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0. Definitions and Notations

We will use very few notational devices which are at variance with accepted’
practice. Our basic definition is the following: a family & of topological embeddings
of X into Y is a partition of Y by X (in symbols & X « Y) if the family {f[X]: f € #}
of images is a cover of Y by pairwise disjoint sets. We say X partitions Y (in symbols
X « Y)if there is a partition F: X « Y. X and Y are partition equivalent (in symbols
X =Y)if X« Y and Y « X. The partition spectrum (X, Y) of the pair (X, Y) isthe
set of cardinal numbers « such that there is an F: X « Y with |F| = « (vertical bars
denote cardinality). X is partition unique (resp. stable) if whenever Y =X, then
Y =X (resp. o(X, X) ={1}). Clearly partition stability implies partition uniqueness
but the converse is false [Let Q denote the rational line. Then Q=QXQ so
wea(Q, Q). However if Y « Q then Y is countable, second countable, and T3
(=regular T;). Also if Q« Y then Y is self-dense (i.e. has no isolated points). Thus
Y =Q by a well-known folklore result (see 3D}
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216 P. Bankston, R.J. McGovern / Topological partitions

The paper is divided into four sections, The first involves zero-dimensional spaces,
for the most part, and is consequently “set-theoretic” in its approach. The next two
sections involve higher-dimensional spaces and are more “geometric” in flavor. The
fourth section delves more deeply into the notions of partition uniqueness and
partition stability. '

Our notation for set theory and topology follows custom: an ordinal a is the set of
its predecessors (i.e. 2 = 0,1} w={0,1,2,.. .}); the product of {(X;:iel)isdenoted
by IL.; X; (and by X' if Xi=X for all ie]) and is endowed with the Tichonov
topology if each X, is a space; the product of partitions (#i: X, < Y,) is again a
partition

PRV PS¢ 3 | S 4

(where for fell,.; %, xe e, X5 (F(X); = fi(x)); and the composition Go F of
partitions %: X« Y and 4: Y « Z is also a partition (where o F = {g°fige¥%fe
F1). The familiar spaces which we consider are N (= the nonnegative integers), Q
(= the rationa] numbers), P ( = the irrational numbers), R ( = the real numbers), C
(=the Cantor middle-thirds set), I (=the closed unit interval, [0, 1]), I, (=the
Hilbert space of square-summable real sequences), H ( = the Hilbert cube in ), and
§(n) (=the unit n-sphere in R'f“, n <w). By well-known theorems (see [8], say)
there are homeomorphisms: P~N“, C= 2% L =R" and H=I",

Before proceeding, we would like to acknowledge our indebtedness to a number of
individuals for their interest and helpful counsel during the preparation of this paper.
Among these are F. Galvin, J. Roitman, and S. Stahl Wherever possible we will
indicate their specific contributions.

1. Partitions involving zero-dimensional spaces

The following theorem, due to F. Galvin, strengthens a result of ours, and is used
by him to characterize those Hausdorff spaces which can be partitioned by N.

1.1. Theorem. Let X be a Hausdorff space with a family @ of infinite closed subsets
such that |@|<|F| for each F e &, and (& = 0. Then N« X

Proof. We use the well-known combinatorial fact that if (A, : @ <«) is an infinitive
family of « sets each of power at least x then there is a family (B, : & < «) of pairwise
disjoint sets with B, < A, and |B,|= « for each & < «. '

To prove the theorem, we first write @ as a well-ordered family (F, : o < x}. For
@ <« let B, = F, be such that |B,| = « and B, " By =0 for @ < B < «. Since each B,
is infinite Hausdorff we can pick a copy N, = B, of N for each a < «. Extend the
family (N, e <«) to a maximal family R of pairwise disjoint copies of N. Then
X\ is finite, say equal to {x1,...,x}, and NN, : <k}l=@ For 1<i<sn let
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fli)=least & <k such that x;£ N,. Then
RN = (M (N, :a <xPU{N. Uf Hae):a <k}
is a partition of X by N. ' O

1.2. Theorem. Let X be nonempty Hausdorff. Then N« X iff X is infinite but not the
one-point compactification of an infinite discrete space.

Proof. If N« X then X is infinite of course. Suppose X were D {0} for some
infinite discrete D. Then, since every infinite subset of D has oo for a limit point, ©
could not lie in a copy of N.

For the converse we consider two cases.

Case (i), X is compact: If X is infinite and not D L {co} then X has at least two limit
points, say x and y. Since X is T there are opensets U of x, V of y with U NV =§.
Since U, V are infinite, we invoke (1.1) to conclude that N« X,

Case (ii), X is noncompact: Let 11 = (U, :a <) be an open cover with no finite
subcover, and assume « is the minimal cardinal of such a cover. Let F, = X\U, and
let @ = (F. : a < ). Then (@ = . Moreover if |[F,| < x for some a <«, then 11 would
have a subcover of power <x which in turn would have no finite subcover, a
contradiction. Thus |®| < min{|F,|: a <«}. By (1.1), N« X a

1.3. Corollary. C=P.

Proof. Since 2« N, we have C=2* « N* =P. By (1.2}, N« C, whence P« C”=C.
|

Remark. C and P give one of many instances of partition equivalent non-
homeomorphic spaces; [_0, 1) and [0, 1) U [0, 1) (= the disjoint union) give another.
In particular we see that compactness and connectedness are not preserved by =.

We next consider spaces which are partitionable by the rational line.

1.4. Theorem. Ler X be Ts, first countable, and self-dense. If either

(a) X is hereditarily Lindeldf; or

(b) there are only countably many points of X with neighborhoods of power <|X|,
then Q« X,

Proof. For any T, first countable, self-dense space X and x, € X, we construct a set
Qo =Q with xg€ Qo< X asfollows. Using first countability assign to each pair {x, U},
x € U = X, U open, a copy s(x, U) of the ordinal space w + 1 with x as its limit point.
Set A= s(xo, X). Assuming A, is a countable subset of X which has been defined,
define A,.1= A, ul{s(a, U,): a is isolated in A, and U, is a neighborhood of a
which misses A,\{a}}. Then, letting Qo= Un<wAn we have a countable, first
countable T space with no isolated points; hence a copy of Q.

f
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Now assume (a) and let £ be a maximal family of pairwise disjoint copiesof Qin X,
Using the easily deduced fact that hereditary Lindeldfness is equivalent to the
property that no uncountable subset is scattered, we have that X\|_JQ is countable
[otherwise there would be a self-dense A = X WU in which we could contradict the
maximality of £ by building a new copy of Q}. Let X\|_JQ ={x,:n <w). For each
n <w let O, = O be countable such that x,, & (JL2... This is possible first since U is
dense in X [otherwise there is a self-dense open UcX with U~ JQ=4,
contradicting the maximality of £]; and second since X is first countable. Now let

Q' = (O Un <o Tn) w{Q%}

where Q' ={_,<, (UL, U {x.}). Then Q'=Q, hence £’ is a partition of X by Q.

Next assume (b) holds. Let « = |X| and let (x, :a < x) be a well ordering of X If
k =w, then X' =Q, so assume « is uncountable. For all @ <« we define subsets
A, < X by induction as follows: Let « be the smallest ordinal with A, undefined,
%o#|_Jg<aAg, and such that for all B <a, xg € Ag, distinct A’s are disjoint, and Agis
either {xs} or a copy of Q. To get A,, let S be the countable set of points x € X such
that x has an open neighborhood of power <x. We then let A, ={x,} if x, ¢
Snls<aAp ¥ xo¢|Jg<ada, let U be an open neighborhood of x, missing
\Us<adg. U is self-dense so we let A, < U be a copy of Q containing x,.. If x, & S, we
have that x, € X\(S u (Js<adp), a Ts, first countable self-dense [since every neigh- -
borhood of x,, is uncountable] space. We can thus define A, using the argument in
the first paragraph. To complete the proof, let T={x,:A, = {x.}} and %A=
{(Agia<k).T<Sis countable; and since for each x, € T we have Xa €U p<adg, We
can find countable %, = U with x, (.. Thus

A = (MNU: x, € THU{Q),
where Q"= {9, u{x.}:x. e T} isa partition of X by Q. r

LS. Corollary. Let X be separable metric. Then Q< X iff X is self-dense.

Proof. If X is self-dense separable metric then X is also first countable, T3, and
hereditarily Lindel6f, ]

1.6. Question. Does Q partition every self-dense metric space?

1.7. Corollary. Q“ =C.

Proof. By (1.4) Q« C, s0 Q” « €. On the other‘hand 2« Qso CxQ” O
Remark. Q“, C, and P are three distinct partition equivalent spaces. Q“ os topolo-
gically distinct from the others since it contains Q. a noncomplete metric space, as a

closed subset. Hence Q is not complete-metrizable. We now know that topological
completeness is not preserved by partition equivalence.
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1.8. Proposition. If X is nonempty, countable, first countable, and Ts, then X « Q.
Proof. X « X xQ=Q. O

Lest the reader wonder whether we need extra clauses (such as (a), (b)) in (1.4) we
offer the following examplie due to J. Roitman.

1.9, Example. A first countable, T3, self-dense (but nonmetrizable) space X which is
not Q-partitionable.

Construction. Suppose X has an uncountable discrete subset D with countable
complement. Then clearly Q« X. We construct such a space having the desired
properties. A space so constructed can of course never be metric since it would then
also be separable metric with an uncountable discrete subset, '

Let A be the lexicographically ordered Q - w (i.e. A= UncaQ @ =Q, (r,m)<
(s, n)iff m <norm=nandr<s),andlet (S.:a < c){c = exp(w)) be an uncountable
collection of almost disjoint subsets of w (i.e. pairwise intersections are finite). For
each o <c let p. be a point not in A and different from pg for B<a. Let
X = A u{p.:a <c}where A has the order topology and subbasic neighborhoods of
P, are of the form

{pa}wix :r<.x for some r}

where u < v iff #, v €U nes.Qx and u <wv. O

Remark. With the removal of first countability and/or regularity other examples of
spaces can be found whith are not Q-partitionable. Indeed the Stone—Cech remain-
der BN\N is T, self-dense, satisfies clause (b) of (1.4), but contains no copies of Q.
On a different tack, the real line with basic sets of the form (openinterval)i(countable
set) is T, connected, and hereditarily Lindeldf but likewise contains no copies of Q.

We now look at partitions involving C and P. Since C=P, qualitative results about
one will also hold for the other. Quantitative results will vary, however, when it
comes to partition spectra (e.g. we will see that o (C, P) # o (P, C)). Indispensible to
the proofs of many of our assertjons is the following characterization of C and P (see

{3], £8)).

1.10. Lemma. (i} If X is a nonempty, zero-dimensional, seif-dense, compact, metric
space, then X =C,
(ii) If X is a nonempty, zero-dimensional, self-dense, separable, completely metriz-
able space in which no nonempty open set is compact, then X =P.
(iii) (Mazurkiewicz) If X is a totally disconnected dense Gs-subsetof R,then X =P,
[
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1.11, Theorem.Let X bea nonempty, zero-dimensional, separable metric space. Then
X«P. Thus X <Piff 0% X P,

Proof. It will suffice to show that X « P*<R®. Let (p, : a <¢) well-order P>, If IT
(resp. A) is a plane (resp. line) in R* we say II (resp. A) is oblique if all of its
coordinate projections are surjective. Clearly if IT is an oblique plane and p € [T, then
there are ¢ oblique lines A with peA < Il We now claim that if A is any oblique line
then A NP?=P. Indeed if A is oblique then the restrictions of the three codrdinate
projections to A are one-one, so we can map A\P® one-one into a countable set;
whence A NP’ is a totally disconnected dense Gs-subset of A =R, By (1.10 (i),
AnP =P,

So we partition P* by X using induction as in the proof of (1.4). Assume Da is the
first uncovered point, pg € X =X for all 8 <a, distinct Xa's being disjoint, and
embedded in oblique lines in P°. Since le|<¢ we can pick an oblique plane 17,
containing p, but failing to contain any X, 8 < a. Thus [T, n Xgl=1 for 8 <a, so
HT, nUp<aXz| <c. Since there are ¢ oblique lines in 11, containing p,, there is one
such, say A,, which misses (Jg<aXp. Since A, NP*=P, a homogeneous space, we
can embed a copy X, of X in A, ~ P> with Pe € X,,. This completes theinduction. [

Remark. By (1.3,1.11), then, a space is partitionabie by every nonempty zero-
dimensional separable metric space iff it is partitionable by C. A well-known fact
about self-dense complete metric spaces is that every one of their points lies in an
embedded Cantor set. This motivates the next theorem, one which uses extra
set-theoretic axioms. We assume the reader to be moderately familiar with the
Continuum Hypothesis (CH), which says that ¢ = wy; and with Martin’s Axion (MA),
which says (in one of its forms) that in a compact T space in which there are no
uncountable families of pairwise disjoint open sets, the intersection of <¢ dense
open sets is dense.

1.12. Theorem. (i) (CH) Let X be a complete self-dense metric space of power c. Then .

C« X,
(ii) (MA) Let X be a complete self-dense separable metric space. Then C< X,

Proof. re(i). Let (p,:a <c) well-order X, We partition X into Cantor sets by
induction. Assume p, is the first uncovered point, pg € Cg =C, distinct Cg’s are
disjoint, and each C; is nowhere dense in X, 8 <a.Let ¥, = X \(Us<oCs. By CH and
the Baire Category Theorem (BCT), we have that Y. is a self-dense G;-subset of X';
hence a self-dense completely metrizable spack, in its own right. We thus let C, = C
with p, € C, < Y,. Clearly we can arrange for C,, to be nowhere dense in Y, (hencein
X) and we are done.

re(ii). Repeat the above proof to the point where we define Y,. Our problem is that
@ may not be countable, so we resort to the following generalization of a theorem of
Martin-Solovay (see [1]): (MA) Let Z be any second countable space (countable
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w-weight will do). Then the union of <c nowhere dense sets is of the first category in
Z. '

Thus by MA we know that | Jg<.Cp is contained in a countable union Un<wdn of
closed nowhere dense sets. Let S, = X\Un<awAn Then S, is a self-dense Gs. Let U
be an open neighborhood of p,. Then U N S, # @by BCT, whence p, € S... Since {p.}
isa Gs, S.u{p.}isa self-dense completely metrizable space, so we can construct Ca
as before. : O

1.13. Corollary. (MA) Let X be a nonempty zero-dimensional separable metric space
and let Y be any self-dense complete separable metric space. Then X partitions Y. O

Using Martin’s Axiom we showed that C partitions many spaces. In restricted
cases, we can carry out the partitionings more constructively.

1.14. Theorem. Both the real line and the closed unit interval are C-partitionable.

Proof. The same proof works, whether we wish to partition R or any other interval
(with or without endpoints). Let Ao be any Cantor set in R. Then R\A is a countable
union of pairwise disjoint open intervals, say U <o, 50 let C, < I, be a Cantor set
and let A; =|Js<oC, Proceed by induction. At every stage, R\Um<nidm is 2
countable union of pairwise disjoint open intervals, so A, can be defined as a
countable union of pairwise disjoint Cantor sets. Let A = |Un<wAn Since each A, is
closed nowhere dense, R\A is a dense Gs-set. Clearly no interval lies in R\A, so by
(1.10(ii)), R\A =P. Since C« A and C« P we have the result. a

We complete this section of the paper with a close analysis of the partition spectra
(X, Y) with X and Y chosen among C, P, R. Of the nine possible sets only seven
are nonempty (clearly o (R, C)=o(R, P) =), and o(R, R) = {1} since R is connec-
ted. What we know of the remaining six cases is contained in the following,.

1.15. Theorem. (i) o(C, C) and o (P, P) contain ¢, v, and all nonzero finite cardinals.
(ii) (P, C) and o(P, R) contain ¢ and v, but no finite cardinals.
(i) o(C, P) and o(C, R) contain ¢, but no countable cardinals.

Proof. (We are thankful to F. Galvin for providing the essential ideas to prove (ii).)

re(i). ¢ € o(C, C) (resp. ¢ € o(P, P)) since C= CxC (resp. P=PxP). wea(C,C)
(resp. w € o (P, P)) since C=CX(w+ 1) (resp. P=PxN); and for positive n <w,
nea(C, C) (resp. n € (P, P)) since C=CXn (resp. P=Pxn).

re(ii). We saw in (1.3) that ceo(P,C); and in (1.14) that c € o(C, R). Thus
ceo(P,R). Let us prove that o(P,C) contains no finite cardinals. A similar
argument will show the same result for o(P,R). Let {P;, . . ., P,} be a partition of C
by » copies of P. We know n >1 and each P; is a Gs-set in C. Let B < C be a basic
clopen set hitting a minimum number of P;’s. Then, supposing P, n B # 0, P; is dense
in B [otherwise there is a nonempty clopen B'< B with B'N P, =, so B’ intersects
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fewer P;’s than does B]. Now B =C is a Baire space (i.e. satisfies the BCT) and
|i: P~ B = %> 1, so B can be written as a disjoint union of two dense Gs-subsets, an
impossibility.

Next we show w € o(P, C). We can then couple this result with the proof of (1.14)
to infer that w € o(P, R). For convenience we will identify C =2* with the power set
of w via the correspondence f+»{n: f(n}=1}. Let 3 be the standard clopen basis for
2% (a typical member of which is of the form {xcw: scx, xNt=Pfors, tcew
finite). Then (1.10(ii)) translates to the following:

* X =2 is homeomorphic to P iff X is a nonempty G;-set and whenever
Be®Band XnB#0,then XNB#=XNB.

From (*) it follows that whenever X — 2” is homeomorphic to P and x € X, then
X u{x}=P. So choose a partition {Ni:i<w) of w into infinite sets and set N, =¢.
For i < w define

A;={x Cw:x infinite, x "N; =@, and for all j<i, x NN; =0}

Then the A;’s are pairwise disjoint, A,= xCw:xNNi=0), UsuAi ={xcw:x
infinite}; and, by (*), A; = P. Now for each finite x © » there are infinitely many #’s
with x € A;, hence infinitely many i’s with A; u{x}=P. So attach the finite sets to
distinct A,’s obtaining a countable partition of C by P.

re(iii). That c € ¢(C, P) N (C, R) is immediate. That no countable cardinal lies in
o(C, R} follows from BCT and the fact that no Cantor set in R can have nonempty
interior. Since P is Baire it suffices to show that no Cantor set in P can have
non-empty interior. We again appeal to (1.10(ii)) to assert that no nonempty open
subset of P is compact. If C is any Cantor set in P, suppose B is a nonempty basic
clopen subset of P with B < C. Then B is clopen in C, whence B is compact. O

Remark. If we assume CH, then (1.15) implies trivially that
@ o(C,C)=0c®,P)={1,2,..., wluich
(ii) o(P,C)=0(P, R) = {w, c}; and
(iii) o(C, P)=a(C, R)={c}.

We do not know whether these equations hold in the usual set theory (which we take
to be Zermelo-Fraenkel with Choice, ZFC); but a privately communicated result of
S. Shelah implies that they hold as a consequence of Martin’s Axiom. More precisely,
Shelah has proved the following Theorem: Let X be a complete separable metric
space. If « > w and X is a union of « pairwise disjoint G;-sets then R is the union of «
pairwise disjoint nowhere dense G;-sets.

2. Partitions involving higher-dimensional spaces

2.1. Lemma. Let X be a locally compact, locally connected, connected Hausdorff
space. Then there is no partition of X into countably many compact proper subsets.
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Proof. This follows immediately from the Chaining Lemma and the theorem of
Sierpifiski (see [3, vol. II, p. 173]) that no continuum is the union of a countably
infinite number of pairwise disjoint closed subsets. ]

2.2. Theorem. () I" <« R" if m <n.
(i) I"« S(n) if m<n.

Proof. re(i). Clearly if I" « R", then m <n by standard dimension theory. f m=n
then, by Brouwer Invariance of Domain (BID), a partition of R" by I" must be
countable. By (2.1), this is impossible.

Conversely, we show I" « R**'. Clearly [0, 1)« R, so [0, "'« R Also
[0, 1)2=Ix[0, 1), so by induction [0, 1)**" =" X[0, 1). Thus I" « R

re(ii). First suppose m = n. If m > n, then BID prevents 1" « §(n). If m =n we
again resort to (2.1). For the converse suppose m <n. If n = m+1let D bean m-disk
in $(m +1). Then S(m + 1\D = R™*!:s0,since I" « R™*!, wehave I" « §(m +1). If
m +1 < n we proceed inductively, partitioning $(n) into its equator (= ${n — 1)) plus
upper and lower hemispheres (each =R"). d

2.3. Theorem. If m=1 and S(m)< R", thenm +1 <n.

Proof. It suffices to show that S(m)« R™". Let & be a partition of R™! by
m-spheres. By the Jordan Curve Theorem (J CT), each § € #F separates R™ \Sintoa
bounded component Bs and an unbounded one, R™\(S U Bs). If S, S2€ ¥, define
$,< S, iff §; < Bs,. Pick Spe & and let N < & be a maximal chain below S,. Then
MsemBs = sem(Bs U S) contains a point x which cannot lie on any member of IN.
But x lies on some §'in P and S’ < § for all § € I, contradicting the maximality of nm.

O

2.4. Theorem. Let X be a compact space which partitions R", n > 1. Then dim{X) <
n. If X is also connected, then X contains no (n —1)-sphere.

Proof sketch. If dim{X) = » then, by a classic theorem of dimension theory (see {7,
any embedded copy of X in R” must have nonempty interior. Thus any partition of
R" by X must be countable, contradicting (2.1). If n>1 and X is connected and
contains an (n — 1)-sphere, we use the fact that X must be embedded nowhere
densely in R" and mimic the proof of (2.3). |
' The following result expands on & technique used in [2] to show (noncon-
structively) that §(1)« R’>. The spirit of this technique also pervades earlier proofs in
the present paper (e.g. (1.11)).

2.5, Theorem. Let 87 X < 8(n). Then X « R,

2n+1 n+1

Proof. Let (p.: a <c) be a well-ordering of R™""". We partition R*"*! by induction.
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Let @ <c¢ and assume that for each B <a:pseXg=X, distinct Xz’s are disjoint,
Paf | s<aXs, and each Xg is contained in an n-sphere Sz <R*"*', Each Sg is
contained in a unique (s + 1)-plane Eg, so we need the

Lemma. Let s<t<w, letpeR' let € be a family of <c planes containing p and of
dimension <s. Then there is a (t—1)-plane H containing p which fails to contain any
member of &.

Proof of lemma. Let S be a standard (t—1)-sphere centered at p. If E is an r-plane
containing p then there is a unique (s — r)-plane containing p which is perpendicular
to E (call this plane E*). Then E*~S=S(E) is a “great (t—r—1)-circle” (i.e.
q € S(E)iff ¢’ S(E) where g’ is the §- antipode of ¢). If E,F are planes about p then
EcFiff S(F)cS(E).IfHisa hyperplane about p then S(H) is a pair of antipodal
points of §. Now a sphere cannot be covered by <c great circles of smaller dimension,
so there is a point and its antipode on § which are not in \HS(E):E € ). This gives
the hyperplane we want. : O

So now we find a 2a-plane H, which fails to contain any E,, 8 < a. Thus for each
B<a H,NnEgisa (possibly empty) plane of dimension < n;so H, nSgis at worst a
sphere of dimension <n—1. Now we work in H, instead of R*"*!, proceeding
backward in an obvious induction obtaining, after n steps, an (n + 1)-plane F, c H,
about p, which hits each Xg in at most two points (i.e. a zero-sphere). Since
|Fe " Ug<aXa| <c we can place an n-sphere S, < F, containing p, and missing
_g<aXa. By homogeneity of spheres, we can then place a copy X, of X in S,
containing p,,. o

2.6. Corollary. Let X be a nonempty separable metric space of dimension n. Then
X <R Iy particular any nonempty finite-dimensional separable metric space
partitions Hilbert space.

Proof. By dimension theory, X embeds as a subset of $§(2n +1); whence X « R*"*3
by (2.5). O

2.7. Theorem H=/,,

Proof. H=I" and I, = R“. Since I « R* (by (2.3)) we have I” « R“. On the other hand
the reader can easily check that R « I*; whence R* « I*.

2.8, Corollary. Let X be a nonempty finite-dimensional separable metric space. Then
H=Hx X

Proof. By (2.6,2.7), X «H. Thus HX X « Hx H~H. |

2.9. Question. Is there a nonempty separable metric space which does not partition
the Hilbert cube?



P. Bankston, R.J. McGouvern [ Topelogical partitions 225
3. Partitions involving connected low-dimensional spaces

In this section we address the question of whether any of the results in Section 2
can be improved if we keep the dimension down (say =<3). First of all we do not know
whether the bound in (2.5) is sharp. For example if dim(X) = 0 then (2.6) tells us that
X «R*. But we already know from (1.11, 1.14) that X « R. Some simple questions
whose answers we have been unable to determine follow,

3.1. Questions. (i) Is there a 1-dimensional space which does not partition R ?

(ii) Does every nonempty subset of R partition R™?

(iii) Which subsets of R partition R?

(iv) Does S(2) partition R*?
Remark. In (2.5) we used the Axiom of Choice to prove that S (n) partitions R,
This weak form of (2.5) can be proved without AC but at consideraable notational
expense in the cases n = 2. If n = 1, however, there is a simple pictorial proof: Let
A=P<R? and let S< A be the simple closed curve formed by taking an arc on
Bd(A) and joining the endpoints with an open segment in Int{(A). Then

= A\(S uBd(A)) = (open 3-disk\diameter)

is §(1)-partitionable. By adding simple closed curves to thicken up the closed arc on
the boundary of A’, we obtain from A’ U S an open 3-disk with an open 2-dlsk onits
boundary. This is clearly homeomorphic to [0, 1 whlch then partitions R®. The
reader may wish to apply a similar method to partition I® with $(1). We met with no
"success when we tried to do this; however the nonconstructive ploy (ala (2.5)) does
work.
For the remainder of this section we will be concerned with partitioning 2-
dimensional things with 1-dimensional things.

3.2. Theorem. The unit interval is the only nondegenerate Peano continuum (=
connected, locally connected compact metric space) which partitions the plane.

Proof. Of course 1« R?, so suppose X is another nondegenerate Peano continuum
which partitions R2. Then by (2.3) X cannot be §(1). We now resort to the following
results of R.L. Moore.

Lemma. (i) ([5]) Let Y be a nondegenerate Peano continuum. Then Y is either an arc, a

simple closed curve, or a space containing an embedded triod (= three arcs joined ata

common endpoint). ‘
(ii) ([4)) There is no uncountable planar collection of pairwise disjoint triods.

This lemma, coupled with (2.1), gives an immediate contradiction. .|
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In light of the fact that $(1) does not partition S(2}), together with the relatively
straightforward classification theorem for compact connected 2-manifolds (see [6]),
it seems reasonable to ask which of these manifolds can be partitioned by the circle.
The answer, discovered with the much-appreciated help of S. Stahl is the following.

3.3. Theorem. The torus and the Kliein bottle are the only compact connected
2-manifolds which are S(1)-partitionable.

Proof. Clearly the torus and the Klein bottle are S(1)-partitionable, So let M be a
compact connected orientable 2-manifold and let # be a covering of M by pairwise
disjoint simple closed curves. Restricting ourselves to the orientable case will suffice
since every nonorientable 2-manifold has a two-sheeted orientable covering space.
Thus if M were nonorientable with 7: M - M the above-mentioned covering
projection, then for each § € %, 7 '(8) would be a union of at most two simple closed
curves. This would mean that $(1)« 1\'4, hence M would be a torus (given the
theorem in the orientable case) and M would therefore be a Klein bottle,

Let § € &. We can assume that § is tame so that there is a regular neighborhood U
of § in M with U = § X [0, 1]. Let Mj be the result of removing Int{{J} from M and
identifying the two boundary circles to points p, g. Then M is an orientable compact
2-manifold with at most two components. Moreover $(1)« Ms\{p, q}; and since §
does not bound a disk in M [otherwise S(1)« R?), the genus of each component of
Ms is less than that of M. Let M, M, be the components of Mg, saype M, ge M,
[even if M # M,, each component intersects {p, 4}]. Then (S} naturally splits into
F1, %2, partitions of M;\{p}, M>\{q} respectively. We now repeat the process outlined
above for M,, M., iterating until, after a finite number of steps, we obtain a disjoint
union of 2-spheres 3, . . ., %, and finite sets F; © 3, i=<n,suchthat §(1)« Z\F, for
each /< n. Moreover it is easy to check that if the genus of M is at least 2 then for
some i <n, |F|=3. We are done, therefore, once we prove the following.

Lemma, Let F be a finite subset of S(2) with at least three points. Then S(1) ¢ S(2)\F.

Proof of lemma. We proceed by induction on |F|. Suppose first that F = {p1, P2, P3}
and that & is a partition of $(2)\F into simple closed curves. For i =1, 2, 3 define
<;on & as follows: Let S € &, define B: to be the open connected component of
8(2)\S not containing p;. Then define §’ < (S if $'< BE (as in the proof of (2.3)). For
simplicityleti =3, and let <be <;.If Bs N {p1, p2}is empty we get a contradiction in
the same way we show S(1)% RZ. Thus we partition & into &%y, %5, s, where for
i=1,2, S5 iff Bsn{p;, p2}={p}; and S e &, iff P1, P2 € Bs.
Claim (i). %3 is nonempty. Otherwise we let

A={p}ulUBs:Se¥}, i=1,2.

Then (A1, A,)forms a partition of §(2)\{p;} =R>. Now A;iseither open (i.e. when &,
is nonempty and has no maximal element) or closed (i.e. when either &%, =@ or &, has
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a maximal element). Since R? is connected we can assume A is closed, A, is open.
Then A, is either a point or a closed disk; whence A, cannot be simply connected.
But on the contrary, A; is a chain union of open disks and is therefore contractible.

Claim (ii). & has no minimal element. Otherwise, if § is minimal in %3, then
Bs = Y{Bs: §'€ #5}; hence $1 L2 partitions Bs\{p1, p2}. But this would imply that
R?\(two points) is partitionable by simple closed curves, none of which enclose both
points. This possibility was excluded in Claim (i).

Now the assertion that %5 is nonempty and has no minimal element in the
<,-ordering says that &3 has no maximal element in the <;- or <;-orderings. Thus
{pstwl U5 is a union of open disks; whence %5 is nonempty open.in S{2\F.
Similarly we show that {_J%1, |_J%, are nonempty open sets, disconnecting S(2)\F, a
contradiction.

So assume for the inductive step that F={p;, ..., pn}, n>3. If & is a partition of
S(2\F into simple closed curves and S e & encloses (with respect to < =<,) 1<k
<n — 1 points of F, then we can partition R:\(k points), hence § (20\(k + 1 points} into
simple closed curves. But our inductive hypothesis bars this. Thus &= Ur1=iens
where for 1<i<n, Se %, ift Bs nF\{p.}={p:}; and Se &, ift F\{p.} = Bs. We then
show directly as before that each U is nonempty open in S2\F; this being a
disconnection of a connected space. This proves the lemma and thereby the theorem.

O

Putting (3.2) and (3.3) together yields the following rather general statement.

3.4. Corollary. Let X be a nondegenerate Peano continuum, with M a compact
connected 2-manifold, X # M. Then X « M iff either

(a) X=I or

(b) X =8(1) and M is either a torus or a Klein bottle.

Proof. Suppose X « M. Then X can contain no embedded triods (see (2.1), (3.2)).
Thus either X =TI or X = S(1). If the latter holds then M must be a torus or a Klein
bottle by (3.3). _

Conversely, suppose X =L Then X « M since M can be written as a disjoint union
of handles (each being = S(1) xI), crosscaps (each being an annulus with antipodal
points on the outer circle identified), and a 2-sphere with finitely many closed arcs
removed. On the other hand if X =S(1) and M is a torus or Klein bottle then clearly
X«M. _ - 4d

4, Partition equivalence

The relation of partition equivalence, aside from leaving cardinality and dimen-
sion (in the separable metric case) intact, does not preserve very many topological
properties. Examples we have presented show that compactness, connectedness, and
completeness are among these properties. If we look at the nonmetrizable case, we
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find that N“1=2“: hence even normality is not preserved [that N*" is not normal is a
famous theorem of A.H. Stone].

In this section we will be interested mainly in the partition-equivalence types of
various spaces. The partition unique spaces are thus interestin g because their
=-types are the same as their =-types. We saw earlier that Q is partition unique but
not partition stable. N also has this property. We will show that all manifolds which
are either open (i.e. locally Euclidean) or compact are indeed partition stable. To this
end we define a space X to be strongly (resp. weakly) Brouwer if whenever b : X - X
is an embedding then A[X] is open (resp. has nonempty interior) in X,

4.1. Theorem. Let X be a connected space. Then X is partition stable if either

(a) X is strongly Brouwer; or

(b} X is weakly Brouwer, locally connected, compact T,, and satisfies the countable
chain condition.

Proof. Suppose (a). Then X is partition stable simply by connectedness. If (b} holds
we resort to (2.1) for the conclusion. ]

4.2. Corollary. If M is a connected manifold which is either open or combact, then M
is partition stable.

Proof. If M is open then M is strongly Brouwer since BID holds for all locally
Euclidean spaces. If M is compact let aM denote the boundary of M, with h : M > M
an embedding. Then h[M\dM]< M\aM; whence M is weak Brouwer, M also
satisfies all the other hypotheses of (4.1(b})), so the conclusion follows. O

Remark. There are connected manifolds which are not partition unique; namely the
half-open unit interval is partition equivalent to a disjoint union of two copies of
itself. '

4.3. Theorem. Any compact Hausdorff space of power <c is partition stable.

Proof. Repeated applicationof a self-partitioning of X yields a tree of closed subsets
of X, ordered by inclusion. By compactness, each branch of the tree (of which there
are at least ) realizes a distinct point of X, O

Significant among those spaces which are not partition unique are the Cantor set
and the Hilbert cube; and we can say very little by way of a reasonable determination
of either of their = -types. As far as partial answers go we have Corollary (2.8) as well
as the following corollary of (1.11, 1.12).

4.4. Corollary. (MA) Let X be a nonempty complete, separable, zero-dimensional
metric space. Then X =C, a
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