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Rfssa: An R Package for Functional
Singular Spectrum Analysis
by Hossein Haghbin, Jordan Trinka and Mehdi Maadooliat

Abstract Functional Singular Spectrum Analysis (FSSA) is a non-parametric approach for analyzing
Functional Time Series (FTS) and Multivariate FTS (MFTS) data. This paper introduces Rfssa, an R
package that addresses implementing FSSA for FTS and MFTS data types. Rfssa provides a flexible
container, the funts class, for FTS/MFTS data observed on one-dimensional or multi-dimensional
domains. It accepts arbitrary basis systems and offers powerful graphical tools for visualizing time-
varying features and pattern changes. The package incorporates two forecasting algorithms for FTS
data. Developed using object-oriented programming and Rcpp/RcppArmadillo, Rfssa ensures com-
putational efficiency. The paper covers theoretical background, technical details, usage examples, and
highlights potential applications of Rfssa.

Introduction

In recent times, advancements in data acquisition techniques have made it possible to collect data
in high-resolution formats. Due to the presence of temporal-spatial dependence, one may consider
this type of data as functional data. Functional Data Analysis (FDA) focuses on developing statistical
methodologies for analyzing data represented as functions or curves. While FDA methods are par-
ticularly well-suited for handling smooth continuum data, they can also be adapted and extended to
effectively analyze functional data that may not exhibit perfect smoothness, including high-resolution
data and data with inherent variability. The widely-used R package for FDA is fda (Ramsay et al.,
2023), which is designed to support analysis of functional data, as described in the textbook by Ram-
say and Silverman (2005). Additionally, there are over 40 other R packages available on CRAN that in-
corporate functional data analysis, such as funFEM (Bouveyron, 2021), fda.usc (Febrero-Bandle and
de la Fuente, 2012), refund (Goldsmith et al., 2023), fdapace (Gajardo et al., 2022), funData (Happ-
Kurz, 2020), ftsspec (Tavakoli, 2015), rainbow (Shang and Hyndman, 2022), and ftsa (Hyndman and
Shang, 2023).

One crucial initial requirement for any of these packages is to establish a framework for represent-
ing and storing infinite-dimensional functional observations. The fda package, for instance, employs
the fd class as a container for functional data defined on a one-dimensional (1D) domain. An fd ob-
ject represents functional data as a finite linear combination of known basis functions (e.g., Fourier,
B-splines, etc.), storing both the basis functions and their respective coefficients for each curve. This
representation aligns with the practical implementation found in many papers within the field of
FDA. Conversely, several other R packages store functional data in a discrete form evaluated on
grid points (e.g., fda.usc, refund, funData, rainbow, and fdapace). These packages also provide
the capability to analyze functions beyond the one-dimensional case, such as image data treated as
two-dimensional (2D) functions (e.g., refund, fdasrvf, and funData). To the best of our knowledge,
packages that support representation beyond 1D functions utilize the grid point representation for
execution and storage. Moreover, recent packages have been developed to handle multivariate func-
tional data, which consist of more than one function per observation unit. Examples of such packages
include roahd, fda.usc, and funData.

While some recent FDA packages have focused on analyzing and implementing techniques for
Functional Time Series (FTS), where sequences of functions are observed over time, none of them
handle Multivariate FTS (MFTS) or multidimensional MFTS. For example see the packages ftsspec,
rainbow and ftsa. In summary, there is still a need for a unified and flexible container for FTS/MFTS
data, defined on either one or multidimensional domains. The funts class in Rfssa (Haghbin et al.,
2023), the package discussed in this article, aims to address this gap. One of the primary contribu-
tions of the package is its capacity to handle and visualize 2-dimensional FTS, including image data.
Furthermore, the package accommodates MFTS, especially when observed on distinct domains. This
flexibility empowers users to analyze and visualize FTS with multiple variables, even when they
do not share the same domain. Notably, the Rfssa package introduces novel visualization tools (as
exemplified in Figure 5). These tools include heatmaps and 3D plots, thoughtfully designed to pro-
vide a deeper understanding of functional patterns over time. They enhance the ability to discern
trends and variations that might remain inconspicuous in conventional plots. An additional feature
of the funts class is its ability to accept any arbitrary basis system as input for the class construc-
tor, including fda basis functions or even empirical basis represented as matrices evaluated at grid
points. The classes in the Rfssa package are developed using the S3 object-oriented programming
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system, and for computational efficiency, significant portions of the package are implemented using
the Rcpp/RcppArmadillo packages. Notably, the package includes a shiny web application that pro-
vides a user-friendly GUI for implementing Functional Singular Spectrum Analysis (FSSA) on real or
simulated FTS/MFTS data.

The Rfssa package was initially developed to implement FSSA for FTS, as discussed in the work
of Haghbin et al. (2021). FSSA extends Singular Spectrum Analysis (SSA), a model-free procedure
commonly used to analyze time series data. The primary goal of SSA is to decompose the original
series into a collection of interpretable components, such as slowly varying trends, oscillatory pat-
terns, and structureless noise. Notably, SSA does not rely on restrictive assumptions like stationarity,
linearity, or normality (Golyandina and Zhigljavsky, 2013). It’s worth noting that SSA finds applica-
tions beyond the functional framework, including smoothing and forecasting purposes (Hassani and
Mahmoudvand, 2013; de Carvalho and Rua, 2017). The non-functional version of FSSA, known as
SSA, has previously been implemented in the Rssa package (Golyandina et al., 2015) and the ASSA
package (de Carvalho and Martos, 2020). The Rssa package provides various visualization tools to
facilitate the grouping stage, and the Rfssa package includes equivalent functional versions of those
tools (Golyandina et al., 2018). While the foundational theory of FSSA was originally designed for
univariate FTS, it has since been extended to handle multidimensional FTS data, referred to as Mul-
tivariate FSSA (MFSSA) (Trinka et al., 2022). Furthermore, in line with the developments in SSA for
forecasting, two distinct algorithms known as Recurrent Forecasting (FSSA R-forecasting) and Vector
Forecasting (FSSA V-forecasting) were introduced for FSSA by Trinka et al. (2023). Both these fore-
casting algorithms, along with the capabilities for handling MFSSA, have been seamlessly integrated
into the most recent version of the Rfssa package.

The remainder of this manuscript is organized as follows. Section 2 introduces the FTS/MFTS
data preparation theory used in the funts class. Section 3 discusses the FSSA methodology, includ-
ing the basic schema of FSSA, FSSA R-forecasting, and FSSA V-forecasting. Technical details of the
Rfssa package are provided in Section 4, where we describe the available classes in the package and
illustrate their practical usage with examples of real data. Section 5 focuses on the reconstruction
stage and FSSA/MFSSA forecasting. In Section 6, we provide a summary of the embedded shiny
app. Finally, we conclude the paper in Section 7.

Data preparation in FTS

Define yN = (y1, . . . , yN) to be a collection of observations from an FTS. In the theory of FTS, yi’s
are considered as functions in the space H = L2(T ) where T is a compact subset of R. Let s ∈ T
and consider yi(s) ∈ Rp, the sequence of yN is called (univariate) FTS if p = 1, and multivariate
FTS (or MFTS) if p > 1. In the realm of functional data analysis, we operate under the assumption
that the underlying sample functions, denoted as yi(·), exhibit smoothness for each sample i, where
i = 1, . . . , N. Nevertheless, in practical scenarios, observations are typically acquired discretely at a
set of grid points and are susceptible to contamination by random noise. This phenomenon can be
represented as follows:

Yi,k = yi(tk) + εi,k, k = 1, . . . , K. (1)

In this expression, tk ∈ T , and K denotes the count of discrete grid points across all samples. The εi,k
terms represent i.i.d random noises. To preprocess the raw data, it is customary to employ smoothing
techniques, converting the discrete observations Yi,k into a continuous form, yi(·). This is typically
performed individually for each variable and sample. One widely used approach is finite basis func-
tion expansion (Ramsay and Silverman, 2005). In this method, a set of basis functions {νi}i∈N is
considered (not necessarily orthogonal) for the function space H. Each sample function yi(·) in (1) is
then considered as a finite linear combination of the first d basis functions:

yi(s) =
d

∑
j=1

cijνj(s). (2)

Subsequently, the coefficients cij can be estimated using least square techniques. By adopting the
linear representation form for the functional data in (2), we establish a correspondence between each
function yi(·) and its coefficient vector ccci = (cij)

d
j=1. As a result, the coefficient vectors ccci can serve to

store and retrieve the original functions, yi(·)’s. This arises from the inherent isomorphism between
two finite vector spaces of the same dimension (in this case, d). Consequently, ccci’s are stored as
the primary attribute of funts objects within the Rfssa package. Take two elements x, y ∈ H with
corresponding coefficient vectors cccx and cccy. Then, the inner product of x, y can be computed in matrix
form as ⟨x, y⟩ = ccc⊤x Gcccy, where G = [⟨νi, νj⟩]di,j=1 is the Gram matrix. It is important to note that G is

Hermitian. Furthermore, because the basis functions {νi}d
i=1 are linearly independent, G is positive
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definite, making it invertible (Horn and Johnson, 2012, Thm. 7.2.10). Moreover, let A : H → H

be a linear operator and y = A(x). Then, cccy = G−1Acccx, where A = [⟨A(νj), νi⟩]di,j=1 is called the
corresponding matrix of the operator A.

It is worth noting that while the FSSA theory extends to arbitrary dimensions, practical implemen-
tation for dimensions greater than 2 introduces considerable computational complexity. Moreover,
high-dimensional FTS data are relatively rare in real-world applications. Therefore, within the Rfssa
package, we have chosen to confine the funts object to support functions observed over domains
that are one or two-dimensional. In the Rfssa package, the task of preprocessing the raw discrete
observations and converting those to the funts object is assigned to the funts(·) constructor.

An overview of the FSSA methodology

FSSA is a nonparametric technique to decompose FTS and MFTS and the methodology can also be
used to forecast such data (Haghbin et al., 2021; Trinka et al., 2022, 2023); it can also be used as a
visualization tool to illustrate the concept of seasonality and periodicity in the functional space over
time.

Basic schema of FSSA

Basic FSSA consists of two stages where each stage includes two steps. We outline the four steps of
the FSSA algorithm here.

I) First stage: decomposition

1. Embedding
For a positive integer, L < N/2, let HL be the Cartesian product of L copies of H and
define the trajectory operator X : RK → HL with

Xaaa :=
K

∑
j=1

ajxxxj, aaa = (a1, . . . , aK)
⊤ ∈ RK . (3)

where K = N − L + 1 and

xxxj(s) :=
(

yj(s), yj+1(s), . . . , yj+L−1(s)
)⊤

, j = 1, . . . , K, (4)

are called lag-vectors. One may consider the trajectory operator X in (3) as an L×K matrix
with functional entries in the form of

X (s) =


y1(s) y2(s) y3(s) · · · yK(s)
y2(s) y3(s) y4(s) · · · yK+1(s)
y3(s) y4(s) y5(s) · · · yK+2(s)

...
...

...
. . .

...
yL(s) yL+1(s) yL+2(s) · · · yN(s)

 . (5)

Note that the antidiagonal elements of the matrix in (5) are all equal. Such matrices are
called Hankel, and since X (s) is a Hankel matrix for any s in the domain, we call X
a Hankel operator. In practice, a main challenge is how to use the original basis of H

to represent the lag-vectors in HL. To do this, one may define a quotient sequence qk,
and a reminder sequence rk, by k = (qk − 1)L + rk, where 1 ≤ rk ≤ L, and 1 ≤ qk ≤
d. Now, consider ϕϕϕk as a functional vector of length L with all zero functions, except
rk-th element, which is νqk . Using this definition, the lag-vector xxxj given in (4) can be
represented as a linear combination of {ϕϕϕk}Ld

k=1 with the corresponding coefficient vector
bj = (c1j, . . . , c1,j+L−1, c2j, . . . , c2,j+L−1, . . . , cd,j+L−1)

⊤.

2. FSVD
We apply the functional singular value decomposition (FSVD) to X and obtain a collec-
tion of singular values, {

√
λi}r

i=1, orthonormal right singular vectors {vi}r
i=1 (that are

elements of RK), and orthonormal left singular functions {ψψψi}r
i=1 (that are elements of

HL). The collection (
√

λi, ψψψi, vi) will be called the ith eigentriple of the FSVD, and r is the
rank of X :

X =
r

∑
i=1

Xi =
r

∑
i=1

√
λivi ⊗ψψψi, (6)
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Figure 1: (A): Line plot of Callcenter data; (B): FTS reconstructed using Is = {1, · · · , 7}; (C): FTS
reconstructed by setting I1 = {1}; (D): FTS reconstructed using I2 = {2, 3}; (E): FTS reconstructed
from I3 = {4, 5}; (F): FTS reconstructed from I4 = {6, 7}.

where Xi : RK → HL is a rank one elementary operator. To implement the FSVD of X
given in (6), let B := [b1, · · · , bK ], G := [⟨ϕϕϕi, ϕϕϕj⟩HL ]Ld

i,j=1, X := G1/2B, and
(√

λi, uuui, vi
)
’s

be the eigentriples of the SVD of the matrix X. It can be shown that
(√

λi, ψψψi, vi
)

is the ith

eigentriple of the FSVD of X , where the left singular function, ψψψi, is corresponding to the
coefficient vector G−1/2uuui. See (Haghbin et al., 2021) for more details.

These steps can also be extended to multivariate case, i.e. MFSSA. See Trinka et al. (2022) for
more details. In the Rfssa package, the results of the decomposition stage is held in an object
from the fssa class. The constructor, fssa(·), performs the decomposition for both FSSA and
MFSSA algorithm and returns an object of class fssa. Further discussion about the attributes
and methods of the fssa class is given in the technical details section.

II) Second stage: reconstruction

3. Grouping
We partition the set of indices {1, . . . , r} into disjoint sets Iq, where q ∈ {1, . . . , m} and
m ≤ r. From here, we obtain the group XIq by combining the respective elementary
operators accordingly:

XIq = ∑
i∈Iq

Xi.

Exploratory plots of singular values, right singular vectors, and left singular functions
that investigate the different modes of variation extracted in the decomposition stage are
used to decide how to form the sets, Iq, and we discuss such plots in further detail in
section five.

4. Hankelization
Since each XIq is not necessarily Hankel, we perform diagonal averaging of the entries to
Hankelize each operator. From each Hankelized XIq , we obtain an FTS, yq

N , that describes
main characteristics of yN such as mean, seasonal, trend, and noise behaviors.

For the reconstruction stage, the Rfssa package provides the function freconstruct(·) which
returns a list of objects of class funts associated to the groups specified by the user. If the sup-
plied input to the fssa(·) function is an MFTS, the signal extraction process is almost identical
as compared to the univariate case with the exception that now, we have that each element
of the time series is a tuple of functions comprised of elements observed over one or two-
dimensional domains.

As a motivating example, consider the Callcenter dataset Figure 1(A), which has been previ-
ously discussed in Maadooliat et al. (2015) and is included in the package. This dataset records the
number of calls received by a call center in 1999. Each functional observation corresponds to the
square root of the daily call count, and the entire FTS represents all the days in 1999. When dealing
with time series data exhibiting known periodic patterns, it is a common practice in SSA to choose the
window length, L, as a multiple of this underlying periodicity. This choice ensures that the method
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Figure 2: The prediction of the last 7 days of the year 1999 for the Callcenter data, based on FSSA
R-forecasting and V-forceasting, and comparing the results with the observed functions.

effectively extracts the corresponding periodic components (Golyandina et al., 2001). For our illustra-
tive example using the Callcenter dataset, we specifically opt for a window length of L = 28. This
selection allows us to effectively capture the weekly periodic patterns that inherently exist within
this functional time series (Haghbin et al., 2021). After applying FSSA, we obtain reconstructed FTS
representations under different grouping considerations, as illustrated in Figures 1(B-F). Particularly
noteworthy is the reconstructed FTS obtained using the leading 7 eigentriples of the FSVD, as shown
in Figure 1(B). It is important to mention that the selection of groups in FTS is typically guided by
various SSA-type plotting tools, which rely on the similarity in the harmonic structure of extracted
elementary components. Such SSA-type plots have been available for non-functional time series in
the Rssa package, and analogous tools for the functional case have been developed in Rfssa (Figure
7). However, it’s worth noting that this extension presented its own set of challenges, both in theory
and implementation. Detailed code for generating the reconstructed functions shown in Figure 1 can
be found in the subsequent sections of this paper.

FSSA Forecasting

After the decomposition stage, one may perform forecasting instead of reconstruction (Figure 3). R-
forecasting and V-forecasting are two main defined approaches in FSSA/MFSSA (Trinka et al., 2023).

In both forecasting methods, the goal is to obtain the FTS, gq
N+M =

(
gq

1, . . . , gq
N+M

)
, where the first

N terms are close to yq
N and the goal is to forecast the remaining elements, {gq

i }
N+M
i=N+1.

Forecasts in the R-forecasting method, are obtained using a linear combination of the previous
L − 1 elements of gq

N+M. Consider a positive integer k < r and define V = ∑k
i=1 πi ⊗ πi, where

πi ∈ H is the last element of left singular function ψψψi. Define Aj : H → H such that Aj = ∑k
i=1 ψj,i ⊗

(I −V)−1 πi, where ψj,i is the jth component of ψψψi, and I : H → H is the identity operator. Then
the R-forecasting can be obtained using following equation

gq
i =

{
yq

i , i = 1, . . . , N
∑L−1

j=1 Ajg
q
i+j−L, i = N + 1, . . . , N + M.

(7)

Forecasts in the V-forecasting method, are obtained by predicting functional vectors. One may
define an orthogonal projection, ΠΠΠ : HL−1 → HL−1, that projects onto the space spanned by {ψψψ∇

i }k
i=1,

where ψψψ∇
i ∈ HL−1 is formed from the first L − 1 elements of ψψψi. Now let Q : HL → HL be given by

Q (xxx) =

(
ΠΠΠ
(
xxx∆)

∑L−1
j=1 Ajx∆

j

)
, xxx ∈ HL,

where xxx∆ contains the last L− 1 components of xxx, and x∆
j is the jth component of xxx∆. The V-forecasting

algorithm is given in the following steps:

1. Define wwwq
j as

wwwq
j =

{
xxxq

j , j = 1, . . . , K

Qwwwq
j−1, j = K + 1, . . . , K + M,

where {xxxq
j }

K
j=1 spans the range of operator XIq .

2. Form the operator Wq : RK+M → HL whose range is linearly spanned by the set {wwwq
i }

K+M
i=1 .
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3. Hankelize Wq in order to extract the FTS gq
N+M.

4. The functions, gq
N+1, . . . , gq

N+M, form the M terms of the FSSA vector forecast.

Continuing from the previous example, we utilized the first 358 days of the year to train the FSSA
model on the Callcenter dataset. Subsequently, we employed the FSSA R-forecasting and V-forecasting
methods to make predictions for the final week (len = 7). Figure 2 illustrates both the actual and fore-
casted curves for each day of the week, employing each respective method. Detailed code for this
process can be found in the subsequent sections.

In the Rfssa package, we offer the fforecast(·) function designed for the execution of R-forecasting
or V-forecasting algorithms. This function expects an input argument of class fssa and yields an
output of class fforecast. The latter comprises a list of objects of class funts, with each funts repre-
senting a forecasted group.

Technical Details of the Rfssa package

The roadmap of the main functions used in the Rfssa package is given in Figure 3. The inputs and
outputs of these functions are described in Table 1. As it can be seen from Table 1, three classes
(funts, fssa and fforecast) are used to support the return objects of theses functions. The funts(·),
fssa(·) and fforecast(·) functions are the constructors of the funts, fssa and fforecast classes,
respectively. In the rest of this section we present these classes with illustrative examples, and later
we describe the reconstruction and forecasting functions in details.

The funts class

The funts(·) constructor is used to create an S3 object of class funts. This object is designed to
encapsulate various forms of FTS, including both univariate and multivariate types. It offers a ver-
satile framework for the creation and manipulation of funts objects, accommodating different basis
systems and dimensions. It accepts the following arguments:

- X: A matrix, three-dimensional array, or a list of matrix or array objects. When method="data",
it represents the observed curve values at discrete sampling points or argument values. When
method="coefs", X specifies the coefficients corresponding to the basis system defined in basisobj.
If X is a list, it defines a multivariate FTS, with each element being a matrix or three-dimensional
array object. In matrix objects, rows correspond to argument values, and columns correspond
to the length of the FTS. In three-dimensional array objects, the first and second dimensions
correspond to argument values, and the third dimension to the length of the FTS.

- basisobj: This argument should be an object of class basisfd, a matrix of empirical basis, or
a list of basisfd or empirical basis objects. In the case of empirical basis, rows correspond to
basis functions, and columns correspond to grid points.

- argval: A vector list of length p, representing a set of argument values corresponding to the
observations in X. Each entry in this list should either be a numeric value or a list of numeric
elements, depending on the dimension of the domain over which the variable is observed. It’s
worth noting that these values can vary from one variable to another. If argval is set to NULL,
the default values are the integers from 1 to n, where n is the size of the first dimension in the
X argument.

- method: This parameter determines the type of the X matrix, and it can take one of two values:
coefs or data.

- start and end: Specify time of the first and last observations. They can be a single positive
integer or an object of classes Date, POSIXct, or POSIXt, representing a natural time unit.

 

 

 

funts() 
 

fforecast() 

freconstruct() 

Data Preparing 

fssa() 
•  

Decomposition 

Reconstruction 

Forecasting 

Figure 3: The roadmap of the Rfssa package.
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Function Descriptions Main arguments Returns

funts(·) Create FTS/MFTS ob-
jects

Discretely sampled data or
coefficients, basis system
specifications, a set of argu-
ment values corresponding
to the observations in X,
the time specifications
arguments.

An object of class
funts.

fssa(·)

Performs the decompo-
sition (including embed-
ding and FSVD steps)
stage for FTS/MFTS
data.

An object of class funts and
window length L.

An object of class
fssa.

freconstruct(·)

Performs the reconstruc-
tion (including grouping
and Hankelization steps)
stage.

An object of class fssa and
list of numeric vectors in-
cludes indices of elementary
components of a group.

A list of funts objects
reconstructed accord-
ing to the specified
groups.

fforecast(·)
Performs FSSA R-
forecasting or FSSA
V-forecasting.

An object of class fssa, list of
numeric vectors includes in-
dices of elementary compo-
nents of a group used for re-
construction and forecasting
and forecast horizon h.

An object of class
fforecast.

Table 1: A summary of FSSA written functions in the Rfssa package.

- tname, vnames and dnames: These parameters accept strings or lists of strings to specify the
names of time, variables, and domains.

The funts(·) constructor offers flexibility to users. Users can either provide their custom basis or
request Rfssa to generate the basis for them, leveraging the capabilities of the fda package. It is
assumed that each variable is observed over a regular and equidistant grid. Furthermore, each vari-
able in the funts object is assumed to be observed over either a one or two-dimensional domain,
as illustrated in Figure 4. To enhance the representation of time, the funts function introduces two
parameters, namely start and end, which capture the time series duration. This design allows users
to specify time information in a structured and standardized manner. Users have the flexibility to
set start and end using various time and date classes, such as Date, POSIXct, or POSIXt. If users do
not provide the start and end arguments, default values are used, with start=1 and end=N, where
N represents the length of the time series. This default approach aligns with common practices, as
seen in classes like ts in the stats package, as well as fts classes in rainbow or ftsa. An object of class
funts is a list encompassing the following elements:

- N: Represents the length of the time series.

- dimSupp: A list specifying the dimensions of the support domain of the variables.

- time: The time object.

- coefs: A list containing basis coefficients.

- basis: A list of basis systems.

- B_mat: Evaluated basis functions on initial arguments.

- argval: Initial arguments of the observed functions.

The funts class provides essential functionalities for managing FTS objects, ensuring users have
well-defined basic operations. It supports arithmetic operations like addition and multiplication,
along with indexing methods. Additionally, three generic methods, length(·), print(·), and plot(·),
are available. The eval.funts(·) method allows users to evaluate a funts object on a specified grid.
To determine if an object belongs to the funts class, the is.funts(·) method is provided. Convert-
ing objects from the fda package’s fd class or the rainbow package’s fts class to a funts object is
made easy using the as.funts(·) function. The strength of funts objects lies in their powerful visu-
alization capabilities within the field of FTS. Users can create two types of plots using the graphical
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As funts object:
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Figure 4: The main roadmap of funts objects.

commands plot(·) and plotly_funts(·). The plot(·) method utilizes base graphics objects to gen-
erate FTS plots. On the other hand, the plotly_funts(·) function offers a versatile plotly platform
for visualizing FTS data, providing several plot types: line, 3Dline, 3Dsurface, and heatmap. These
plots making it easier to detect trends or patterns within each curve’s behavior over time. Further-
more, users can directly apply plotly_funts(·) function to objects from the fd, fds, or fts classes
in packages like rainbow, fds, ftsa, or fda, without the need for conversion to funts objects. Addi-
tionally, when converting objects from packages like fds or fts, the xname and yname arguments are
automatically captured and used as the xlab and zlab arguments, ensuring that resulting plots are
informative and intuitive.

To demonstrate the capabilities of the Rfssa package for handling FTS, two illustrative examples
are provided. The first example showcases the Callcenter dataset consisting of curves observed
over a one-dimensional domain. In contrast, the second example involves a bivariate FTS dataset,
which includes a sequence of two types of remote sensing images (two-dimensional functional data
domain).

Example: Creating funts objects for FTS

The first example uses the Callcenter dataset which was discussed before. The funts object can be
made and plotted using the following codes. The generated plots are shown in Figure 5.

# Load necessary libraries
require(Rfssa)
require(fda)

# Load Callcenter data
loadCallcenterData()

# Prepare the data
D <- matrix(sqrt(callcenter$calls), nrow = 240)
bs1 <- create.bspline.basis(c(0, 23), 22)
u <- seq(0, 23, len = nrow(D))

# Create a 'funts' object
Callcenter <- funts(D, bs1, start = as.Date("1999-1-1"),

vnames = "Sqrt of Call Numbers",
dnames = "Time (6 minutes aggregated)",
tname = "Date")

xtlab <- list(c("00:00", "06:00", "12:00", "18:00", "24:00"))
xtloc <- list(c(1, 60, 120, 180, 240))

# Generate a line plot using Plotly
plotly_funts(Callcenter, main = "Call Center Data Line Plot",

xticklabels = xtlab, xticklocs = xtloc)

# Generate a heatmap plot using Plotly
plotly_funts(Callcenter, type = "heatmap", main = "Call Center Data Heatmap",

xticklabels = xtlab, xticklocs = xtloc)
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# Generate a 3D line plot using Plotly
plotly_funts(Callcenter, type = "3Dline", main = "Call Center Data 3Dline plot",

xticklabels = xtlab, xticklocs = xtloc
)

# Generate a 3D surface plot using Plotly
plotly_funts(Callcenter, type = "3Dsurface", main = "Call Center Data 3Dsurface plot",

xticklabels = xtlab, xticklocs = xtloc
)
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Figure 5: The plot types of the generated plots by potly_funts(·)

As one can be see from Figure 5(A), the overlapping line plot is a common way to view FTS data
observed over a one-dimensional domain, where the curves that are recorded on dates closer to the
start of 1999 are given in light blue while functions obtained on later dates are plotted in a darker blue.
The heatmap plot in Figure 5(B) is a newer technique used to visualize FTS data observed over a one-
dimensional domain, allowing the user to see the evolution of the FTS over time as opposed to relying
on different colorings of the curves to specify date. Such one-dimensional FTS can also be represented
in a interactive 3D view. To obtain such plots the user simply needs to specify type="3Dsurface" or
type="3Dline".

Example: Creating funts objects for MFTS

The second example considered two collection of images where each image is drawn from a region
southeast of the city of Jambi, Indonesia located between latitudes of 1.666792◦ S - 1.598042◦ S and
longitudes of 103.608963◦ E - 103.677742◦ E. The images were recorded using the MODerate Resolu-
tion Imaging Spectroradiometer (MODIS) Terra satellite with a resolution of 250 meters every 16 days
starting from February 18, 2000 and ending July 28, 2019. The output of each image is the normalized
difference vegetation index (NDVI) which is used to quantify how much vegetation is present and
enhanced vegetation index (EVI). The NDVI values closer to one being indicative of more vegetation
and values closer to zero indicate less vegetation (see Haghbin et al., 2021, for more details). The
following code can be used to load the data, define a funts object for a MFTS, slice the funts object to
select a specific variable (here NDVI), and plot the smoothed images over time in an animation, that
a snapshot is given in Figure 6.
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# Load the Jambi dataset
loadJambiData()

# Extract NDVI and EVI array data
NDVI <- Jambi$NDVI
EVI <- (Jambi$EVI)

# Create a list containing NDVI and EVI array data
Jambi_Data <- list(NDVI, EVI)

# Create a multivariate B-spline basis
require(fda)
bs2 <- create.bspline.basis(c(0, 1), 13)
bs2d <- list(bs2, bs2)
bsmv <- list(bs2d, bs2d)

# Create a funts object
Y_J <- funts(X = Jambi_Data,

basisobj = bsmv,
start = as.Date("2000-02-18"), end = as.Date("2019-07-28"),
vnames = c("NDVI", "EVI"), tname = "Date",
dnames = list(c("Latitude", "Longitude"), c("Latitude", "Longitude")))

# Create a Plotly-based visualization of the NDVI Image
plotly_funts(Y_J[, 1],

main = "NDVI Image (Jambi)",
xticklabels = list(c("103.61\u00B0 E", "103.68\u00B0 E")),
yticklabels = list(c("1.67\u00B0 S", "1.60\u00B0 S")),
xticklocs = list(c(0, 1)),
yticklocs = list(c(0, 1)),
color_palette = "RdYlGn")

The fssa Class

Once the funts object is created and L is chosen, one can apply the fssa(·) constructor to obtain an
S3 object of class fssa that contains our singular values, left singular functions, and right singular
vectors. An object of class fssa is a list of right singular functions, which is packed in an object of
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Figure 6: An NDVI snapshot from the city of Jambi, Indonesia.
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class funts and the following components:

- values: A numeric vector of singular values.

- L: The specified window length.

- N: The length of the functional time series.

- Y: The original funts object.

The generic plot(·) is developed for the fssa class to help the user make decisions on how to do
the grouping stage of FSSA/MFSSA. This method, provides a complete set of visualization tools for
the user to check the quality of the decomposition stage. These SSA-type plots encompass various
types, each providing unique insights into the data:

- "values": Plots the singular values (default).

- "paired": Visualizes pairs of right singular vectors, which is particularly useful for detecting
periodic components.

- "wcor": Generates a plot of the W-correlation matrix for the reconstructed objects.

- "vectors": Displays the right singular vectors, aiding in the detection of period length.

- "lcurves": Showcases the left singular functions, assisting in period length detection.

- "lheats": Heatmap plots of left singular functions are available, designed for funts variables
observed over one or two-dimensional domains. These plots are valuable for identifying mean-
ingful patterns.

- "periodogram": Periodogram plots of the right singular vectors can be generated, which help
detect the frequencies of oscillations in functional data.

While efforts have been made to align these plots in Rfsaa with the non-functional versions available
in the Rsaa package, there are some fundamental differences. Notably, "lheats" and "lcurves" are
novel plot types introduced in the Rfssa package for functional data. Additionally, "paired" and
"vectors" types are developed based on the right singular vectors. All these plot types utilize the
lattice graphics engine. The following example codes generate these plots for the Callcenter dataset.

Example: performing decomposition stage of FSSA

In the rest of the paper, we will use the pre-generated funts class object datasets such as Callcenter
which are included within the package. These ready-to-use datasets serve as practical examples and
templates, allowing users to test the FSSA procedure without the need to start from scratch with data
preprocessing. As mentioned previously, our approach involves performing FSSA with a lag window
of L = 28. We then generate a variety of SSA-type plots, as illustrated in Figure 7, using the following
code:

# Load the Callcenter dataset
data("Callcenter")

# Perform FSSA:
fssa_results <- fssa(Callcenter, L = 28)

# FSSA plots:
plot(fssa_results, d = 9, type = "lcurves",

main = "(A) Left Singular Functions (within days)")
plot(fssa_results, d = 9, type = "lheats",

main = "(B) Left Singular Functions (between days)")
plot(fssa_results, d = 13, main = "(C) Singular Values")
plot(fssa_results, d = 9, type = "vectors",

main = "(D) Right Singular Vectors")
plot(fssa_results, d = 10, type = "paired",

main = "(E) Paired Plots of Right Singular Vectors")
plot(fssa_results, d = 9, type = "wcor",

main = "(F) W-Correlation Matrix")

The W-correlation matrix in Figure 7(F) is built by measuring the correlation between FTS that
are reconstructed using the grouping of indices by setting m = r (see the discussion on grouping
in section 2). We also have that Figure 7(E) is a plot of successive right singular vectors against one
another. Using Figure 7(C, E-F) we identify four groups in the Callcenter data such that I1 = {1},
I2 = {2, 3}, I3 = {4, 5}, and I4 = {6, 7}. Specifically, as discussed in Golyandina et al. (2001), periodic
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(A) Left Singular Functions (within days)
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Figure 7: (A): Line plot of the left singular functions, used to identify periodic and trend components;
(B): Heatmap of the left singular functions; (C): Scree plot of the singular values often used for group-
ing; (D): Right singular vectors, used to identify periodic and trend components; (E): Paired plots of
the right singular vectors, used for grouping and identifying periodicity in the FTS; (F): Weighted
correlation (W-correlation) matrix used for grouping.

components in FTS typically exhibit a rank of 2, consisting of pairs of harmonic elementary compo-
nents (sine and cosine functions with the same frequency). To identify these pairs, we can examine
pairwise scatterplots of the right singular vectors, as illustrated in Figure 7(E). In such scatterplots,
components with identical frequencies, amplitudes, and phases form points that lie along a circular
path. Additionally, the number of vertices in the resulting regular T-vertex polygon corresponds to
the periodicity of the component. In Figure 7(E), subplots 2 vs. 3, 4 vs. 5, and 6 vs. 7 reveal harmonic
factors with frequencies of 1/7, 8/14, and 4/7, respectively. For a more detailed exploration of ex-
tracting meaningful components from the extracted signal, additional references in the SSA literature,
such as Golyandina and Zhigljavsky (2013), can be consulted. In addition, using Figure 7(A-B, D-E),
we see clear weekly periodic patterns captured in the decomposition, for example the seven distinct
curves found in various subplots of Figure 7(A) and the seven corners seen in subplot 2 vs. 3 of Fig-
ure 7(E). For interested readers we provide further results for the decomposition stage and the fssa
object in the GitHub repository of the Rfssa package (https://github.com/haghbinh/Rfssa).

Reconstruction and Forecasting

After obtaining an object of class fssa, the user may then choose to perform reconstruction using the
freconstruct(·) function or perform forecasting using fforecast(·). The reconstruction and fore-
casting functions both return a list of funts objects with length m (number of groups). We note that
even though it is common to perform forecasting using a combination of groups that best reconstructs
the original signal, the user may try to forecast using several different combinations of groups.

Reconstruction

We start by reconstructing the Callcenter data using the grouping suggested from the FSSA decom-
position. The following code implements the reconstruction methodology and gives the plots of the
reconstruction in Figure 1.

# Define groups and their labels
groups <- list(1, 2:3, 4:5, 6:7, 1:7)
group_labels <- c("(B) First Group",
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"(C) Second Group",
"(D) Third Group",
"(E) Fourth Group",
"(F) Extracted Signal")

# Perform FSSA reconstruction
reconstructed_data <- freconstruct(fssa_results, groups)

# Create and visualize plots
for (i in 1:length(groups)) {
print(plotly_funts(reconstructed_data[[i]], main = group_labels[i],

xticklocs = xtlab, xticklabels = xtloc))
}

One may observe the mean behavior (from group I1) in Figure 1(C), and the weekly behaviors (from
groups I2, I3 and I4) in Figure 1(D-F). Note that the weekly trajectories are more well-separated in I4
as opposed to the groups I2 and I3. We consider the last group, Is = {1, · · · , 7}, as the set of indices
corresponding to the leading eigentriples, that capture more than 98% of the variation in the signal,
to reconstruct the original FTS in Figure 1(B).

The fforecast Class

As previously mentioned, in addition to performing reconstruction of the FTS, the package offers the
capability to perform forecasting using an object of class fssa. The constructor for this class, i.e., the
fforecast(·) function, accepts the following arguments:

• U: An object of class fssa holding the decomposition.

• groups: A list of numeric vectors where each vector is used for reconstruction and forecasting.

• len: An integer representing the desired length of the forecasted FTS.

• method: A character string specifying the type of forecasting to perform, with options includ-
ing:

– "recurrent" for FSSA R-forecasting.

– "vector" for FSSA V-forecasting.

• only.new: A logical argument, when set to TRUE, returns only the forecasted FTS, otherwise the
entire FTS is returned.

The fforecast(·) function returns an S3 class named fforecast, which has been introduced to en-
capsulate the output of the function. This class is designed to provide a more organized and intuitive
structure for handling FTS data. The fforecast class includes the following attributes:

• original_funts: This attribute stores the original FTS object, allowing users to maintain a clear
reference to the original data.

• predicted_time: Stores the forecast time index.

• groups: Contains a list of numeric vectors, where each vector includes indices of elementary
components of a group used for reconstruction and forecasting.

• method: A character string specifying the type of forecasting performed.

To streamline user interactions further, we have developed a print(·) method for the fforecast class,
making it more convenient to view and assess forecasted FTS data. To illustrate these enhancements,
consider the continuous of Callcenter data example in the following:

# Perform FSSA R-forecasting
pr_R <- fforecast(U = fssa_results, groups = c(1:3), len = 14, method = "recurrent")
# Perform FSSA V-forecasting
pr_V <- fforecast(U = fssa_results, groups = list(1,1:7), len = 14, method = "vector",

only.new = FALSE)

plot(pr_R, main = 'R-Forecast (only.new = TRUE)')
plot(pr_V, main = 'V-Forecast (only.new = FALSE)')
print(pr_V)

# FSSA Forecast (fforecast) class:
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# Groups: List of 2
# : num 1
# : int [1:7] 1 2 3 4 5 6 7
# Prediction method: vector
# Predicted series length: 14
# Predicted time: Date[1:14], format: "2000-01-01" "2000-01-02" ...

# ---------The original series-----------
# Functional time series (funts) object:
# Number of variables: 1
# Lenght: 365
# Start: 10592
# End: 10956
# Time: Date[1:365], format: "1999-01-01" "1999-01-02" "1999-01-03" ...

The resulted figure are shown in the Figure 8.
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Figure 8: plot(·) method of fforecast class.

The next example will forecast the Callcenter FTS one week into the future, based on the first
358 days of the year, by leveraging the FSSA R-forecasting and V-forecasting methods as the results
that had been given in the Figure 2.

# Define the data length
N <- Callcenter$N
U1 <- fssa(Callcenter[1:(N-7)], 28)

# Perform recurrent forecasting using FSSA
fore_R = fforecast(U1, groups = list(1:7), method = "recurrent", len = 7)[[1]]

# Perform vector forecasting using FSSA
fore_V = fforecast(U1, groups = list(1:7), method = "vector", len = 7)[[1]]

# Extract the true call data
true_call <- Callcenter[(N-7+1):N]

# Define weekdays and colors
wd <- c('Sunday', 'Monday', 'Tuesday', 'Wednesday','Thursday', 'Friday', 'Saturday')
clrs <- c("black", "turquoise4", "darkorange")
argvals <- seq(0, 23, length.out = 100)
par(mfrow = c(1,7), mar = c(0.2, 0.2, 2, 0.2))

# Iterate over the days of the week
for(i in 1:7) {

plot(true_call[i], col = clrs[1], ylim = c(0, 5.3),
lty = 3, yaxt = "n", xaxt = "n", main = wd[i])

plot(fore_R[i], col = clrs[2], lty = 2, add = TRUE)
plot(fore_V[i], col = clrs[3], lty = 5, add = TRUE)

}
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Figure 9: Snapshot of the MFSSA shiny-app

legend("top", c("Original", "R-forecating", "V-forecasting"), col = clrs,
lty = c(3, 2, 5))

More information on these results may be found in the associated literature of Haghbin et al. (2021)
and Trinka et al. (2023).

A Shiny Application

The Rfssa package contains shiny-apps for both FSSA and MFSSA methods. Those shiny-apps can
be called using the launchApp(·) function, and also available in http://sctc.mscs.mu.edu/fssa.htm
and http://sctc.mscs.mu.edu/mfssa.htm. Here we present the features of the MFSSA app, since the
FSSA app would be a special case of that. MFSSA shiny-app was developed to visualize and extract
the information related to MFTS in a non-parametric framework. The proposed shiny-app provides
a friendly GUI for user to implement the Rfssa functionalities and even compare the results with the
non-functional version (Rssa).

Figure 9 provides a snapshot of the features available in MFSSA shiny-app. In the top of the side
bar panel, user may specify the basis functions (B-spline or Fourier) and the associated degrees of
freedom to represent the funts object. Those basis functions can be visualized in sub-panel ‘Basis
Functions’ under the main panel. The remaining inputs in the side bar will be used in other sub-
panels. Specifically ‘Groups’ is an input box for the third step of the MFSSA algorithm. Each group
is specified via a vector (e.g. ’c(1,2,4)’ or ’1:3’) and separated from other groups with a comma (’,’).
The slider ‘d’ is used to specify the dimensions used in MFSSA (scree, W-correlation, paired, singular
vectors & functions, and periodogram plots). The check-box (a) ‘Demean’ is used to subtract the
mean to obtain mean-zero functions; (b) ‘Dbl Range’ is used to extend the y-axis to cover all potential
mirror functions (e.g. sometime FPCs may get multiply by a negative sign); and (c) ‘Univ. FSSA’ to
compare the MFSSA results with marginal FSSA ones respectively. The ‘Win.L.’ slider specify the
window lengths for the MSSA and the MFSSA. The ‘run M(F)SSA’ button is used to run MSSA and
MFSSA using the specified parameters for the given dataset. In general, for the side bar, the top
inputs (above the red line) are mostly to describe the basis functions. The bottom inputs (below the
red line) are used to specify SSA and FSSA parameters.
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The main panel includes five sub-panels. Here we briefly describe the features in each of these
sub-panels:

• ‘Input Data’: In this sub-panel user can either (a) use the functional datasets available in the
Rfssa package (e.g, Callcenter data or remote sensing datasets); (b) simulate MFTS (see Hagh-
bin et al., 2021, for details on simulation setup); or (c) upload any arbitrary FTS matrix (where
FTS are given in common grid-points and are represented in the columns of the data matrix)
to provide the dataset and then analyze it.

• ‘Basis Functions’: As described before we illustrate the basis functions selected by user in this
sub-panel.

• ‘Data Analysis’: In this sub-panel user can call variety of tools to

– visualize the MFTS.

– obtain the optimal number of basis functions based on the GCV criteria.

– select variety of outputs under MSSA and MFSSA, that includes scree plot, W-correlation
plot, paired plots, singular vectors plots, periodogram plots, singular functions (heat
or regular plots), and reconstruction of FTS using different type of plots (heat, regular,
3Dline and 3Dsurface). An example of the 3Dline reconstruction plot for the Callcenter
data is given in Figure 9.

• ‘Forecasting’: This sub-panel would be accessible after user runs the MFSSA procedure, and it
includes the functionalities of R-forecasting and V-forecasting algorithms.

• ‘Manual’: This sub-panel provides a brief instruction manual to use the MFSSA shiny-app.

Summary and Conclusion

In summary, Rfssa is a pioneering package that brings the power of SSA to the realm of functional
time series, offering novel techniques for decomposition, reconstruction, multivariate analysis, and
functional forecasting. Its flexible data representation and functional context for SSA make it a valu-
able addition to the CRAN ecosystem, providing unique capabilities not readily available in other
packages.

Notably, the package offers extensive capabilities for analyzing FTS/MFTS data, allowing joint
analysis of smoothed curves and image data across different dimensional domains. The implemen-
tations of the methodologies in the package have been optimized for speed by leveraging the func-
tionalities of RcppEigen and RSpectra R packages, along with custom C++ code. By utilizing the
Rfssa package, researchers and practitioners can easily apply advanced FSSA-based techniques to
their data, yielding informative results that can significantly enhance decision-making across various
applied domains. The intuitive nature and computational efficiency of the package make it a valuable
asset for the FTS analysis toolkit.
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