
BiLinear, Bicubic, and In Between 

Spline Interpolation

Daniel B. Rowe

Program in Computational Sciences

Department of Mathematics, Statistics, and Computer Science

Marquette University

February 15, 2018

Department of 

Biophysics

1D.B. Rowe

MU MSCS Spring 2018



Goal of Interpolation

1D Interpolation
Linear
Cubic
Cubic Spline

2D Interpolation
BiLinear
BiCubic
BiCubic Spline

MRI Example

1D Interpolation

MRI Example

0

2D Interpolation

1.

2.

3.

4.

5.

6.

7.

8.

2D.B. Rowe

MU MSCS Spring 2018



L

R

1. Goal of Interpolation

How do you determine how to get from one point to another?

Can we estimate a path to 

traverse through the points,

then interpolate intermediate 

values along our path?
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1. Goal of Interpolation

How do you determine how to get from one point to another?

Not complicated like this!
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1. Goal of Interpolation

How do you determine how to get from one point to another?

But some smooth progression

through the points.

true curve
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2. 1D Linear Interpolation

Easiest to draw straight lines between points and use values 

along the lines.

Interpolate:

Two points define a line.

Find the equation of the

line between points.

(1)f

(1.5)f

(3.5)f

(4)f

(4.5)f

(3)f

(2.5)f

(2)f
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axis change



2. 1D Linear Interpolation

Easiest to draw straight lines between points and use values 

along the lines.

Normalization: (0), (1)f f

(0)f
(1)f

For regularly spaced points.
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axis change



2. 1D Linear Interpolation

Easiest to draw straight lines between points and use values 

along the lines.

Normalization:

Model: 0 1

0 1( )  f x a x a x

(0)f
(1)f

0,1x

8D.B. Rowe
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(0), (1)f f



2. 1D Linear Interpolation

Easiest to draw straight lines between points and use values 

along the lines.

Normalization:

Model:

Solve: 0 1( , )a a

0 1(0) (1) (0) f a a

0 1(1) (1) (1) f a a
(0)f

(1)f

9D.B. Rowe
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(0), (1)f f

0 1

0 1( )  f x a x a x
0,1x
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2. 1D Linear Interpolation

System of Equations: 2 equations, 2 unknowns 0 1(0) (1) (0) f a a

0 1(1) (1) (1) f a a

0

1

(0) 1 0

(1) 1 1

    
     

     

af

af
y Xa

1a X y

System of Equations

Solution Solution

System of Equations

0

1

1 0 (0)

1 1 (1)

     
     

    

a f

a f

two points

X

1X

y  a

ya 

D.B. Rowe
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2. 1D Linear Interpolation

Easiest to draw straight lines between points and use values 

along the lines.

Normalization: 

Model:

Solve:  

Interpolate: .5

0 1

0 1(.5) (.5) (.5) f a a

(0)f
(1)f

13D.B. Rowe
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0 1( , )a a

(0), (1)f f

0 1

0 1( )  f x a x a x
0,1x



2. 1D Linear Interpolation

Repeat the process between all pairs of points to interpolate 

values between.

Normalization: 

Model:

Solve:  

Interpolate: .5

0 1

0 1(.5) (.5) (.5) f a a

(0)f

(1)f

14D.B. Rowe
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0 1( , )a a

(0), (1)f f

0 1

0 1( )  f x a x a x
0,1x



2. 1D Linear Interpolation

Repeat the process between all pairs of points to interpolate 

values between.

Normalization: 

Model:

Solve:  

Interpolate: .5

0 1

0 1(.5) (.5) (.5) f a a

(0)f

(1)f

15D.B. Rowe
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0 1( , )a a

(0), (1)f f

0 1

0 1( )  f x a x a x
0,1x



2. 1D Linear Interpolation

Repeat the process between all pairs of points to interpolate 

values between.

Normalization: 

Model:

Solve:  

Interpolate: .5

0 1

0 1(.5) (.5) (.5) f a a

(0)f

(1)f

16D.B. Rowe
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0 1( , )a a

(0), (1)f f

0 1

0 1( )  f x a x a x
0,1x



2. 1D Linear Interpolation

Repeat the process between all pairs of points to interpolate 

values between.

Normalization: 

Model:

Solve:  

Interpolate: .5

0 1

0 1(.5) (.5) (.5) f a a

(0)f

(1)f

17D.B. Rowe
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0 1( , )a a

(0), (1)f f

0 1

0 1( )  f x a x a x
0,1x



2. 1D Linear Interpolation

Repeat the process between all pairs of points to interpolate 

values between.

Normalization: 

Model:

Solve:  

Interpolate: .5

0 1

0 1(.5) (.5) (.5) f a a

(0)f

(1)f
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0 1( , )a a

(0), (1)f f

0 1

0 1( )  f x a x a x
0,1x



2. 1D Linear Interpolation

Repeat the process between all pairs of points to interpolate 

values between.

Normalization: 

Model:

Solve:  

Interpolate: .5

0 1

0 1(.5) (.5) (.5) f a a

(0)f

(1)f
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0 1( , )a a

(0), (1)f f

0 1

0 1( )  f x a x a x
0,1x



2. 1D Linear Interpolation

Repeat the process between all pairs of points to interpolate    

all values between.

If we need more interpolated

Values, then use more than 

just .5.

0 1

0 1( )  f x a x a x

Interpolate at 0<x<1

20D.B. Rowe
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2. 1D Linear Interpolation

Repeat the process between all pairs of points to interpolate    

all values between.

But regardless of how many 

points we interpolate, the 

intrinsic curvature through

the points is not captured!

21D.B. Rowe
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3. 1D Cubic Interpolation

Using adjacent points, we can estimate a cubic (third order 

polynomial) between points.

Interpolate:

Four points define a 

cubic equation.

Find the coefficients of the

cubic eqn. between points.
(1)f

(1.5)f

(3.5)f

(4)f

(4.5)f

(3)f

(2.5)f

(2)f

22D.B. Rowe
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0 1 2 3

0 1 2 3( )    f x a x a x a x a x



3. 1D Cubic Interpolation

Using adjacent points, we can estimate a cubic (third order 

polynomial) between points.

Normalization: 

(0)f

(1)f

( 1)f

(2)f

23D.B. Rowe
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(0), (1)f f

For regularly spaced points.



3. 1D Cubic Interpolation

Using adjacent points, we can estimate a cubic (third order 

polynomial) between points.

Normalization: 

Model:

(0)f

(1)f

( 1)f

(2)f0 1 2 3

0 1 2 3( )    f x a x a x a x a x

24D.B. Rowe

MU MSCS Spring 2018

(0), (1)f f

1,0,1,2 x



3. 1D Cubic Interpolation

Using adjacent points, we can estimate a cubic (third order 

polynomial) between points. 

Normalization: 

Model:

Solve:  

0 1 2 3

0 1 2 3( 1) ( 1) ( 1) ( 1) ( 1)        f a a a a

0 1 2 3( , , , )a a a a

0 1 2 3

0 1 2 3(0) (0) (0) (0) (0)   f a a a a
0 1 2 3

0 1 2 3(1) (1) (1) (1) (1)   f a a a a
0 1 2 3

0 1 2 3(2) (2) (2) (2) (2)   f a a a a

4 equations, 4 unknowns

(0)f

(1)f

( 1)f

(2)f

25D.B. Rowe
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1,0,1,2 x

0 1 2 3

0 1 2 3( )    f x a x a x a x a x

(0), (1)f f



3. 1D Cubic Interpolation

System of Equations: 4 equations, 4 unknowns

0

1

2

3

( 1) 1 1 1 1

(0) 1 0 0 0

(1) 1 1 1 1

(2) 1 2 4 8

       
    
    
    
    

     

af

af

af

af

y Xa

1a X y

System of Equations

Solution Solution

Solution

0

1

2

3

0 6 0 0 ( 1)

2 3 6 1 (0)1

3 6 3 0 (1)6

1 3 3 1 (2)

     
     

  
     
     
     

     

a f

a f

a f

a f

0 1 2 3

0 1 2 3( 1) ( 1) ( 1) ( 1) ( 1)        f a a a a
0 1 2 3

0 1 2 3(0) (0) (0) (0) (0)   f a a a a
0 1 2 3

0 1 2 3(1) (1) (1) (1) (1)   f a a a a
0 1 2 3

0 1 2 3(2) (2) (2) (2) (2)   f a a a a

current points

previous point

next point

26D.B. Rowe
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recycle matrix



3. 1D Cubic Interpolation

System of Equations: 4 equations, 4 unknowns

0

10 1 2 3

2

3

( ) [ , , , ]

a

a
f x x x x x

a

a

 
 
 
 
 
 

Solution

Interpolate at 0<x<1 

Solution

1a X y
0

1

2

3

0 6 0 0 ( 1)

2 3 6 1 (0)1

3 6 3 0 (1)6

1 3 3 1 (2)

     
     

  
     
     
     

     

a f

a f

a f

a f

0 1 2 3

0 1 2 3( )    f x a x a x a x a x

Interpolate at 0<x<1 

27D.B. Rowe
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3. 1D Cubic Interpolation

System of Equations: 4 equations, 4 unknowns

0

10 1 2 3

2

3

(.5) [.5 ,.5 ,.5 ,.5 ]

a

a
f

a

a

 
 
 
 
 
 

0

10 1 2 3

2

3

( ) [ , , , ]

a

a
f x x x x x

a

a

 
 
 
 
 
 

Interpolate at 0<x<1

Interpolate at .5

Interpolate at 0<x<1

Interpolate at .5

0 1 2 3

0 1 2 3( )    f x a x a x a x a x

0 1 2 3

0 1 2 3(.5) .5 .5 .5 .5   f a a a a

28D.B. Rowe
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3. 1D Cubic Interpolation

This involves 4 unknowns and 4 points to estimate them, then  

points along the polynomial.

Normalization: 

Model:

Solve:

Interpolate:
0 1 2 3

0 1 2 3(.5) .5 .5 .5 .5   f a a a a

(0)f

(1)f

( 1)f

(2)f

29D.B. Rowe
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0 1 2 3( , , , )a a a a
1,0,1,2 x

0 1 2 3

0 1 2 3( )    f x a x a x a x a x

(0), (1)f f



3. 1D Cubic Interpolation

This involves 4 unknowns and 4 points to estimate them, then  

points along the polynomial.

Normalization: 

Model:

Solve:

Interpolate:
0 1 2 3

0 1 2 3(.5) .5 .5 .5 .5   f a a a a

30D.B. Rowe
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0 1 2 3( , , , )a a a a
1,0,1,2 x

0 1 2 3

0 1 2 3( )    f x a x a x a x a x

(0), (1)f f

(0)f

(1)f

( 1)f

(2)f



3. 1D Cubic Interpolation

This involves 4 unknowns and 4 points to estimate them, then  

points along the polynomial.

Normalization: 

Model:

Solve:

Interpolate:

(0)f

(1)f
( 1)f

(2)f

31D.B. Rowe
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0 1 2 3( , , , )a a a a
1,0,1,2 x

0 1 2 3

0 1 2 3( )    f x a x a x a x a x

(0), (1)f f

0 1 2 3

0 1 2 3(.5) .5 .5 .5 .5   f a a a a



3. 1D Cubic Interpolation

This involves 4 unknowns and 4 points to estimate them, then  

points along the polynomial.

Normalization: 

Model:

Solve:

Interpolate:

(0)f

(1)f

( 1)f

(2)f

32D.B. Rowe
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0 1 2 3( , , , )a a a a
1,0,1,2 x

0 1 2 3

0 1 2 3( )    f x a x a x a x a x

(0), (1)f f

0 1 2 3

0 1 2 3(.5) .5 .5 .5 .5   f a a a a



3. 1D Cubic Interpolation

This involves 4 unknowns and 4 points to estimate them, then  

points along the polynomial.

Normalization: 

Model:

Solve:

Interpolate: (0)f

(1)f
( 1)f

(2)f

33D.B. Rowe
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0 1 2 3( , , , )a a a a
1,0,1,2 x

0 1 2 3

0 1 2 3( )    f x a x a x a x a x

(0), (1)f f

0 1 2 3

0 1 2 3(.5) .5 .5 .5 .5   f a a a a



3. 1D Cubic Interpolation

This involves 4 unknowns and 4 points to estimate them, then  

points along the polynomial.

Return to unnormalized axis.

interpolation 
not done 

34D.B. Rowe
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Interpolation not done 

-ends of cubic

-linear ends

-quadratic ends



3. 1D Cubic Interpolation

This involves 4 unknowns and 4 points to estimate them, then  

points along the polynomial.

Cubic still “kinky” at points.

interpolation 
not done “kink”

width
disparity

35D.B. Rowe
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3. 1D Cubic Interpolation

This involves 4 unknowns and 4 points to estimate them, then  

points along the polynomial.

But much better than linear!

interpolation 
not done 

36D.B. Rowe
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“kink”

width
disparity



4. 1D Cubic Spline Interpolation

With two points and two derivatives we can fit a cubic 

polynomial between points.

Interpolate:

Two points plus two 

derivatives. No “kinks?”

Smooth transition through.

Find the equation of the

cubic eqn. between points.
(1)f

(1.5)f

(3.5)f

(4)f

(4.5)f

(3)f

(2.5)f

(2)f

Only use two points 

and their derivatives.

37D.B. Rowe
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4. 1D Cubic Spline Interpolation

With two points and two derivatives we can fit a cubic 

polynomial between points.

Normalization: 

(1)f

(0)f

38D.B. Rowe
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(0), (1)f f

For regularly spaced points.



4. 1D Cubic Spline Interpolation

With two points and two derivatives we can fit a cubic 

polynomial between points.

Normalization: 

Model:

(1)f

(0)f

39D.B. Rowe
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1,0,1,2 x

(0), (1)f f

0 1 2

1 2 3'( ) 1 2 3f x a x a x a x  

0 1 2 3

0 1 2 3( )    f x a x a x a x a x



4. 1D Cubic Spline Interpolation

With two points and two derivatives we can fit a cubic 

polynomial between points.

Normalization: 

Model:

Solve:  

0 1 2

1 2 3'(0) (0) 2 (0) 3 (0)  f a a a

0 1 2 3

0 1 2 3(0) (0) (0) (0) (0)   f a a a a
0 1 2 3

0 1 2 3(1) (1) (1) (1) (1)   f a a a a

0 1 2

1 2 3'(1) (1) 2 (1) 3 (1)  f a a a

(1)f

(0)f

40D.B. Rowe
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0 1 2 3( , , , )a a a a

4 equations, 4 unknowns

1,0,1,2 x

(0), (1)f f

0 1 2

1 2 3'( ) 1 2 3f x a x a x a x  

0 1 2 3

0 1 2 3( )    f x a x a x a x a x



4. 1D Cubic Spline Interpolation

With two points and two derivatives we can fit a cubic 

polynomial between points.

Need time series discrete

derivatives at x=0,1.

Derivative at x=0:

Derivative at x=1:

(1)f

(0)f

41D.B. Rowe

MU MSCS Spring 2018

4 equations, 4 unknowns

(1) ( 1)
'(0)

2

f f
f

 


(2) (0)
'(1)

2

f f
f






4. 1D Cubic Spline Interpolation

System of Equations: 4 equations, 

4 unknowns

0

1

2

3

1 0 0 0 0 2 0 0 0 2 0 0( 1) ( 1)

0 0 1 0 0 0 2 0 1 0 1 0(0) (0)1 1

3 3 2 1 1 0 1 0 2 5 4 1(1) (1)2 2

2 2 1 1 0 1 0 1 1 3 3 1(2) (2)

           
          


           
               
          

            

a f f

a f f

a f f

a f f

0

1

2

3

(0) 1 0 0 0

(1) 1 1 1 1

(0) 0 1 0 0

(1) 0 1 2 3

    
    
    
    
    

     

af

af

af

af
1 1  a X y X Df

System of Equations

Solution

Derivatives

0 1 2 3

0 1 2 3(0) (0) (0) (0) (0)   f a a a a

0 2 0 0(0) ( 1)

0 0 2 0(1) (0)1

1 0 1 0(0) (1)2

0 1 0 1(1) (2)

    
    
    
    
    

     

f f

f f

f f

f f

y Xa y Df

note: don’t use f(-1) and f(2)!

If did, 6 eqn. 4 unknown, 
interpolation not through points.

0 1 2 3

0 1 2 3(1) (1) (1) (1) (1)   f a a a a
0 1 2

1 2 3'(0) (0) 2 (0) 3 (0)  f a a a
0 1 2

1 2 3'(1) 1 (1) 2 (1) 3 (1)  f a a a

42D.B. Rowe
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recycle matrix



4. 1D Cubic Spline Interpolation

System of Equations: 4 equations, 4 unknowns

Solution for cubic spline

Interpolate at 0<x<1 

0 1 2 3

0 1 2 3( )    f x a x a x a x a x

Interpolate at .5
0 1 2 3

0 1 2 3(.5) .5 .5 .5 .5   f a a a a

0

1

2

3

0 2 0 0 ( 1)

1 0 1 0 (0)1

2 5 4 1 (1)2

1 3 3 1 (2)

     
     


     
      
     

     

a f

a f

a f

a f

0

1

2

3

0 6 0 0 ( 1)

2 3 6 1 (0)1

3 6 3 0 (1)6

1 3 3 1 (2)

     
     

  
     
     
     

     

a f

a f

a f

a f

Solution for cubic
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4. 1D Cubic Spline Interpolation

This involves 4 unknowns and 4 points to estimate them, then  

points along the polynomial.

Normalization: 

Model:

Solve:

Interpolate: .5

0 1 2 3

0 1 2 3(.5) .5 .5 .5 .5   f a a a a

(1)f

(0)f
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0 1 2 3( , , , )a a a a 1,0,1,2 x

(0), (1)f f

0 1 2

1 2 3'( ) 1 2 3f x a x a x a x  

0 1 2 3

0 1 2 3( )    f x a x a x a x a x



4. 1D Cubic Spline Interpolation

This involves 4 unknowns and 4 points to estimate them, then  

points along the polynomial.

Normalization: 

Model:

Solve:

Interpolate: .5

(1)f

(0)f
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0 1 2 3( , , , )a a a a 1,0,1,2 x

(0), (1)f f

0 1 2

1 2 3'( ) 1 2 3f x a x a x a x  

0 1 2 3

0 1 2 3( )    f x a x a x a x a x

0 1 2 3

0 1 2 3(.5) .5 .5 .5 .5   f a a a a



4. 1D Cubic Spline Interpolation

This involves 4 unknowns and 4 points to estimate them, then  

points along the polynomial.

Normalization: 

Model:

Solve:

Interpolate: .5

(1)f

(0)f
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0 1 2 3( , , , )a a a a 1,0,1,2 x

(0), (1)f f

0 1 2

1 2 3'( ) 1 2 3f x a x a x a x  

0 1 2 3

0 1 2 3( )    f x a x a x a x a x

0 1 2 3

0 1 2 3(.5) .5 .5 .5 .5   f a a a a



4. 1D Cubic Spline Interpolation

This involves 4 unknowns and 4 points to estimate them, then  

points along the polynomial.

Normalization: 

Model:

Solve:

Interpolate: .5
(1)f

(0)f

47D.B. Rowe

MU MSCS Spring 2018

0 1 2 3( , , , )a a a a 1,0,1,2 x

(0), (1)f f

0 1 2

1 2 3'( ) 1 2 3f x a x a x a x  

0 1 2 3

0 1 2 3( )    f x a x a x a x a x

0 1 2 3

0 1 2 3(.5) .5 .5 .5 .5   f a a a a



4. 1D Cubic Spline Interpolation

This involves 4 unknowns and 4 points to estimate them, then  

points along the polynomial.

Normalization: 

Model:

Solve:

Interpolate: .5
(0)f

(1)f
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0 1 2 3( , , , )a a a a 1,0,1,2 x

(0), (1)f f

0 1 2

1 2 3'( ) 1 2 3f x a x a x a x  

0 1 2 3

0 1 2 3( )    f x a x a x a x a x

0 1 2 3

0 1 2 3(.5) .5 .5 .5 .5   f a a a a



4. 1D Cubic Spline Interpolation

This involves 4 unknowns and 4 points to estimate them, then  

points along the polynomial.

Return to unnormalized axis.

interpolation 
not done 

49D.B. Rowe

MU MSCS Spring 2018



4. 1D Cubic Spline Interpolation

This involves 4 unknowns and 4 points to estimate them, then  

points along the polynomial.

Cubic Spline no “kinks.”

interpolation 
not done 

no “kink”
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4. 1D Cubic Spline Interpolation

This involves 4 unknowns and 4 points to estimate them, then  

points along the polynomial.

Cubic Spline better at points!

interpolation 
not done 

no “kink”
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5. 2D BiLinear Interpolation

Easiest to draw planes between points and use values within 

the planes.

array/image coordinate system

(1,0)f

(1,1)f

(0,1)f

(0,0)f

54D.B. Rowe

MU MSCS Spring 2018



5. 2D BiLinear Interpolation

Easiest to draw planes between points and use values within 

the planes.

Interpolate:

Find the equation of the

plane between points.
(0,0)f

(1,0)f

(1,1)f

(0,1)f
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5. 2D BiLinear Interpolation

Easiest to draw planes between points and use values within 

the planes.

Normalization:
(1,0)f

(1,1)f

(0,1)f

(0,0)f
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(0,0), (1,0)

(0,1), (1,1)

f f

f f



5. 2D BiLinear Interpolation

Easiest to draw planes between points and use values within 

the planes.

Normalization: 

Model:

(1,0)f

(1,1)f

(0,1)f

(0,0)f

00 10 01 11( , )    f x y a a x a y a xy

, 1,0,1,2 x y
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(0,0), (1,0)

(0,1), (1,1)

f f

f f
1 1

0 0

( , )
 

 i j

ij

j i

f x y a x y

1,0,1,2 x



5. 2D BiLinear Interpolation

Easiest to draw planes between points and use values within 

the planes.

Normalization: 

Model:

Solve:  

00(0,0) f a

00 10(1,0)  f a a

00 01(1,0)  f a a

00 10 01 11(1,1)    f a a a a

1 1

0 0

( , )
 

 i j

ij

j i

f x y a x y

(1,0)f

(1,1)f

(0,1)f

(0,0)f
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(0,0), (1,0)

(0,1), (1,1)

f f

f f

ija

1,0,1,2 x



5. 2D BiLinear Interpolation

System of Equations: 4 equations, 4 unknowns

00

10

01

11

(0,0) 1 0 0 0

(1,0) 1 1 0 0

(0,1) 1 0 1 0

(1,1) 1 1 1 1

    
    
    
    
    

     

af

af

af

af

y Xa

1a X y

System of Equations

Solution Interpolate 

0<x<1, 0<y<1 

Image

00

10

01

11

1 0 0 0 (0,0)

1 1 0 0 (1,0)

1 0 1 0 (0,1)

1 1 1 1 (1,1)

a f

a f

a f

a f

     
     


     
     
     

      

0

10

1

0

0

00 10 01 11( , )    f x y a a x a y a xy

00 10(1,0)  f a a

00 01(1,0)  f a a

00 10 01 11(1,1)    f a a a a

00(0,0) f a
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Interpolate 

0<x<1, 0<y<1 

5. 2D BiLinear Interpolation

System of Equations: 4 equations, 4 unknowns

1a X ySolution

00 10 01 11( , )    f x y a a x a y a xy

00

01

10

11

(.5,0) 1 .5 0 0

(1,.5) 1 1 .5 .5

(.5,.5) 1 .5 .5 .25

(0,.5) 1 0 .5 0

(.5,1) 1 .5 1 .5

   
    
    
    
    
    
       

f
a

f
a

f
a

f
a

f

Interpolate one pixel 

More rows to interpolate more pixels.

int inty X a

00

01

10

11

1 0 0 0 (0,0)

1 1 0 0 (1,0)

1 0 1 0 (0,1)

1 1 1 1 (1,1)

     
     


     
     
     

      

a f

a f

a f

a f

0

10

1

0

0

00 10(1,0)  f a a

00 01(1,0)  f a a

00 10 01 11(1,1)    f a a a a

00(0,0) f a

(.5,0) [1,.5,0,0]f a
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5. 2D BiLinear Interpolation

Easiest to draw planes between points and use values within 

the planes.

Once we’ve solved for the 

coefficients, we interpolate.
(1,0)f

(1,1)f(0,0)f

(0,1)f

(.5,0)f

(.5,1)f00 10 01 11( , )    f x y a a x a y a xy

(.5,.5)f

(0,.5)f

(1,.5)f

(.5,0)f

(.5,1)f

(1,.5)f

(0,.5)f

(.5,.5)f
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5. 2D BiLinear Interpolation

Example: 8×8 interpolate 1 to 15×15

Expanded
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Low Resolution BiLinear Interpolated



5. 2D BiLinear Interpolation

Example: 8×8 interpolate 1001 to 7015×7015

note “kinks” between patches
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Low Resolution BiLinear InterpolatedExpanded

Expanded

can’t see original pixels



6. 2D BiCubic Interpolation

Need to use adjacent points, estimate surfaces, and use values 

within the surfaces.

Interpolate:

Sixteen points define a 

2D bicubic surface.

Find the equation of the

surface between 4 points

using neighbors.

64D.B. Rowe

MU MSCS Spring 2018



6. 2D BiCubic Interpolation

Need to use adjacent points, estimate surfaces, and use values 

within the surfaces.

Normalization:

(1,0)f
(1,1)f(0,0)f

(0,1)f
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(0,0), (1,0)

(0,1), (1,1)

f f

f f



6. 2D BiCubic Interpolation

Need to use adjacent points, estimate surfaces, and use values 

within the surfaces.

Normalization:

Model:
(1,0)f

(1,1)f(0,0)f

(0,1)f

66D.B. Rowe
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(0,0), (1,0)

(0,1), (1,1)

f f

f f
3 3

0 0

( , ) i j

ij

j i

f x y a x y
 



1,0,1,2 x



6. 2D BiCubic Interpolation

Need to use adjacent points, estimate surfaces, and use values 

within the surfaces.

Normalization:

Model:

Solve:

(1,0)f
(1,1)f(0,0)f

(0,1)f

67D.B. Rowe

MU MSCS Spring 2018

(0,0), (1,0)

(0,1), (1,1)

f f

f f
3 3

0 0

( , ) i j

ij

j i

f x y a x y
 



ija

1,0,1,2 x



6. 2D BiCubic Interpolation

Need to use adjacent points, estimate surfaces, and use values 

within the surfaces.

Interpolate:

Find the equation of the

surface between 4 points

using neighbors and 

and determine aij’s.

(1,0)f
(1,1)f(0,0)f

(0,1)f
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6. 2D BiCubic Interpolation

System of Equations: 16 equations, 16 unknowns

3 3

0 0

( , )
 

 i j

ij

i j

f x y a x y

y XaSystem of Equations Image

x,y=-1,0,1,2

16 equations from 
0

10

1

-1

2

-1 2

( , )f x y

( , )I x y

Simply insert all x,y combinations to get 16 equations.
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6. 2D BiCubic Interpolation

Values from polynomial.

( 1, 1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(0, 1) 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

(1, 1) 1 1 1

(2, 1)

( 1,0)

(0,0)

(1,0)

(2,0)

( 1,1)

(0,1)

(1,1)

(2,1)

( 1,2)

(0,2)

(1,2)

(2,2)

          
 

  
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 2 4 8 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

1 1 1 1 2 2 2 2 4 4 4

       

       

 

       

     

00

10

20

30

01

11

21

31

02

12

22

32

03

13

23

33

4 8 8 8 8

1 0 0 0 2 0 0 0 4 0 0 0 8 0 0 0

1 1 1 1 2 2 2 2 4 4 4 4 8 8 8 8

1 2 4 8 2 4 8 16 4 8 16 32 8 16 32 64

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 
 
 
 

   
 
 
 
 

   

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a











y Xa

3 3

0 0

( , )
 

 i j

ij

i j

f x y a x y

x,y=-1,0,1,2
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6. 2D BiCubic Interpolation

Estimate coefficient values.

1a X I
00

10

20

30

01

11

21

31

02

12

22

32

03

13

23

33

0 0 0 0 0 36 0 0 0 0 0 0 0 0 0 0

0 0 0 0 12 18 36 6 0 0 0 0 0 0 0 0

0 0 0 0 18 36 18 0 0 0 0 0 0 0 0 0

0 0 0 0 6 18 18 6 0 0 0 0 0 0 0 0

0 12 0 0 0 18 0 0 0 36 0 0 0

1

36

 
 

  
 
  
 

  
    
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

6 0 0

4 6 12 2 6 9 18 3 12 18 36 6 2 3 6 1

6 12 6 0 9 18 9 0 18 36 18 0 3 6 3 0

2 6 6 2 3 9 9 3 6 18 18 6 1 3 3 1

0 18 0 0 0 36 0 0 0 18 0 0 0 0 0 0

6 9 18 3 12 18 36 6 6 9 18 3 0 0 0 0

9 18 9 0 18 36 18 0 9 18 9 0 0 0 0 0

3 9 9 3 6 18 18 6 3 9 9 3 0 0 0 0

0 6 0 0 0 18 0 0 0 18 0 0 0 6 0

     

      

       



      

   

     

 

( 1, 1)

(0, 1)

(1, 1)

(2, 1)

( 1,0)

(0,0)

(1,0)

(2,0)

( 1,1)

(0,1)

(1,1)

(

0

2 3 6 1 6 9 18 3 6 9 18 3 2 3 6 1

3 6 3 0 9 18 9 9 9 18 9 0 3 6 3 0

1 3 3 1 3 9 9 3 3 9 9 3 1 3 3 1

  
 


 
  
 

 
  
 
 
 
 
 
  
 
 
 
 
 
 
 
        
 
      
         

I

I

I

I

I

I

I

I

I

I

I

I 2,1)

( 1,2)

(0,2)

(1,2)

(2,2)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

I

I

I

I

Almost Money Slide 
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6. 2D BiCubic Interpolation

Estimate coefficient values.

Interpolate pixel values.

Can do biquadratic in corners and linear-quadratic on sides.

1a X I

3 3

0 0

( , )
 

 i j

ij

j i

f x y a x y 0<x<1, 0<y<1 
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6. 2D BiCubic Interpolation

Example: 8×8 interpolate 1001 to 7015×7015

Low Resolution BiCubic InterpolatedBilinear Interpolated
* bilinear edges

still “kinky” between patches
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7. 2D BiCubic Spline Interpolation

Need to use adjacent points, estimate surfaces, and use values 

within the surfaces.

Interpolate:

Will use 4 points and 12

derivatives at those points 

to define a bicubic surface.
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7. 2D BiCubic Spline Interpolation

Need to use adjacent points, estimate surfaces, and use values 

within the surfaces.

Normalization:

(1,0)f
(1,1)f(0,0)f

(0,1)f
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(0,0), (1,0)

(0,1), (1,1)

f f

f f



7. 2D BiCubic Spline Interpolation

Need to use adjacent points, estimate surfaces, and use values 

within the surfaces.

Normalization:

Model:
(1,0)f

(1,1)f(0,0)f

(0,1)f
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(0,0), (1,0)

(0,1), (1,1)

f f

f f
3 3

0 0

( , ) i j

ij

j i

f x y a x y
 





7. 2D BiCubic Spline Interpolation

Need to use adjacent points, estimate surfaces, and use values 

within the surfaces.

Normalization:

Model:

Solve:  

(1,0)f
(1,1)f(0,0)f

(0,1)f
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(0,0), (1,0)

(0,1), (1,1)

f f

f f
3 3

0 0

( , ) i j

ij

j i

f x y a x y
 



ija



7. 2D BiCubic Spline Interpolation

Need to use adjacent points, estimate surfaces, and use values 

within the surfaces.

Interpolate:

Will use 4 points and 12

derivatives to define a 

bicubic splined surface and 

and determine aij’s.

(1,0)f
(1,1)f(0,0)f

(0,1)f
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7. 2D BiCubic Spline Interpolation

System of Equations: 16 equations, 16 unknowns

3 3

0 0

( , )
 

 i j

ij

i j

f x y a x y

y XaSystem of Equations Image

x,y=0,1

4 equations from 
0

10

1

-1

2

-1 2

00 01 02 03(0,1)    f a a a a

00 10 01 11(1,1)    f a a a a

00(0,0) f a

00 10 20 30(1,0)    f a a a a

( , )f x y

( , )I x y
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7. 2D BiCubic Spline Interpolation

System of Equations: 16 equations, 16 unknowns

3 3
1

0 1

( , ) 

 

 i j

x ij

j i

f x y a ix y

y XaSystem of Equations Image

x,y=0,1

4 equations from 
0

10

1

-1

2

-1 2

10(0,0) xf a

( , ) ( , )





xf x y f x y
x

10 20 30(1,0) 1 2 3  xf a a a

10 11 12 13(0,1)    xf a a a a

10 20 31 11 21 31

12 22 32 13 23 33

(1,1) 1 2 3 1 2 3

1 2 3 1 2 3

     

     

xf a a a a a a

a a a a a a

( , )I x y
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7. 2D BiCubic Spline Interpolation

System of Equations: 16 equations, 16 unknowns

y XaSystem of Equations Image

3 3
1

1 0

( , ) 

 

 i j

y ij

j i

f x y a jx y

x,y=0,1

01(0,0) yf a

4 equations from 
0

10

1

-1

2

-1 2

( , ) ( , )





yf x y f x y
y

01 11 21 31(1,0)    yf a a a a

01 11 21 31

02 12 22 32

03 13 23 33

(1,1) 1 1 1 1

2 2 2 2

3 3 3 3

   

   

   

yf a a a a

a a a a

a a a a

01 02 03(0,1) 1 2 3  yf a a a

( , )I x y
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7. 2D BiCubic Spline Interpolation

System of Equations: 16 equations, 16 unknowns

11(0,0) xyf a

y XaSystem of Equations Image

x,y=0,1

4 equations from 
0

10

1

-1

2

-1 2

2

( , ) ( , )



 

xyf x y f x y
y x

3 3
1 1

0 0

( , )  

 

 i j

xy ij

j i

f x y a ijx y

11 21 31

12 22 32

13 23 33

(1,1) 1 2 3

2 4 6

3 6 9

  

  

  

xyf a a a

a a a

a a a

11 21 31(1,0) 1 2 3  xyf a a a

11 12 13(0,1) 1 2 3  xyf a a a

( , )I x y
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7. 2D BiCubic Spline Interpolation

System of Equations: 16 equations, 16 unknowns

Need Image and Derivatives Image

0

10

1

-1

2

-1 2

( , ) ( , )f x y I x y

( , )I x y

( , ) [ ( 1, ) ( 1, )] / 2   xf x y I x y I x y

( , ) [ ( , 1) ( , 1)] / 2   yf x y I x y I x y

( , ) [ ( 1, 1) ( 1, ) ( , 1) ( , )] / 4       xyf x y I x y I x y I x y I x y

Use the graph to reason out the derivatives.
Only using surrounding points for derivatives.

x,y=0,1
i.e. at (0,0)

(0,0) [ (1,0) ( 1,0)] / 2  xf I I

(0,0) [ (0,1) (0, 1)] / 2  yf I I

(0,0) [ (1,1) ( 1,0) (0, 1) (0,0)] / 4     xyf I I I I
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7. 2D BiCubic Spline Interpolation

Values from polynomial.

3 3

0 0

( , )
 

 i j

ij

i j

f x y a x y

84
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00

10

20

30

01

11

21
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02
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22

32

03
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23

33
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0 0 0 0 0 1 2 3 0 2 4 6 0 3 6 9
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a
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a

a

a

y Xa

3 3
1

1 0

( , ) 

 

 i j

y ij

j i

f x y a jx y

3 3
1 1

0 0

( , )  

 

 i j

xy ij

j i

f x y a ijx y

3 3
1

0 1

( , ) 

 

 i j

x ij

j i

f x y a ix y
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7. 2D BiCubic Spline Interpolation

Values from image.

(0,0) 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0

(1,0) 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0

(0,1) 0 0 0
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7. 2D BiCubic Spline Interpolation

Estimate coefficient values.

1a X DI
00
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7. 2D BiCubic Spline Interpolation

Estimate coefficient values.

Interpolate pixel values.

Can do biquadratic in corners and linear-quadratic on sides.

1a X DI

3 3

0 0

( , )
 

 i j

ij

j i

f x y a x y 0<x<1, 0<y<1 
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7. 2D BiCubic Spline Interpolation

Example: 8×8 interpolate 1001 to 7015×7015

Low Resolution BiCubic Spline InterpolatedBilinear Interpolated

Toggle Forward

smooth between patches

* biquadratic corners, linear-quadratic sides
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Expanded



7. 2D BiCubic Spline Interpolation

Example: 8×8 interpolate 1001 to 7015×7015

Low Resolution BiCubic Interpolated

Toggle Backward
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still “kinky” between patches

Expanded

* bilinear edges

Bilinear Interpolated



8. MRI Example

Original 256×256
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8. MRI Example

Original 64×64Original 256×256

Toggle Forward 91D.B. Rowe
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8. MRI Example

Original 256×256 BiLinear 99 6301

Toggle Forward/Back 92D.B. Rowe
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8. MRI Example

Original 256×256 BiCubic 99 6301

Toggle Forward/Back 93D.B. Rowe
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8. MRI Example

Original 256×256 BiCubic Spline 99 6301

Toggle Back 94D.B. Rowe
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8. MRI Example

“kink”

-Original 256

●Original 64

-BiLinear

-BiCubic

-BiCubic Spline
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BiLinear, Bicubic, & BiCubic Spline Interpolation:

- To estimate between known pixel values

- BiLinear fits a linear polynomial with cross term.

- BiCubic fits a third order piecewise polynomial.

- BiCubic Spline fits third order smooth polynomial

- BiCubic Spline captures curvature through pixels.

using discrete derivatives
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Thank You!

Questions?

1D                                        2D                                 Example
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