all G ∈ G(n, δ) we have

hom(G,H) ≤ max
G∗

hom(G∗, H)
n

|V (G∗)|

where the maximum is taken over all graphs G∗ with minimum degree δ on at most κ(δ,H)
vertices and the graph G∗ = Kδ,n−δ.

Theorem 1.3 makes progress but does not fully resolve Conjecture 1.2, since the constant
depends on both δ and H. The proof utilizes the result for connected graphs in G(n, δ) of
Guggiari and Scott [10] along with analytic techniques.

To date, the maximizing value of hom(G,H) over all G ∈ G(n, δ) for a particular H has

been either hom(Kδ,n−δ, H) or hom(G∗, H)
n

|V (G∗)| where δ+1 ≤ |V (G∗)| ≤ 2δ, and so it would
again be interesting to either show κ = 2δ or find a particular H whose maximum value comes
only from a graph G∗ 6= Kδ,n−δ with |V (G∗)| > 2δ.

A second way of approaching the problem of maximizing hom(G,H) over all G ∈ G(n, δ)
is to find conditions on H for which G = Kδ,n−δ is the maximizing graph. This approach of
finding classes of H mirrors the work done in the family of n-vertex d-regular graphs (see
e.g. [2, 6, 13, 15, 16] or the survey [17]). Conjecture 1.2, if true, would give a necessary
and sufficient condition on H so that G = Kδ,n−δ would produce the maximizing value of
hom(G,H) over all G ∈ G(n, δ). In particular, it would imply that if H makes hom(G′, H) not
too large for all “small” graphs G′ with minimum degree δ, then G = Kδ,n−δ would maximize
the value hom(G,H) over all G ∈ G(n, δ).

Along these lines, we aim to consider H that make hom(G′, H) not too large for some
small graph G′. To our knowledge, the best current result in this direction is the following;
recall that ∆ is the maximum degree of a vertex in H.

Theorem 1.4 ([4]). Fix δ ≥ 1. Suppose H satisfies hom(K2, H)
1
2 < ∆. Then for sufficiently

large n and all G ∈ G(n, δ) we have

hom(G,H) ≤ hom(Kδ,n−δ, H),

with equality if and only if G = Kδ,n−δ.

We mention here that all of the results for the family G(n, δ) where G = Kδ,n−δ gives the
maximizing value, aside from trivial H or H = Hind, are results where n is assumed to be
large enough depending on δ and H.
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Our second result enlarges the class of H in Theorem 1.4, and does so by conditioning on
the number of H-colorings of a graph whose order is a function of δ. This improves on the
size being the fixed constant |V (K2)| = 2 from Theorem 1.4.

Theorem 1.5. Fix δ ≥ 1. Suppose H satisfies hom(K1,δ, H)
1
δ+1 < ∆. Then for sufficiently

large n and all G ∈ G(n, δ) we have

hom(G,H) ≤ hom(Kδ,n−δ, H)

with equality if and only if G = Kδ,n−δ.

The proof of Theorem 1.5 uses a stability argument: first, we show that any graph G that
has a large number of disjoint copies of K1,δ cannot maximize the value hom(G,H). So the
graphs G that can maximize hom(G,H) must have few disjoint copies of K1,δ, and in this
way are structurally similar to Kδ,n−δ. Those latter graphs G are then analyzed based on the
presence of those structures.

To see why Theorem 1.5 enlarges the class of H from Theorem 1.4, first notice that
hom(K2, H) =

∑
v∈V (H) d(v). Assuming that H satisfies

∑
v∈V (H) d(v) < ∆2, we have∑

v∈V (H)

d(v) < ∆2 =⇒ ∆δ−1
∑

v∈V (H)

d(v) < ∆δ+1,

and therefore
hom(K1,δ, H) =

∑
v∈V (H)

d(v)δ < ∆δ+1,

and so H satisfies the condition in Theorem 1.5. Furthermore, with H = P3 being a path on
3 vertices, we have

∑
v∈V (H) d(v) = 4 = ∆2, while for any δ > 1 we have

∑
v∈V (H) d(v)δ =

2 + 2δ < 2δ+1 = ∆δ+1. Therefore the class of H from Theorem 1.5 is strictly larger than the
class of H from Theorem 1.4.

The rest of this paper is laid out as follows. In Section 2, we prove Theorem 1.3. Section
3 begins with a few introductory remarks and observations before proving Theorem 1.5. We
then close with some related questions in Section 4.

2 Proof of Theorem 1.3

Fix H with maximum degree ∆. Notice that we can assume that H has no isolated vertices.
For δ = 1 and δ = 2, the result holds from [4], so fix δ ≥ 3.

Let G ∈ G(n, δ). By Corollary 1.2 in [10] there exists a constant κ(δ,H) =: N such that
for n ≥ N the n-vertex connected graph with minimum degree at least δ that maximizes the
number of H-colorings is Kδ,n−δ.

Suppose that G has components G1, . . . , Gr with |V (Gi)| = ni for i = 1, . . . , r. Then

hom(G,H) =
∏
i

hom(Gi, H) =
∏
i

hom(Gi, H)
ni
ni ,

and if ni ≥ N we have hom(Gi, H) ≤ hom(Kδ,ni−δ, H). So this means

hom(G,H) ≤
∏

i:ni<N

hom(Gi, H)
ni
ni ·

∏
i:ni≥N

hom(Kδ,ni−δ, H)
ni
ni .

5



We next compare the values of hom(Kδ,ni−δ, H)
1
ni for those ni ≥ N . Let Z denote the vertices

in the size δ partition class of Kδ,ni−δ. By first coloring Z, the number of H-colorings of
Kδ,ni−δ is given by

hom(Kδ,ni−δ, H) =
∑

(v1,...,vδ)⊆V (H)δ

|N(v1) ∩ · · · ∩N(vδ)|ni−δ =
∆∑
d=1

cd · dni−δ

for some constants cd ≥ 0; namely, cd is the number of vectors containing δ elements of V (H)
that have exactly d common neighbors. Since ni is the variable in our expression, we let
x ≥ δ + 1 be a real number and consider the expression(

∆∑
d=1

cd · dx−δ
) 1

x

. (3)

We want the maximum value of (3) for N ≤ x ≤ n.
Let a = a(x,H, δ) ∈ R be such that

∆∑
d=1

cd · dx−δ = ax.

Note that for any ε > 0 we have

∆∑
d=1

cd · dx−δ+ε ≤ ∆ε
∆∑
d=1

cd · dx−δ = ∆εax (4)

with strict inequality if ci 6= 0 for some i < ∆. We consider the relative values of a and ∆ to
maximize the expression in (3).

Case 1: Suppose first that a > ∆. Then (4) gives(
∆∑
d=1

cd · dx−δ+ε
) 1

x+ε

≤ (∆εax)
1
x+ε < a =

(
∆∑
d=1

cd · dx−δ
) 1

x

, (5)

and so x = N is the smallest value of x and thus gives the maximum value of the expression
in (3).

Case 2: If a = ∆ and ci = 0 for each i < ∆, then c∆ = ∆δ and every vector in V (H)δ

whose elements have at least one common neighbor must have exactly ∆ common neighbors.
By considering (x, x, . . . , x) ∈ V (H)δ for each x ∈ V (H), this implies that each x ∈ V (H) has
degree ∆ (here we use that H has no isolated vertices). Further, if y and z are neighbors of x,
then y and z have ∆ common neighbors as well as degree ∆, and so N(y) = N(z).

If x does not have a loop, then this produces K∆,∆ in H, and so c∆ ≥ 2∆δ which is a
contradiction. So therefore x has a loop, and so all vertices in H have loops. Also, if x and
y are neighbors of x, then y has the same neighborhood as x. It now follows that H must
contain the completely looped graph on ∆ vertices. Since c∆ = ∆δ, we have that H is exactly
the completely looped graph on ∆ vertices. In this case, hom(G,H) = ∆n for all n-vertex
graphs G, and the result is clear in this case.
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Case 3: If a = ∆ and ci > 0 for some i < ∆, then from (4) we have(
∆∑
d=1

cd · dx−δ+ε
) 1

x+ε

< a =

(
∆∑
d=1

cd · dx−δ
) 1

x

(6)

and so x = N again gives the maximum value of the expression in (3).
Case 4: Finally, if a < ∆ then ∆εax < ∆x+ε, so by (4) we have(

∆∑
d=1

cd · dx−δ+ε
) 1

x+ε

≤ (∆εax)
1
x+ε < ∆. (7)

In this last case, we still need to identify the maximum value of the expression in (3) for
N ≤ x ≤ n. We use the following lemma, whose proof we delay until after finishing the proof
of Theorem 1.3.

Lemma 2.1. The function f : [δ + 1,∞)→ R defined by

f(x) =

 ∑
(v1,...,vδ)∈V (H)δ

|N(v1) ∩ · · · ∩N(vδ)|x−δ
 1

x

=

(
∆∑
d=1

cd · dx−δ
) 1

x

has at most one local maximum or local minimum.

Since the function with output ∑
(v1,...,vδ)∈V (H)δ

|N(v1) ∩ · · · ∩N(vδ)|x−δ
 1

x

=

(
∆∑
d=1

cd · dx−δ
) 1

x

tends to ∆ as x → ∞, it follows from (5), (6), and (7) that it is either decreasing to ∆ on
x ≥ N , increasing to ∆ on x ≥ N , or decreasing on N ≤ x < x0 and increasing to ∆ on
x0 < x. Therefore the maximum value of the expression in (3) occurs on the endpoints of the
interval N ≤ x ≤ n.

Finally, we identify the maximum value of hom(Gi, H)1/ni over the graphs Gi where either
Gi = Kδ,n−δ or Gi satisfies Gi ∈ G(ni, δ) with ni ≤ N . Let G∗ denote the graph that produces
the maximum value. Then

hom(G,H) ≤
∏

i:ni<N

hom(Gi, H)
ni
ni ·

∏
i:ni≥N

hom(Kδ,ni−δ, H)
ni
ni

≤
∏

i:ni<N

hom(G∗, H)
ni

|V (G∗)| ·
∏

i:ni≥N
hom(G∗, H)

ni
|V (G∗)|

= hom(G∗, H)
n

|V (G∗)|

where G∗ is either Kδ,n−δ, or G∗ has at most N = κ(δ,H) vertices. This completes the proof
of Theorem 1.3.

We now return to Lemma 2.1. To prove this, we will use the following proposition about
Lp norms, which is itself a special case of Lemma 1.11.5 in [14].
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Proposition 2.2 ([14]). Define a measure µ on V (H)δ by

µ((v1, . . . , vδ)) =

{
|N(v1) ∩ · · · ∩N(vδ)|−δ if N(v1) ∩ · · · ∩N(vδ) 6= ∅
0 if N(v1) ∩ · · · ∩N(vδ) = ∅,

and let g : V (H)δ → R be defined by g((v1, . . . , vδ)) = |N(v1)∩ · · ·∩N(vδ)|. Then the function
defined by

1

x
7→ ||g||Lx(V (H)) =

 ∑
(v1,...,vδ)∈V (H)δ

|N(v1) ∩ · · · ∩N(vδ)|x−δ
 1

x

is log convex for x ≥ δ + 1.

We prove Lemma 2.1 as a consequence of Proposition 2.2.

Proof of Lemma 2.1: Recall that a log convex function has at most one local maximum or
local minimum. The composition of the reciprocal map and the map given in Proposition 2.2
is the function defined by

x 7→

 ∑
(v1,...,vδ)∈V (H)δ

|N(v1) ∩ · · · ∩N(vδ)|x−δ
 1

x

=

(
∆∑
d=1

cd · dx−δ
) 1

x

.

Since the reciprocal map is strictly monotone on x ≥ δ + 1 and therefore preserves local
extremal values, proof of the lemma is complete.

3 Proof of Theorem 1.5

Before starting the proof of Theorem 1.5, we state an important lemma from [4], followed by
a few other remarks. Recall that ∆ refers to the maximum degree of a vertex in H.

Lemma 3.1 ([4]). Suppose H does not contain the completely looped graph on ∆ vertices or
K∆,∆ as a component. Then for any two vertices i, j of H and for k ≥ 4 there are at most
(∆2 − 1)∆k−4 H-colorings of Pk that map the initial vertex of that path to i and the terminal
vertex to j.

We will often build our colorings in stages by coloring some vertices and extending this
coloring to the remaining vertices. The conclusion of Lemma 3.1 holds by our assumptions on
H, and it will be frequently used to give an upper bound of ∆2 − 1 on the number of ways of
extending a coloring to the vertices of an edge that has previously colored neighbors. When
we reach a single vertex that has a previously colored neighbor, we will often give an upper
bound of ∆ on the number of ways of extending a coloring to this single vertex.

We next provide a simple lower bound on hom(Kδ,n−δ, H). Suppose that S(δ,H) is the
set of vectors in V (H)δ so that the entries of the vector have ∆ common neighbors, and let
s(δ,H) = |S(δ,H)|. Let Z denote the set of vertices in the size δ partition class in Kδ,n−δ.
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By coloring the vertices of Z with a fixed element of S(δ,H) and then coloring each vertex in
V (Kδ,n−δ) \ Z independently with one of the ∆ common neighbors, we have

hom(Kδ,n−δ, H) ≥ s(δ,H)∆n−δ. (8)

Now we move on to the proof of Theorem 1.5.

Proof of Theorem 1.5. Fix δ ≥ 1 and G ∈ G(n, δ). Let H satisfy hom(K1,δ, H)
1
δ+1 < ∆, or

equivalently ∑
v∈V (H)

d(v)δ < ∆δ+1. (9)

Since (x, x, . . . , x) ∈ S(δ,H) for an x ∈ V (H) with d(x) = ∆, then from (8) we have

hom(Kδ,n−δ, H) ≥ s(δ,H)∆n−δ ≥ ∆n−δ.

Let B be the union of the vertices of a maximum number of (vertex) disjoint copies of
K1,δ in G. Let A = V (G) \B. Note that the maximality of B implies that (a) there are no
vertices in A with δ neighbors in A, so each vertex in A has a neighbor in B, and (b) each
component of G has some vertices in B.

We now indicate our coloring scheme that we will use to produce an upper bound on
hom(G,H). We will first color the vertices in B independently, followed by the vertices in A.

There are at most
(∑

v∈V (H) d(v)δ
)|B|/(δ+1)

possible colorings of B, and since all components

of G have some vertices in B, this implies

hom(G,H) ≤

 ∑
v∈V (H)

d(v)δ

|B|/(δ+1)

∆n−|B| =

(∑
v∈V (H) d(v)δ

∆δ+1

)|B|/(δ+1)

∆n.

By our assumptions on H, if |B| > δ(δ + 1) log(∆)/ log

(
∆δ+1∑

v∈V (H) d(v)δ

)
then this upper

bound is smaller than ∆n−δ and so we have hom(G,H) < hom(Kδ,n−δ, H).

So now suppose that |B| ≤ δ(δ+ 1) log(∆)/ log

(
∆δ+1∑

v∈V (H) d(v)δ

)
. Once B has been colored,

two vertices of A joined by an edge can be colored in at most ∆2 − 1 ways, which is a
consequence of Lemma 3.1 and the fact that all components of G contain vertices of B. So if
A contains a matching of size m, then

hom(G,H) ≤

 ∑
v∈V (H)

d(v)δ

|B|/(δ+1)

(∆2 − 1)m∆n−|B|−2m.

which is smaller than ∆n−δ whenever m > δ log(∆)/ log(∆2/(∆2 − 1)). Therefore we can
assume that |B| and m are both smaller than a constant that depends on δ and H.

We add the endpoints of a maximum matching in A to the set B, and so this augmented
set B contains a constant (depending on δ and H) number of vertices. The maximality of
the matching implies that each vertex in V (G) \ B has all of its (at least δ) neighbors in
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the set B. By the pigeonhole principle there exists a set Z of size δ so that Z is contained
in the neighborhood of at least (n− |B|)/

(|B|
δ

)
≥ cn vertices of V (G) \B for some constant

c = c(δ,H). Therefore we assume G contains the (not necessarily induced) subgraph Kδ,cn.

We next indicate how we will color the components of G based on whether they contain
the subgraph Kδ,cn or not. For any component that does not contain the subgraph Kδ,cn, we
color any vertex and δ of its neighbors, and then greedily color the rest of that component.
So an upper bound on the number of colorings in another component that has x vertices is

(∆δ+1 − 1)∆x−δ−1, (10)

which is strictly smaller than ∆x.
For the component containing Kδ,cn, we again color Z and then the rest of that component.

In this case, by utilizing (10) on any other components, the number of colorings of G that do
not use an element of S(δ,H) on Z is at most

|V (H)|δ(∆− 1)cn∆n−δ−cn.

For those colorings that use an element of S(δ,H) on Z, we then color the rest of the vertices
and have at most ∆ choices of a color on each of those remaining vertices.

If G has more than one component, then using the upper bound from (10) in one such
component that does not contain Kδ,cn we have

hom(G,H) ≤ s(δ,H)(∆δ+1 − 1)∆n−2δ−1 + |V (H)|δ(∆− 1)cn∆n−δ−cn

≤ s(δ,H)∆n−δ − s(δ,H)∆n−2δ−1 + |V (H)|δe−cn/∆∆n−δ.

Likewise, if there is an edge in the component containing Kδ,cn that does not have an
endpoint in Z, then from Lemma 3.1 we have

hom(G,H) ≤ s(δ,H)(∆2 − 1)∆n−δ−2 + |V (H)|δ(∆− 1)cn∆n−δ−cn

≤ s(δ,H)∆n−δ − s(δ,H)∆n−δ−2 + |V (H)|δe−cn/∆∆n−δ.

In either case, for large enough n we have |V (H)|δe−cn/∆ < 1/∆δ+1, which implies
hom(G,H) < s(δ,H)∆n−δ ≤ hom(Kδ,n−δ, H). So, if hom(G,H) ≥ hom(Kδ,n−δ, H), the
graph G must be connected and contain Kδ,n−δ plus potentially some edges inside Z, the size
δ partition class.

We now argue that for such a G that satisfy hom(G,H) ≥ hom(Kδ,n−δ, H), there are no
edges between two vertices in Z, which we do by showing that adding such an edge e will
strictly decrease the number of H-colorings of Kδ,n−δ. If ij is an edge in H, then we can
color Z with i and V (Kδ,n−δ) \ Z with j. So if i is unlooped, this coloring of Kδ,n−δ is not an
H-coloring with the edge e added. If instead all vertices of H are looped, then as H is not
the completely looped graph (by assumption on H) there will be non-adjacent vertices j1 and
j2 with a common neighbor i in H. Then we map Z to j1 and j2 and V (Kδ,n−δ) to i. If the
endpoints of the added edge e have colors j1 and j2, then again this is not an H-coloring with
the edge e added. This shows that if G 6= Kδ,n−δ, then hom(G,H) < hom(Kδ,n−δ, H), which
completes the proof.

10



4 Concluding Remarks

In this section we mention a few interesting questions related to the contents of this article
beyond Conjectures 1.1 and 1.2.

Consider the family of graphs with fixed minimum degree at least δ and a maximum
degree at most D. When D = δ this is the family of δ-regular graphs, and when D = n− 1
this is the family G(n, δ). If D is smaller than n − δ, then the graph Kδ,n−δ is not in this
family.

Question 4.1. Fix H, δ > 1, and let D ≥ δ. What is the maximum value of hom(G,H) over
all n-vertex graphs G with minimum degree at least δ and maximum degree at most D?

For all H, δ = 1, and all values D, the maximizing value of hom(G,H) is either

hom(K2, H)
n
2 or hom(K1,D, H)

n
D+1 [4].

If H is such that a regular graph G ∈ G(n, δ) gives the maximizing value of hom(G,H),
then this graph G will still maximize hom(G,H) for all graphs in this new family. But many
H have Kδ,n−δ ∈ G(n, δ) as the graph that maximizes the value of hom(G,H), and for these
H it is not obvious what the maximizing value of hom(G,H) would be when D < n− δ. One

appealing special case of Question 4.1 is when H = , where we recall that Kδ,n−δ has the
most number of independent sets among n-vertex graphs with minimum degree at least δ.

Question 4.2. Fix δ > 1 and let D ≥ δ. Which n-vertex graph with minimum degree at least
δ and maximum degree at most D has the most number of independent sets?

A bound based on the product of the degrees of the endpoints of edges in G can be found
in [11].
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