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SOME PROBLEMS INVOLVING H-COLORINGS OF GRAPHS

Abstract

by

John Alan Engbers

For graphs G and H, an H-coloring of G, or homomorphism from G to H, is

an edge-preserving map from the vertices of G to the vertices of H. H-colorings

generalize such graph theory notions as proper colorings and independent sets. In

this dissertation, we consider four questions involving H-colorings of graphs.

Recently, Galvin [27] showed that the maximum number of independent sets in a

an n vertex minimum degree δ graph occurs (for sufficiently large n) whenG = Kδ,n−δ.

First, we show this result holds for level sets: for all triples (n, δ, t) with δ ≤ 3 and

t ≥ 3, no n-vertex graph with minimum degree δ admits more independent sets of

size t than Kδ,n−δ, and we obtain the same conclusion for δ > 3 and t ≥ 2δ + 1.

Second, we begin the project of generalizing Galvin’s result to arbitrary H. Writ-

ing hom(G,H) for the number of H-colorings of G, we show that for δ = 1 and δ = 2

and fixed H,

hom(G,H) ≤ max{hom(Kδ+1, H)
n
δ+1 , hom(Kδ,δ, H)

n
2δ , hom(Kδ,n−δ, H)}

for any n vertex minimum degree δ graph G (for sufficiently large n). For δ ≥ 3 (and

sufficiently large n), we provide a class of H for which hom(G,H) ≤ hom(Kδ,n−δ, H)

for any G in this family.
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Third, for a given H, k ∈ V (H), and regular bipartite G, we consider the pro-

portion of vertices of G that get mapped to k in a uniformly chosen H-coloring of G.

We find numbers 0 ≤ a−(k) ≤ a+(k) ≤ 1 with the property that for all such G, with

high probability the proportion is between a−(k) and a+(k), and we give examples

where these extremes are achieved.

Fourth, we study the set of H-colorings of the even discrete torus Zdm. For any H

and fixed m, we show that the space of H-colorings of Zdm may be partitioned into

a subset of negligible size (as d grows) and a collection of subsets indexed by certain

pairs (A,B) ∈ V (H)2, with each H-coloring in the subset indexed by (A,B) having

almost all vertices in one partition class mapped to A and almost all vertices in the

other partition class mapped to B.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In this dissertation we consider a variety of problems centered on extremal and

structural properties of H-colorings of graphs. We begin by describing these problems

while attempting to defer many of the technicalities to later chapters.

For G = (V (G), E(G)) a simple, loopless graph, and H = (V (H), E(H)) a graph

without multiple edges but perhaps with loops, an H-coloring of G, or homomorphism

from G to H, is a function f : V (G) → V (H) that preserves adjacency, that is,

which satisfies f(u) ∼H f(v) whenever u ∼G v (where ∼∗ denotes adjacency in

∗). See Figure 1.1. The term H-coloring is quite natural as we think of coloring

the vertices of G, with the palette of available colors being the vertices of H and

the edges of H telling us what pairs of colors are allowed to appear on adjacent

vertices of G. We write Hom(G,H) for the set of all H-colorings of G, and let

hom(G,H) = |Hom(G,H)|. (Unless explicitly stated otherwise, all graphs in this

dissertation will be finite.)

H-colorings have a natural statistical physics interpretation as configurations in

hard-constraint spin systems. Here, the vertices of G are thought of as sites that

are occupied by particles, with edges of G representing pairs of bonded sites. The

vertices of H are the different types of particles (or spins), and the occupation rule

is that bonded sites must be occupied by pairs of particles that are adjacent in H.

A legal configuration in such a spin model is exactly an H-coloring of G.
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G : H :

Figure 1.1. An example of an H-coloring of G.

When H = Kq (where Kq is the complete loopless graph on q vertices; see the

right-hand side of Figure 1.2), an element of Hom(G,Kq) is a coloring of the vertices

of G from a palette of q colors so that adjacent vertices receive different colors, which

is called a proper q-coloring of G. These have been widely studied throughout the

history of graph theory; for example, the four-color theorem states that all planar

graphs admit a proper 4-coloring. In statistical physics, a proper q-coloring is a

configuration in the zero-temperature q-state anti-ferromagnetic Potts model. Other

applications of vertex colorings are found in scheduling and assignment problems and

solutions to Sudoku.

G :

Figure 1.2. An H-coloring of G using H = K4.
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Another important example occurs when H = HWR (where HWR is the com-

pletely looped path on three vertices; see the right-hand side of Figure 1.3). The

set Hom(G,HWR) coincides with the state space of the Widom-Rowlinson model of

statistical physics (or WR model), introduced in [58] as a model of liquid-vapor phase

transitions. It models the placement of two repelling (but not self-repelling) particles

on sites, where not every site needs a particle.

G :

Figure 1.3. An H-coloring of G using the Widom-Rowlinson graph
H = HWR.

A third example of an H-coloring occurs when H = Hind (where Hind consists

of two vertices joined by an edge, with a loop at one of the vertices; see the right-

hand side of Figure 1.4). An element of Hom(G,Hind) yields a set of vertices of G

which spans no edges (via the preimage of the unlooped vertex), which is called an

independent set (or stable set) of G. In statistical physics, an independent set is a

configuration in the hard-core lattice gas model, a model of the occupation of space

by large particles.

See for example [10] for a discussion of some of these models from a combinatorial

point of view, and [62] for a statistical physics oriented discussion.
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G :

Figure 1.4. An H-coloring of G using H = Hind.

Let i(G) = hom(G,Hind) be the total number of independent sets in G. Granville,

motivated by a question in combinatorial group theory, asked which graph in the

family of n-vertex d-regular graphs has the largest value of i(G) (see [2] for more

details of the combinatorial group theory background). An approximate answer —

i(G) ≤ 2n/2(1+o(1)) for all such G, where o(1) → 0 as d → ∞ — was given by Alon

in [2], and he speculated a more exact result, that the maximizing graph, at least

in the case 2d|n, is the disjoint union of n/2d copies of Kd,d. See Figure 1.5. This

speculation was confirmed for bipartite G by Kahn [39] (and recently for general

regular G by Zhao [67]).

· · ·

Figure 1.5. The disjoint union of copies of Kd,d.

Furthermore, Kahn showed in [39, 40] that the occupation probabilities induced
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by a randomly chosen independent set are suitably close to the distribution which

picks a partition class and chooses an independent set at random from within that

partition class. This is a somewhat remarkable and non-obvious phenomenon which

gives a fairly complete description of most independent sets in any n-vertex d-regular

graph.

This is the point of departure for much of the dissertation: we consider related

extremal questions for both independent sets of a fixed size in graphs and also for

H-colorings of graphs, and we consider related structural questions for H-colorings

of graphs.

1.2 Extremal questions

An extremal question in graph theory has the following general form: given a

parameter f of graphs (a function f that assigns to each G a real number f(G)) and

a family G of graphs, what are the extremal values of f(G) as G ranges over G, and

which graphs achieve the extremes? Granville’s extremal question for independent

sets is the case where f(G) = i(G) and G is the family of n-vertex d-regular graphs

(and where he only looks to maximize i(G)). Extremal questions can be modified by

changing either the parameter or the family.

For instance, the extremal question for maximizing the number of independent

sets can be modified by changing the family of graphs under consideration. A few of

the other families that have been considered (in addition to n-vertex d-regular graphs

described above) include n-vertex trees [56], n-vertex m-edge graphs [15], n-vertex

graphs with fixed independence number [69], n-vertex graphs with a given number

of cut-edges [36], and n-vertex claw-free graphs [54].

For a fixed t ∈ {0, 1, . . . , |V (G)|}, we let it(G) denote the number of independent

sets of size t inG. The values it(G) are the coefficients of the independence polynomial

of a graph (the polynomial PG(x) =
∑

t it(G)xt). A related extremal question to ask
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is: for each t, what is the largest value attained by it(G) as G ranges over a family of

graphs? This question has also been studied for various families of graphs, including

n-vertex d-regular graphs (some asymptotic results in [12]), n-vertex m-edge graphs

[14], and n-vertex trees [65].

Notice that any n-vertex tree has minimum degree 1, and so another natural

family to study is the family of n-vertex graphs with fixed minimum degree δ. Denote

this family by G(n, δ). Our extremal questions become: which graphs G in G(n, δ)

maximize i(G) and it(G) for each t? Sapozhenko first studied the question for i(G)

in bipartite graphs in G(n, δ) for large δ in [60].

Since a set of vertices is independent if no edge is present among those vertices,

it is natural to conjecture that the extremal graph would have the least number of

edges possible (so it would be δ-regular, or close to δ-regular). This is surprisingly

not the case. In [27], Galvin showed that for n ≥ 8δ2 (and conjectured for n ≥ 2δ)

that the unique graph in G(n, δ) which admits the largest number of independent

sets is Kδ,n−δ, the complete bipartite graph with δ vertices in one partition class

and n − δ vertices in the other partition class. See Figure 1.6. In that paper, he

conjectured that the same graph also maximizes the number of independent sets of

each nontrivial size t ≥ 3, and showed this for δ = 1 and n ≥ 2. The case t = 2 is an

anomoly as it simply counts the number of non-edges in the graph G, and so in this

case the maximizer is indeed the graph with the least number of edges. (Also note

that the cases t = 0 and t = 1 have values 1 and n, respectively, for any G ∈ G(n, δ).)

Chapter 3 presents joint work with D. Galvin, in which we prove this conjecture

for a large range of n and t.

Theorem 1.2.1. 1. Fix δ ∈ {2, 3}, n ≥ 2δ, and t ≥ 3. Then for any G ∈ G(n, δ),

it(G) ≤ it(Kδ,n−δ) =

(
n− δ
t

)
+

(
δ

t

)
.

6



· · ·

Figure 1.6. The complete bipartite graph K3,n−3.

2. Fix δ ≥ 4, n ≥ 3δ + 1, and t ≥ 2δ + 1. Then for any G ∈ G(n, δ),

it(G) ≤ it(Kδ,n−δ) =

(
n− δ
t

)
.

The precise statement of what we prove is the content of Theorem 3.1.4, where we

also characterize the cases of equality. A key ingredient in the proof of Theorem 3.1.4

is our study of critical graphs (graphs where the deletion of any edge or vertex lowers

the minimum degree), which are an important subfamily of the family of graphs with

a fixed minimum degree. These results appear in [22], which has been submitted for

publication.

Realizing that we can view independent sets as a particular instance of an H-

coloring, the following question is quite natural: given a family of graphs G, which

G in G maximize hom(G,H) for each H? For the family of n-vertex m-edge graphs,

this question was posed for proper q-colorings (H = Kq) in the 1980’s by Linial [48]

and Wilf [64]. The answer has not fully been resolved; for recent progress see e.g. [49]

and the references therein. Results for some other choices of H appear in [15, 16].

For n-vertex d-regular bipartite graphs, recall that Kahn [39] showed that i(G) ≤

i(Kd,d)
n/2d for any G in this family. Using the identification of an independent set

with an Hind-coloring of G, we can write this as hom(G,Hind) ≤ hom(Kd,d, Hind)n/2d.

Galvin and Tetali [32] generalized his entropy techniques and showed that for any

H and G in this family, hom(G,H) ≤ hom(Kd,d, H)
n
2d . (Notice that when 2d|n the

bound is achieved by n
2d
Kd,d, the disjoint union of n/2d copies of Kd,d.) The fact that

7



this holds for every H is quite striking.

For the family of n-vertex d-regular (not necessarily bipartite) graphs, Kahn’s

bound hom(G,Hind) ≤ hom(Kd,d, Hind)n/2d continues to hold for all G in this larger

family (as demonstrated by Zhao [67]). It is tempting to believe that Galvin and

Tetali’s bound for arbitrary H extends to this larger family as well. There is in-

deed a large class of H for which hom(G,H) ≤ hom(Kd,d, H)
n
2d holds among all

n-vertex d-regular G (see [28, 68]; evidence for proper q-colorings is given in [29]).

However, Galvin [28] has demonstrated triples (n, d,H) for which hom(G,H) ≤

hom(Kd+1, H)
n
d+1 for all G in this family.

For G(n, δ), the family of n-vertex graphs with minimum degree δ, the extremal

graph for independent sets in this family (with n large) is G = Kδ,n−δ [27]. In Chapter

4, we extend this result to H-colorings for a large class of H, and for small fixed δ we

show that all other H are maximized by either G = n
2δ
Kδ,δ or G = n

δ+1
Kδ+1 (when

2δ(δ + 1)|n).

For the statement of this theorem, we assume that loops count once toward the

degree of a vertex, and we let ∆H denote the maximum degree of H.

Theorem 1.2.2. 1. Fix H and δ ∈ {1, 2}. There exists a c (depending on H and δ)
such that for n > c and G ∈ G(n, δ), we have

hom(G,H) ≤ max{hom(Kδ,δ, H)
n
2δ , hom(Kδ+1, H)

n
δ+1 , hom(Kδ,n−δ, H)}.

2. Fix H and δ. If H satisfies
∑

v∈V (H) d(v) < (∆H)2, then there exists a c (depending

on H) such that for n > cδ and G ∈ G(n, δ), we have

hom(G,H) ≤ hom(Kδ,n−δ, H).

The precise statement of what we prove is the content of Theorems 4.1.5, 4.1.6,

and 4.1.7, where we also characterize the graphs that achieve equality. The proofs of

the δ = 1 and δ = 2 results involve analyzing edge-critical graphs (graphs with the

property that the deletion of any edge lowers the minimum degree). The proof of

8



the general δ result partitions G(n, δ) based on the size of a maximum matching in

the graph, shows that a large matching cannot be present in an extremal graph, and

analyzes those graphs with a small maximum matching size. These results appear in

[19], and are being prepared for publication.

1.3 Structural questions

Chapters 3 and 4 deal with extremal questions for H-colorings of graphs; Chapters

5 and 6 address the rather different question of the typical appearance of an H-

coloring of a graph G. At this point, we’ll motivate the results of Chapters 5 and 6

using the language of proper q-colorings; the theorems and proofs in those chapters

will be suitably generalized to H-colorings.

Recall that a proper q-coloring of a graph G is a coloring of the vertices of G from

a palette of q colors so that adjacent vertices receive different colors. Suppose that

we fix a regular bipartite graph G on n vertices, and fix a particular equipartition

U ∪ W . (We will assume this equipartition is fixed for any regular bipartite G

under consideration; if G is connected, then U and W are essentially unique.) A

result from Galvin and Tetali [32], extending Kahn’s beautiful entropy techniques for

independent sets [39], gives nearly matching upper and lower bounds on the total

number of proper q-colorings of G. However, their result gives little insight into the

typical structure of these colorings, and it is natural to ask what a uniformly chosen

proper q-coloring of G typically looks like.

In [39], Kahn answers this for independent sets (in fact, for weighted independent

sets). He showed that independent sets exhibit phase coexistence in the sense that

most independent sets in G tend to come either mostly from U or mostly from W .

In particular, he showed that the size of an independent set is close to n/4, which is

the expected size for an independent set chosen according to the distribution which

half the time picks an independent set exclusively from U and half the time picks

9



exclusively from W .

The analogous distribution for a proper q-coloring of G is the following: color G

by using some fixed b q
2
c colors independently on the vertices of the partition class

U (or W ) and using the remaining d q
2
e colors independently on the vertices of the

partition class W (U). We call a coloring obtained from this distrubution a pure

proper q-coloring. It seems reasonable to think that most proper q-colorings of G

should be, in some sense, close to some pure proper q-coloring.

Chapter 5 represents joint work with D. Galvin where we show that this is true

in the sense that the typical proper q-coloring of G has each color appearing on

approximately the same proportion of vertices as would be expected from a pure

proper q-coloring of G.

Theorem 1.3.1. Given an n-vertex, d-regular bipartite graph G, almost all proper

q-colorings have each color appearing on a proportion between 1
q+1

and 1
q−1

of the

vertices (for q odd) or on a proportion close to 1
q

of the vertices (for q even).

So for even q, almost all proper q-colorings of a regular bipartite graph are “almost

equitable”. Notice that by the symmetry of the colors the expected number of vertices

receiving a particular color is n/q.

The precise statement of what we prove, which is suitably generalized to weighted

H-colorings, is the content of Theorem 5.1.2 (the corollary addressing proper q-

colorings is Corollary 5.1.5). In this more general result, some H are similar to the

q odd case of Theorem 1.3.1, where the proportion of vertices receiving a particular

color lies in some interval. In these cases, the random regular bipartite graph shows

that these intervals are sharp (see Theorem 5.1.4). However, most H are similar to

the q even case of Theorem 1.3.1, where the proportion of vertices receiving a partic-

ular color is concentrated around a single value. We also remark that the condition

of regularity can be relaxed somewhat (see Theorem 5.4.1), and in Corollary 5.4.3

we apply this to show that if edge percolation is run on G with probability p, then
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for many H there is a threshold occurring at p = 1/d. These results appear in the

Journal of Combinatorial Theory, Series B [20].

For certain graphs and their set of proper q-colorings we have results about the

actual distributions of the colors among the two partition classes and not just their

occurrence probabilities. This is true for the random regular bipartite graph, as

is shown in the proof of Theorem 5.1.4 by critically using its excellent expansion

properties.

In Chapter 6, which is joint work with D. Galvin, we refine the entropy techniques

of Kahn [40] to obtain results for the d-dimensional discrete hypercube Qd (the graph

on vertex set {0, 1}d with edges joining strings that differ in one coordinate; see Figure

1.7), which has much weaker expansion than the random regular bipartite graph. Qd

is an widely studied graph which often acts as a test-bed for results on the harder to

study infinite regular lattice Zd. Related results have been obtained on Qd for proper

3-colorings [23, 55] and independent sets [43].

Figure 1.7. The 3-dimensional discrete hypercube Q3.

Theorem 1.3.2. All but a vanishing proportion of proper q-colorings of Qd have b q
2
c

colors each appearing on a proportion
(
1± 2−Ω(d)

)
1
bq/2c of the vertices in one partition

11



class, and the remaining d q
2
e colors each appearing on a proportion

(
1± 2−Ω(d)

)
1
dq/2e

of the vertices in the other partition class.

In other words, almost all proper q-colorings of Qd differ from some pure proper

q-coloring of Qd on only some small number of vertices. We are actually able to prove

Theorem 1.3.2 in a far more general setting, that of weighted H-colorings of the even

discrete torus {0, 1, . . . ,m− 1}d (for m ≥ 2 even). The precise statement of what we

prove is the content of Theorems 6.1.1 and 6.1.2.

One application of Theorem 1.3.2 is the following surprising long-range influence

result.

Theorem 1.3.3. Let v 6= w be vertices in Qd. Choose a uniform proper q-coloring

of Qd conditioned on the information that w receives color 1. Then the asymptotic

probability that v receives color 1 is either 2
q

(if v and w are in the same partition

class) or 0 (if v and w are not in the same partition class).

Note that without conditioning on the color of w, the probability that v receives

color 1 is exactly 1/q (by symmetry).

Theorem 1.3.3 generalizes to weighted H-colorings of the discrete even torus as

well; the precise statement of what we prove is the content of Theorem 6.2.1 (the

corollary specifically addressing proper q-colorings is Corollary 6.2.4). These results

appear in the Journal of Combinatorial Theory, Series B [21].

Chapter 2 presents much of the notation that we will use in this dissertation.

Chapters 3, 4, 5, and 6 (containing the substantial results) can be read essentially

independently of each other; they all use the notation developed in Section 2.1.

Chapter 3 requires the additional notation and results from Section 2.2, Chapter 4

requires the additional notation and results from Sections 2.2 and 2.3, and each of

Chapters 5 and 6 require the additional notation from Section 2.3.

12



CHAPTER 2

NOTATION, CONVENTIONS, AND PRELIMINARY MATERIAL

2.1 Basic definitions, notation, and conventions

In this section, we gather together some of the basic definitions and notation that

we will use. Any additional notation will be defined as it is needed. For graph theory

basics, see e.g. [5], [17].

Let G = (V (G), E(G)) be a finite, undirected graph with no multi-edges. Any

graph named G (or some derivative of G) will always be loopless; any graph named H

(or some derivative of H) may have loops. Throughout we will assume |V (G)| = n.

For v, w in V (G), we write v ∼ w (or v ∼G w to emphasize the graph G) if there is

an edge from v to w, and v � w if there is not. Set N(v) = {x : x ∼ v} (N(v) is the

neighborhood of v). For A,B ⊂ V (G) we use N(A) for ∪v∈AN(v), and write A ∼ B

if a ∼ b for all a ∈ A and b ∈ B.

An independent set I ⊆ V (G) is a set of vertices that spans no edges, and the

size of an independent set is |I|. The number of independent sets of size t in G is

denoted it(G), and the total number of independent sets in G is denoted i(G) (so

i(G) =
∑

t it(G)).

A graph is bipartite if its vertex set can be partitioned as E ∪O so that E and O

are independent sets.

For a vertex v ∈ V (G), we denote the degree of v by d(v) (or dG(v) to emphasize

the graph G). For degrees in graphs H (where loops are allowed), we utilize the

convention that loops count once toward the degree (i.e. d(v) = |N(v)|). The min-
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imum and maximum degrees of graphs G are denoted δ(G) and ∆(G), respectively.

A graph is regular if δ(G) = ∆(G) and d-regular if δ(G) = ∆(G) = d.

We let Kn denote the complete graph on n vertices, Ka,b the complete bipartite

graph with a vertices in one partition class and b vertices in the other partition class

(with the star on n vertices being the special case K1,n−1), Pn the path on n vertices,

and Cn the cycle on n vertices. For m ∈ N we let mG denote the graph consisting of

m disjoint copies of the graph G.

We use G[Y ] to denote the subgraph induced by a subset Y of the vertices, and

E(Y ) to denote the edge set of this subgraph. When appropriate we abuse notation

by failing to distinguish between a graph and the set of vertices of a graph; for

example we will write dY (v) instead of dG[Y ](v).

For t ∈ N and x ∈ R, we let xt indicate the falling power x(x− 1) · · · (x− (t− 1)),

and we let
(
x
t

)
= xt

t!
.

We use the standard Bachmann-Landau notation, with f = o(g) and f = ω(g)

indicating, respectively, that f/g → 0 and f/g → ∞ as some variable (often n)

approaches infinity; f = O(g) and f = Ω(g) indicating, respectively, that |f | < C|g|

and |f | > C|g| for some constant C; and f = Θ(g) indicating that both f = O(g)

and f = Ω(g) hold.

2.2 Definitions, notation, and preliminary material for minimum degree δ graphs

In Chapters 3 and 4, we will be dealing with n-vertex graphs with minimum

degree δ. Here we provide some definitions and structural results that will be used.

For integers δ ≥ 1 and n ≥ 1, we let G(n, δ) denote the set of all graphs on n

vertices with minimum degree δ. For a graph G ∈ G(n, δ), we let V=δ (= V=δ(G))

denote the set of vertices with degree δ, and V>δ (= V>δ(G)) denote the set of vertices

of G with degree larger than δ (so V=δ and V>δ partition V (G)).

A graph G with minimum degree δ is edge-critical (for δ) if for any edge e in G,

14



the minimum degree of G− e is δ − 1. It is vertex-critical (for δ) if for any vertex v

in G, the minimum degree of G − v is δ − 1. If it is both edge- and vertex-critical,

we say that G is critical (for δ).

Edge-critical graphs in G(n, 1) are disjoint unions of stars, and the only critical

graph in G(n, 1) is the matching graph n
2
K2.

We have an inductive decomposition of all edge-critical graphs in G(n, 2).

Lemma 2.2.1. Fix δ = 2. Let G be a n-vertex edge-critical graph. Either

1. G is a disjoint union of cycles or

2. V (G) can be partitioned as Y1 ∪ Y2 with 1 ≤ |Y1| ≤ n − 3 in such a way that Y1

induces a path, Y2 induces a graph with minimum degree 2, each endvertex of the
path induced by Y1 has exactly one edge to Y2, the endpoints of these two edges in
Y2 are either the same or non-adjacent, and there are no other edges from Y1 to
Y2 (see Figure 2.1).

Y2

Y1

Figure 2.1. A example of a path of length 5 (|Y1| = 5) given in Lemma
2.2.1.

Proof. If G is not a disjoint union of cycles, then it has some vertices of degree greater

than 2. If some component contains exactly one such vertex, say v, then by parity

considerations d(v) is even and at least 4. Since all degrees are even, the edge set

in that component may be partitioned into cycles. Take any cycle through v and

remove v from it to get a path whose vertex set can be taken to be Y1.
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Suppose now that some component of G has at least two vertices with degree

larger than 2. Since G is edge-critical, V>δ forms an independent set and so there is a

path on at least 3 vertices joining distinct vertices v1, v2 ∈ V>δ, all of whose internal

vertices u1, . . . , uk have degree 2 (the shortest path joining two vertices in V>δ would

work). We may now take Y1 = {u1, . . . , uk}. Note that the Y2 endpoints (v1 and v2)

of the edges from u1 and uk to Y2 are both in V>δ and so are non-adjacent.

Remark. If we restrict to the subclass of critical graphs in G(n, 2), then we obtain

the same conclusion with 2 ≤ |Y1| ≤ n − 3 (instead of 1 ≤ |Y1| ≤ n − 3). Indeed,

|Y1| = 1 implies that deleting the single vertex in Y1 leaves a graph with minimum

degree 2, which contradicts the assumption that G is vertex-critical.

Corollary 2.2.2. Fix δ = 2. Let G be a n-vertex edge-critical graph. Then G may

be constructed via the following iterative procedure:

• Start with a non-empty collection of disjoint cycles;

• Next, iteratively add a collection paths of length k ≥ 2 which connect to existing
vertices of the graph only at the endpoints of the path;

• Finally, add a collection of paths of length 1 to the graph (all at the same time).

Proof. By Lemma 2.2.1, paths can be removed inductively until a collection of dis-

joint cycles remain, and so we may construct any graph G starting with the cycles.

Reversing this, we may iteratively add paths of length k ≥ 1 to produce G. The

content of this corollary is that G may be constructed by adding all paths of length

k ≥ 2 before the paths of length 1, and the paths of length 1 may all be added at the

same time.

Why is this possible? Adding a path of length 1 creates a vertex of degree 2

adjacent to two vertices of degree at least 3. Since G is edge-critical, no future path

will connect to this vertex of degree 2.
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2.3 Definitions and notation for H-colorings

Chapters 4, 5, and 6 deal with (weighted) H-colorings of certain graphs and classes

of graphs. We provide some notation here.

Recall that for a graph G and a graph (possibly with loops) H an H-coloring of

G (or graph homomorphism) is an edge preserving map from V (G) to V (H). We

emphasize that any definition pertaining to graphs G from Section 2.1 will continue

to hold for graphs H, with the exception that we assume H may have loops and we

assume |V (H)| = q (so, for example, for A,B ⊂ V (H) we let A ∼ B indicate that

a ∼ b for all a ∈ A and b ∈ B). We let Hom(G,H) denote the set of all H-colorings

of G and hom(G,H) = |Hom(G,H)|. We frequently refer to elements of V (H) as

colors, and say that a vertex of G is colored k if its image in the H-coloring under

consideration is k.

The graph HWR will denote the fully looped path on 3 vertices (see the right-hand

side of Figure 1.3) and the graph Hind will denote the graph consisting of an edge

and one looped endvertex (see the right-hand side of Figure 1.4).

From a statistical physics standpoint, there is a very natural family of probability

distributions that can be put on Hom(G,H). Fix a set of positive weights Λ =

{λi : i ∈ V (H)} indexed by the vertices of H. We think of the magnitude of λk as

measuring how likely particle k is to appear at each site. This can be formalized by

giving each f ∈ Hom(G,H) weight wΛ(f) =
∏

v∈V (G) λf(v) and probability

pΛ(f) =
wΛ(f)

ZΛ(G,H)

where ZΛ(G,H) =
∑

f∈Hom(G,H) wΛ(f) is the appropriate normalizing constant or

partition function of the model. When all weights are 1, ZΛ(G,H) = hom(G,H)

and pΛ is uniform measure. In this special case, we will often omit the reference to

Λ (e.g. we will write p(f) for pΛ(f)). Interestingly, several proofs of results about
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unweighted H-colorings (including those in Chapter 5) require passing to the weighted

model first; other examples of this phenomenon may be found in e.g. [39, 41].

For S ⊆ Hom(G,H) and T ⊆ V (H) we write wΛ(S) for
∑

f∈S wΛ(f) and λT for∑
k∈T λk (so if λi = 1 for all i, then wΛ(S) = |S| and λT = |T |). Set

ηΛ(H) = max {λAλB : A,B ⊆ V (H), A ∼ B} .

When λi = 1 for all i, η(H) is (essentially) measuring the size of the largest bipar-

tite subgraph of H, where size is measured by the number of edges; ηΛ(H) is then

measuring the size of the largest weighted bipartite subgraph of H. Set

MΛ(H) =
{

(A,B) ∈ V (H)2 : A ∼ B, λAλB = ηΛ(H)
}

;

in other words,MΛ(H) is counting the number of different realizations of the largest

weighted bipartite subgraph in H.

If G is a regular bipartite graph with fixed bipartition E ∪ O, then given A,B ⊂

V (H) with A ∼ B, a pure-(A,B) coloring is an f ∈ Hom(G,H) with f(u) ∈ A for

all u ∈ E and f(v) ∈ B for all v ∈ O. Notice that if |E| = |O| = k, then there are

ηΛ(H)k pure-(A,B) colorings of G.

In Chapter 6, we’ll focus on H-colorings of the even discrete torus, which is the

graph on vertex set V = {0, 1, . . . ,m − 1}d (for m even and d ≥ 1) with edge set

E consisting of all pairs of strings that differ by exactly 1 (mod m) on exactly one

coordinate. For m ≥ 4 it is 2d-regular and bipartite. In the case m = 2, the even

discrete torus is d-regular and bipartite, and it is isomorphic to the familiar Hamming

cube or discrete hypercube (the graph on vertex set {0, 1}d with edge set consisting

of all pairs of strings that differ on exactly one coordinate). For this special case we

use the more familiar notation Qd.

Section 6.4.2 contains additional technical notation that we use in Chapter 6.
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CHAPTER 3

INDEPENDENT SETS OF A FIXED SIZE

3.1 Introduction and statement of results

Recall that an independent set in a graph G is a set of vertices spanning no edges,

and that i(G) denotes the number of independent sets in G. In [56] this quantity is

referred to as the Fibonacci number of G, motivated by the fact that for the path

graph Pn its value is a Fibonacci number. It has also been studied in the field of

molecular chemistry, where it is referred to as the Merrifield-Simmons index of G

[52].

A natural extremal enumerative question to ask is the following: as G ranges over

some family G, what is the maximum value of i(G), and which graphs G achieve this

maximum?

This question has been addressed for numerous families. Prodinger and Tichy [56]

considered the family of n-vertex trees, and showed that the maximum is uniquely

attained by the star K1,n−1. Kahn [39] considered the family of n-vertex d-regular

bipartite graphs and showed that when 2d|n the maximizing graph is n
2d
Kd,d, the dis-

joint union of n/2d copies of Kd,d; Zhao [67] extended Kahn’s result to the family of

n-vertex d-regular graphs. The family of n-vertex, m-edge graphs was considered by

Cutler and Radcliffe in [15], and they observed that it is a corollary of the Kruskal-

Katona theorem [42, 44] that the lex graph L(n,m) (on vertex set {1, . . . , n}, with

edges being the first m pairs in lexicographic order) maximizes i(G) in this class.

Zykov [69] considered the family of graphs with a fixed number of vertices and fixed
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independence number, and showed that the maximum is attained by the complement

of a certain Turán graph. (Zykov was actually considering cliques in a graph with

given clique number, but by complementation this is equivalent to considering inde-

pendent sets in a graph with given independence number.) Other papers addressing

questions of this kind include [36, 47, 54, 60].

Having resolved the question of maximizing i(G) for G in a particular family, it

is natural to ask which graph maximizes it(G), the number of independent sets of

size t in G, for each possible t. For many families, it turns out that the graph which

maximizes i(G) also maximizes it(G) for all t. Wingard [65] showed this for trees,

Zykov [69] showed this for graphs with a given independence number (see [14] for a

short proof), and Cutler and Radcliffe [14] showed this for graphs on a fixed number

of edges (again, as a corollary of Kruskal-Katona). In [39], Kahn conjectured that

for all 2d|n and all t, no n-vertex, d-regular graph admits more independent sets of

size t than the disjoint union of n/2d copies of Kd,d; this conjecture remains open,

although asymptotic evidence appears in [12].

In this chapter, we consider the family G(n, δ) of n-vertex graphs with minimum

degree δ, and we look at maximizing i(G) and it(G) for graphs in G(n, δ). First, we

consider the extremal problem for i(G). Intuitively, one might imagine that since

removing edges increases the count of independent sets, the graph in G(n, δ) that

maximizes the count of independent sets would be δ-regular (or close to δ-regular),

but this turns out not to be the case. The following result is due to Galvin [27].

Theorem 3.1.1 (Galvin, 2011 [27]). For n ≥ 2 and G ∈ G(n, 1), we have i(G) ≤

i(K1,n−1). For δ ≥ 2, n ≥ 8δ2 and G ∈ G(n, δ), we have i(G) ≤ i(Kδ,n−δ).

What about maximizing it(G) for each t? Unlike the family of n-vertex trees [65],

n-vertex m-edge graphs [14], and n-vertex d-regular graphs (conjectured in [39], with

asymptotic evidence in [12]), the family G(n, δ) is an example of a family for which

the maximizer of the total count is not the maximizer for each individual t. Indeed,
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consider the case t = 2. Maximizing the number of independent sets of size two is the

same as minimizing the number of edges, and it is easy to see that for all fixed δ and

sufficiently large n, there are n-vertex graphs with minimum degree at least δ which

have fewer edges than Kδ,n−δ (consider for example a δ-regular graph, or one which

has one vertex of degree δ + 1 and the rest of degree δ). However, we expect that

anomalies like this occur for very few values of t. Indeed, the following conjecture is

made in [27].

Conjecture 3.1.2 (Galvin, 2011 [27]). For each δ ≥ 1 there is a C(δ) such that for

all t ≥ C(δ), n ≥ 2δ and G ∈ G(n, δ), we have

it(G) ≤ it(Kδ,n−δ) =

(
n− δ
t

)
+

(
δ

t

)
.

The case δ = 1 of Conjecture 3.1.2 is proved in [27], with C(1) as small as it

possible can be, namely C(1) = 3. In [1], Alexander, Cutler and Mink looked at the

subfamily Gbip(n, δ) of bipartite graphs in G(n, δ), and resolved the conjecture in the

strongest possible way for this family.

Theorem 3.1.3 (Alexander, Cutler, Mink 2012 [1]). For δ ≥ 1, n ≥ 2δ, t ≥ 3 and

G ∈ Gbip(n, δ), we have it(G) ≤ it(Kδ,n−δ).

This provides good evidence for the truth of the strongest possible form of Con-

jecture 3.1.2, namely that we may take C(δ) = 3.

We make significant progress towards this strongest possible form of Conjecture

3.1.2. We completely resolve the cases δ = 2 and δ = 3, and for larger δ we deal with

all but a small fraction of cases.

Theorem 3.1.4. 1. For δ = 2, t ≥ 3 and G ∈ G(n, 2), we have it(G) ≤ it(K2,n−2).
For n ≥ 5 and 3 ≤ t ≤ n − 2 we have equality iff G = K2,n−2 or G is obtained
from K2,n−2 by joining the two vertices in the partite set of size 2.
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2. For δ = 3, t ≥ 3 and G ∈ G(n, 3), we have it(G) ≤ it(K3,n−3). For n ≥ 6 and
t = 3 we have equality iff G = K3,n−3; for n ≥ 7 and 4 ≤ t ≤ n − 3 we have
equality iff G is obtained from K3,n−3 by adding some edges inside the partite set
of size 3.

3. For δ ≥ 3, t ≥ 2δ+ 1 and G ∈ G(n, δ), we have it(G) ≤ it(Kδ,n−δ). For n ≥ 3δ+ 1
and 2δ + 1 ≤ t ≤ n − δ we have equality iff G is obtained from Kδ,n−δ by adding
some edges inside the partite set of size δ.

(Note that there is some overlap between parts 2 and 3 above.) Recently, Law and

McDiarmid [45] have found a proof of Conjecture 3.1.2 that holds for all n sufficiently

large, δ = o(n1/3), and t ≥ 3; Theorem 3.1.4 part 3 holds for a larger range of n but

a smaller range of t.

In Section 3.2 we make some easy preliminary observations that will be helpful in

the proof of Theorem 3.1.4. We will prove the case δ = 2 (part 1 of Theorem 3.1.4)

in Section 3.3. We begin Section 3.4 with the proof of part 3 of Theorem 3.1.4, and

then explain how the argument can be improved (within the class of critical graphs).

This improvement is an important ingredient in the proof of the case δ = 3 (part 2

of Theorem 3.1.4) whose proof we present in Section 3.5.

We also note that part 1 of Theorem 3.1.4 provides an alternate proof of the δ = 2

case of the total count of independent sets, originally proved in [27].

Corollary 3.1.5. For n ≥ 4 and G ∈ G(n, 2), we have i(G) ≤ i(K2,n−2). For n = 4

and n ≥ 6 there is equality iff G = K2,n−2.

Proof. The result is trivial for n = 4. For n = 5, it is easily verified by inspection,

and we find that both C5 and K2,3 have the same total number of independent sets.

So we may assume n ≥ 6.

We clearly have i(K ′2,n−2) < i(K2,n−2), where K ′2,n−2 is the graph obtained from

K2,n−2 by joining the two vertices in the partite set of size 2. For all G ∈ G(n, 2)

different from both K2,n−2 and K ′2,n−2, Theorem 3.1.4 part 1 tells us that it(G) ≤

it(K2,n−2)− 1 for 3 ≤ t ≤ n− 2. For t = 0, 1, n− 1 and n we have it(G) = it(K2,n−2)
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(with the values being 1, n, 0 and 0 respectively). We have i2(G) ≤
(
n
2

)
− n (this is

the number of non-edges in a 2-regular graph), and so

i2(G) ≤ i2(K2,n−2) +

(
n

2

)
− n−

(
n− 2

2

)
− 1 = i2(K2,n−2) + n− 4. (3.1)

Putting all this together we get i(G) ≤ i(K2,n−2).

If G is not 2-regular then we have strict inequality in (3.1) and so i(G) < i(K2,n−2).

If G is 2-regular, then (as we will show presently) we have i3(G) < i3(K2,n−2) − 1

and so again i(G) < i(K2,n−2). To see the inequality concerning independent sets

of size 3 note that in any 2-regular graph the number of independent sets of size 3

that include a fixed vertex v is the number of non-edges in the graph induced by the

n− 3 vertices V \ {v, x, y} (where x and y are the neighbors of v), which is at most(
n−3

2

)
− (n− 4). It follows that

i3(G) ≤ 1

3

(
n

((
n− 3

2

)
− (n− 4)

))
<

(
n− 2

3

)
− 1.

We also obtain some results in the range where n < 2δ. Note that in the range

n ≥ 2δ we (conjecturally) maximize the count of independent sets by extracting as

large an independent set as possible (one of size n − δ). In the range n < 2δ this

is still the largest independent set size, but now it is possible to have many disjoint

independent sets of this size. The following conjecture seems quite reasonable.

Conjecture 3.1.6. For δ ≥ 1, δ + 1 ≤ n ≤ 2δ, and G ∈ G(n, δ), we have i(G) ≤

i(Kn−δ,n−δ,...,n−δ,x), where 0 ≤ x < n− δ satisfies n ≡ x (mod n− δ).

When n− δ divides n (that is, x = 0), we prove Conjecture 3.1.6 and answer the

related question for it(G) for every t.
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Theorem 3.1.7. For δ ≥ 1, δ + 1 ≤ n ≤ 2δ with (n− δ)|n, t ∈ Z, and G ∈ G(n, δ),

we have i(G) ≤ i(Kn−δ,n−δ,...,n−δ) and it(G) ≤ it(Kn−δ,n−δ,...,n−δ).

The case n = 2δ was originally proved in [1]. Our proof of Theorem 3.1.7 is a

consequence of an upper bound on it(G) for any G ∈ G(n, δ) and will be given in the

discussion around (3.2).

3.2 Preliminary observations

For integers n, δ and t, let P (n, δ, t) denote the statement that for every G ∈

G(n, δ), we have it(G) ≤ it(Kδ,n−δ). An important observation is that if we prove

P (n, δ, t) for some triple (n, δ, t) with t ≥ δ + 1, we automatically have P (n, δ, t+ 1).

The proof introduces the important idea of considering ordered independent sets, that

is, independent sets in which an order is placed on the vertices.

Lemma 3.2.1. For δ ≥ 2 and t ≥ δ + 1, if G ∈ G(n, δ) satisfies it(G) ≤ it(Kδ,n−δ)

then it+1(G) ≤ it+1(Kδ,n−δ). Moreover, if t < n − δ and it(G) < it(Kδ,n−δ) then

it+1(G) < it+1(Kδ,n−δ).

Corollary 3.2.2. For δ ≥ 2 and t ≥ δ + 1, P (n, δ, t)⇒ P (n, δ, t+ 1).

Proof. Fix G ∈ G(n, δ). By hypothesis, the number of ordered independent sets in G

of size t is at most (n− δ)t. For each ordered independent set of size t in G there are

at most n− (t+ δ) vertices that can be added to it to form an ordered independent

set of size t+1 (no vertex of the independent set can be chosen, nor can any neighbor

of any particular vertex in the independent set; see Figure 3.1).

This leads to a bound on the number of ordered independent sets in G of size

t + 1 of (n − δ)t(n − (t + δ)) = (n − δ)t+1. Dividing by (t + 1)!, we find that

it+1(G) ≤
(
n−δ
t+1

)
= it+1(Kδ,n−δ).

If we have it(G) <
(
n−δ
t

)
then we have strict inequality in the count of ordered

independent sets of size t, and so also as long as n − (δ + t) > 0 we have strict
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v1

v2 v3

· · ·
vt

Figure 3.1. An illustration of the restrictions when adding a vertex to the
ordered independent set (v1, v2, v3 . . . , vt).

inequality in the count for t+ 1, and so it+1(G) <
(
n−δ
t+1

)
.

Given Corollary 3.2.2, in order to prove P (n, δ, t) for all t ≥ t(δ) it will be enough

to prove P (n, δ, t(δ)). Many of our proofs will be by induction on n, and will be

considerably aided by the following simple observation.

Lemma 3.2.3. Fix t ≥ 3. Suppose we know P (n−1, δ, t), and let G ∈ G(n, δ) be such

that there is v ∈ V (G) with G− v ∈ G(n− 1, δ) (i.e. G− v has minimum degree δ).

Then it(G) ≤ it(Kδ,n−δ). Equality can only occur if all of 1) it(G− v) = it(Kδ,n−1−δ),

2) G− v −N(v) is empty (has no edges), and 3) d(v) = δ hold.

Proof. Counting first the independent sets of size t in G that do not include v and

then those that do, and bounding the former by our hypothesis on P (n− 1, δ, t) and

the latter by the number of subsets of size t− 1 in G− v −N(v), we have (with Ek

the empty graph on k vertices)

it(G) = it(G− v) + it−1(G− v −N(v))

≤ it(Kδ,n−1−δ) + it−1(En−1−d(v))

=

(
n− 1− δ

t

)
+

(
δ

t

)
+

(
n− 1− δ
t− 1

)
=

(
n− δ
t

)
+

(
δ

t

)
= it(Kδ,n−δ).

The statement concerning equality is evident.
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Lemma 3.2.3 allows us to focus on graphs with the property that each vertex has

a neighbor of degree δ. Another simple lemma further restricts the graphs that must

be considered.

Lemma 3.2.4. If G′ is obtained from G by deleting edges, then for each t we have

it(G) ≤ it(G
′).

Lemmas 3.2.3 and 3.2.4 allow us to concentrate mostly on critical graphs. In

Section 2.2 (specifically Lemma 2.2.1) we obtained structural information about crit-

ical graphs in the case δ = 2, while much of Section 3.5 is concerned with the same

problem for δ = 3.

By imagining counting ordered independent sets first, an easy upper bound on

the number of independent sets of size t ≥ 2 in a graph with minimum degree δ is

it(G) ≤ n(n− (δ + 1))(n− (δ + 2)) · · · (n− (δ + (t− 1)))

t!
. (3.2)

This bound assumes that each vertex has degree δ, and moreover that all of the

vertices in any independent set share the same δ neighbors. This upper bound is in

fact tight in the situation of Theorem 3.1.7 (and is the proof of the theorem), but is

not tight in general.

We will obtain better upper bounds by considering more carefully when these two

conditions actually hold, as having many vertices which share the same neighborhood

forces those vertices in the neighborhood to have large degree (when n ≥ 2δ). Most

of the proofs proceed by realizing that a critical graph must have at least one of a

small list of different structures in it, and we exploit the presence of a structure to

significantly dampen the easy upper bound in (3.2).
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3.3 Proof of Theorem 3.1.4, part 1 (δ = 2)

Recall that we want to show that for δ = 2, t ≥ 3 and G ∈ G(n, 2), we have

it(G) ≤ it(K2,n−2), and that for n ≥ 5 and 3 ≤ t ≤ n − 2 we have equality iff

G = K2,n−2 or K ′2,n−2 (obtained from G by joining the two vertices in the partite set

of size 2). We concern ourselves initially with the inequality, and discuss the cases of

equality at the end. By Corollary 3.2.2, it is enough to consider t = 3, and we will

prove this case by induction on n, the base cases n ≤ 5 being trivial. So from here on

we assume that n > 5 and that P (m, 2, 3) has been established for all m < n, and let

G ∈ G(n, 2) be given. By Lemmas 3.2.3 and 3.2.4 we may assume that G is critical.

We first state a well-known lemma (see e.g. [35]).

Lemma 3.3.1. Let k ≥ 1 and 0 ≤ t ≤ k + 1. In the k-path Pk we have

it(Pk) =

(
k + 1− t

t

)
.

Let k ≥ 3 and 0 ≤ t ≤ k − 1. In the k-cycle Ck we have

it(Ck) =

(
k − t
t

)
+

(
k − t− 1

t− 1

)
.

Armed with Lemmas 3.3.1 and 2.2.1 (in particular the remark following Lemma

2.2.1) we now show that for critical G we have

i3(G) < i3(K2,n−2) =

(
n− 2

3

)
.

If G is the n-cycle, then we are done by Lemma 3.3.1. If G is a disjoint union of

cycles, then choose one such, of length k, and call its vertex set Y1, and let Y2 = V \Y1.

We will count the number of independent sets of size 3 in G by considering how the

independent set splits across Y1 and Y2.
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By Lemma 3.3.1, there are
(
k−3

3

)
+
(
k−4

2

)
independent sets of size 3 in Y1 (note

that this is still a valid upper bound when k = 3), and by induction there are at most(
n−k−2

3

)
independent sets of size 3 in Y2. There are

((
k−1

2

)
− 1
)

(n− k) independent

sets with two vertices in Y1 and one in Y2 (the first factor here simply counting the

number of non-edges in a k-cycle). Finally, there are k
((
n−k−1

2

)
− 1
)

independent

sets with one vertex in Y1 and two in Y2 (the second factor counting the number of

non-edges in a 2-regular graph on n− k vertices). The sum of these bounds is easily

seen to be
(
n−2

3

)
− k, so strictly smaller than

(
n−2

3

)
.

We may now assume that G is not 2-regular. Let Y1 be as constructed in Lemma

2.2.1. Since we are considering critical G, by the remark following Lemma 2.2.1 we

may assume that |Y1| ≥ 2. Denote by v1, v2 the neighbors in Y2 of the endpoints of

the path. Note that it is possible that v1 = v2, but if not then by Lemma 2.2.1 we

have v1 � v2. We will again upper bound i3(G) by considering the possible splitting

of independent sets across Y1 and Y2.

By Lemma 3.3.1, there are
(
k−2

3

)
independent sets of size 3 in Y1, and by induction

there are at most
(
n−k−2

3

)
independent sets of size 3 in Y2.

The number of independent sets of size 3 in G that have two vertices in Y1 and

one in Y2 is at most

(
k − 3

2

)
(n− k) +

((
k − 1

2

)
−
(
k − 3

2

))
(n− k − 1). (3.3)

The first term above counts those independent sets in which neither endpoint of the

k-path is among the two vertices from Y1, and uses Lemma 3.3.1. The second term

upper bounds the number of independent sets in which at least one endpoint of the

k-path is among the two vertices from Y1, and again uses Lemma 3.3.1. (Note that

when k = 2 the application of Lemma 3.3.1 is not valid, since when we remove the

endvertices we are dealing with a path of length 0, outside the range of validity of
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the lemma; however, the bound in (3.3) is valid for k = 2 since it equals 1 in this

case.) Finally, the number of independent sets of size 3 in G that have one vertex in

Y1 and two in Y2 is at most

(
(k − 2)

((
n− k

2

)
− |E(Y2)|

))
+

2∑
i=1

((
n− k − 1

2

)
− |E(Y2)|+ dY2(vi)

)
.

The first term here counts the number of independent sets in which the one vertex

from Y1 is not an endvertex, the second factor being simply the number of non-edges

in G[Y2]. The second term counts those with the vertex from Y1 being the neighbor

of vi, the second factor being the number of non-edges in G[Y2]− vi.

The sum of all of these bounds, when subtracted from
(
n−2

3

)
, simplifies to

− (k − 1)n+ k2 + k − 3 + k|E(Y2)| − dY2(v1)− dY2(v2), (3.4)

a quantity which we wish to show is strictly positive.

Suppose first that Y1 can be chosen so that v1 6= v2. Recall that in this case

v1 � v2, so dY2(v1) + dY2(v2) ≤ |E(Y2)|. Combining this with |E(Y2)| ≥ n− k we get

that (3.4) is at most 2k − 3, which is indeed strictly positive for k ≥ 2.

If v1 = v2 = v, then we first note that

|E(Y2)| = 1

2

∑
w∈Y2

dY2(w) ≥ dY2(v)

2
+ (n− k − 1)

(since G[Y2] has minimum degree 2). Inserting into (3.4) we find that (3.4) is at most

n− 3 +

(
k

2
− 2

)
dY2(v). (3.5)

This is clearly strictly positive for k ≥ 4, and for k = 3 strict positivity follows from

dY2(v) < 2(n− 3), which is true since in fact dY2(v) < n− 3 in this case.
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If k = 2, then (3.5) is strictly positive unless dY2 = n − 3 (the largest possible

value it can take in this case). There is just one critical graph G with the property

that for all possible choices of Y1 satisfying the conclusions of Lemma 2.2.1 (and the

subsequent remark) we have |Y1| = 2, v1 = v2 = v and dY2(v) = n − 3; this is the

windmill graph (see Figure 3.2) consisting of (n− 1)/2 triangles with a single vertex

in common to all the triangles, and otherwise no overlap between the vertex sets

(note that the degree condition on v forces G to be connected). A direct count gives

(n − 1)(n − 3)(n − 5)/6 <
(
n−2

3

)
independent sets of size 3 in this particular graph.

··
·

Figure 3.2. The windmill graph.

This completes the proof that it(G) ≤ it(K2,n−2) for all t ≥ 3 and G ∈ G(n, 2).

We now turn to considering the cases where equality holds in the range n ≥ 5 and

3 ≤ t ≤ n − 2. For t = 3 and n = 5, by inspection we see that we have equality

iff G = K2,3 or K ′2,3 (obtained from K2,3 by adding an edge inside the partite set of

size 2). For larger n, we prove by induction that equality can be achieved only for

these two graphs. If a graph G is not edge-critical, we delete edges until we obtain

a graph G′ which is edge-critical, using Lemma 3.2.4 to get it(G) ≤ it(G
′). If G′ is
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critical, then the discussion in this section shows that we cannot achieve equality. If

G′ is not vertex-critical, Lemma 3.2.3 and our induction hypothesis shows that we

only achieve equality for G′ if there is v ∈ V (G′) with G′ − v = K2,n−3 or K ′2,n−3,

G′ − v − N(v) empty, and d(v) = 2. First, notice that G′ − v = K ′2,n−3 implies

that G′ is not edge-critical, so equality can only occur when G′ − v = K2,n−3. If

G′ − v = K2,n−3, the second and third conditions tell us that N(v) is exactly the

partite set of size 2 in K2,n−3, that is, that G′ = K2,n−2. From here it is evident that

equality can only occur for G = K2,n−2 or K ′2,n−2.

Now for each fixed n ≥ 5, we conclude from Lemma 3.2.1 that for 3 ≤ t ≤ n− 2

we cannot have equality unless G = K2,n−2 or K ′2,n−2; and since the equality is trivial

for these two cases, the proof is complete.

3.4 Proof of Theorem 3.1.4 part 3 (δ ≥ 3)

Throughout this section we set h = |V>δ| and ` = |V=δ|; note that h + ` = n.

We begin this section with the proof of Theorem 3.1.4 part 3; we then show how the

method used may be improved to obtain a stronger result within the class of critical

graphs (Lemma 3.4.1 below), a result which will play a role in the proof of Theorem

3.1.4, part 2 (δ = 3) that will be given in Section 3.5.

Recall that we are trying to show that for δ ≥ 3, t ≥ 2δ + 1 and G ∈ G(n, δ), we

have it(G) ≤ it(Kδ,n−δ), and that for n ≥ 3δ + 1 and 2δ + 1 ≤ t ≤ n − δ there is

equality iff G is obtained from Kδ,n−δ by adding some edges inside the partite set of

size δ. As with Theorem 3.1.4 part 1 we begin with the inequality and discuss cases

of equality at the end.

By Corollary 3.2.2 it is enough to consider t = 2δ+ 1. We prove P (n, δ, 2δ+ 1) by

induction on n. For n < 3δ+ 1 the result is trivial, since in this range all G ∈ G(n, δ)

have it(G) = 0. It is also trivial for n = 3δ + 1, since the only graphs G in G(n, δ)

with it(G) > 0 in this case are those that are obtained from Kδ,n−δ by the addition of

31



some edges inside the partite set of size δ, and all such G have it(G) = 1 = it(Kδ,n−δ).

So from now on we assume n ≥ 3δ+ 2 and that P (m, δ, 2δ+ 1) is true for all m < n,

and we seek to establish P (n, δ, 2δ + 1).

By Lemmas 3.2.3 and 3.2.4 we may restrict attention to G which are critical (for

minimum degree δ). To allow the induction to proceed, we need to show that the

number of ordered independent sets of size 2δ + 1 in G is at most (n− δ)2δ+1.

We partition ordered independent sets according to whether the first vertex is in

V>δ or in V=δ. In the first case (first vertex in V>δ) there are at most

h(n− (δ + 2))(n− (δ + 3)) · · · (n− (3δ + 1)) =
h

n

(
n(n− (δ + 2))2δ

)
<

h

n
(n− δ)2δ+1 (3.6)

ordered independent sets of size 2δ + 1, since once the first vertex has been chosen

there are at most n− (δ + 2) choices for the second vertex, then at most n− (δ + 3)

choices for the third, and so on.

In the second case (first vertex in V=δ) there are at most

`(n− (δ + 1))(n− (δ + 2)) · · · (n− 2δ)

ways to choose the first δ + 1 vertices in the ordered independent set. The key

observation now is that since G is vertex-critical there can be at most δ − 1 vertices

distinct from v with the same neighborhood as v, where v is the first vertex of the

ordered independent set. It follows that one of choices 2 through δ has a neighbor

w outside of N(v). Since w cannot be included in the independent set, there are at

most

(n− (2δ + 2))(n− (2δ + 3)) · · · (n− (3δ + 1))
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choices for the final δ vertices. Combining these bounds, there are at most

`

n

(
n

(n− (δ + 1))2δ+1

n− (2δ + 1)

)
<
`

n
(n− δ)2δ+1

ordered independent sets of size 2δ+1 that begin with a vertex from V=δ. Combining

with (3.6) we get i2δ+1(G) < (n−δ)2δ+1

(2δ+1)!
, as required.

This completes the proof that it(G) ≤ it(Kδ,n−δ) for all t ≥ 2δ+1 and G ∈ G(n, δ).

We now turn to considering the cases where equality holds in the range n ≥ 3δ + 1

and 2δ + 1 ≤ t ≤ n − δ. For t = 2δ + 1 and n = 3δ + 1, we clearly have equality

iff G is obtained from Kδ,2δ+1 by adding some edges inside the partite set of size δ.

For larger n, we prove by induction that equality can be achieved only for a graph of

this form. If a graph G is not edge-critical, we delete edges until we obtain a graph

G′ which is edge-critical, using Lemma 3.2.4 to get it(G) ≤ it(G
′). If G′ is critical,

then the discussion in this section shows that we cannot achieve equality. If G′ is not

vertex-critical, Lemma 3.2.3 and our induction hypothesis shows that we only achieve

equality for G′ if there is v ∈ V (G′) with G′ − v obtained from Kδ,n−δ−1 by adding

some edges inside the partite set of size δ, G′− v−N(v) empty, and d(v) = δ. First,

notice that the cases where G′−v 6= Kδ,n−δ−1 imply that G′ is not edge-critical, so in

fact equality can only occur when G′−v = Kδ,n−δ−1. Since d(v) = δ the neighborhood

of v cannot include all of the partite set of size n−1− δ. If it fails to include a vertex

of the partite set of size δ, there must be an edge in G− v−N(v); so in fact, N(v) is

exactly the partite set of size δ and G′ = Kδ,n−δ. From here it is evident that equality

can only occur for G obtained from Kδ,n−δ by adding some edges inside the partite

set of size δ.

Now for each fixed n ≥ 3δ + 1, we conclude from Lemma 3.2.1 that for 2δ + 1 ≤

t ≤ n− δ we cannot have equality unless G is obtained from Kδ,n−δ by adding some

edges inside the partite set of size δ; and since the equality is trivial in these cases,
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the proof is complete.

The ideas introduced here to bound the number of ordered independent sets in a

critical graph can be modified to give a result that covers a slightly larger range of t,

at the expense of requiring n to be a little larger. Specifically we have the following.

Lemma 3.4.1. For all δ ≥ 3, t ≥ δ + 1, n ≥ 3.2δ and vertex-critical G ∈ G(n, δ),

we have it(G) < it(Kδ,n−δ). For δ = 3 and t = 4 we get the same conclusion for

vertex-critical G ∈ G(n, 3) with n ≥ 8.

Remark. The constant 3.2 has not been optimized here, but rather chosen for conve-

nience.

Proof. By Lemma 3.2.1 it is enough to consider t = δ + 1. The argument breaks

into two cases, depending on whether G has at most δ− 2 vertices with degree larger

than m (a parameter to be specified later), or at least δ− 1. The intuition is that in

the former case, after an initial vertex v has been chosen for an ordered independent

set, many choices for the second vertex should have at least two neighbors outside of

N(v), which reduces subsequent options, whereas in the latter case, an initial choice

of one of the at least δ − 1 vertices with large degree should lead to few ordered

independent sets.

First suppose that G has at most δ − 2 vertices with degree larger than m. Just

as in (3.6), a simple upper bound on the number of ordered independent sets of size

t whose first vertex is in V>δ is

h

n
(n(n− (δ + 2))(n− (δ + 3)) · · · (n− (2δ + 1))) <

h

n
(n− δ)δ+1. (3.7)

There are ` choices for the first vertex v of an ordered independent set that begins

with a vertex from V=δ. For each such v, we consider the number of extensions to an
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ordered independent set of size δ + 1. This is at most

x(n− (δ + 2))δ−1 + y(n− (δ + 3))δ−1 + z(n− (δ + 4))δ−1 (3.8)

where x is the number of vertices in V (G) \ ({v} ∪ N(v)) that have no neighbors

outside N(v), y is the number with one neighbor outside N(v), and z is the number

with at least 2 neighbors outside N(v). Note that x+ y+ z = n− δ− 1, and that by

vertex-criticality x ≤ δ − 1.

Let u1 and u2 be the two lowest degree neighbors of v. By vertex-criticality and

our assumption on the number of vertices with degree greater than m, the sum of

the degrees of u1 and u2 is at most δ + m. Each vertex counted by y is adjacent to

either u1 or u2, so counting edges out of u1 and u2 there are at most m+ δ − 2x− 2

such vertices.

For fixed x we obtain an upper bound on (3.8) by taking y as large as possible,

so we should take y = m+ δ− 2x− 2 and z = n−m− 2δ+x+ 1. With these choices

of y and z, a little calculus shows us that we obtain an upper bound by taking x as

large as possible, that is, x = δ − 1. This leads to an upper bound on the number of

ordered independent sets of size t whose first vertex is in V=δ of

`


(δ − 1)(n− (δ + 2))δ−1+

(m− δ)(n− (δ + 3))δ−1+

(n−m− δ)(n− (δ + 4))δ−1

 .

Combining with (3.7) we see that are done (for the case G has at most δ− 2 vertices

with degree larger than m) as long as we can show that the expression above is strictly
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less than `(n− δ)δ+1/n, or equivalently that

n


(δ − 1)(n− (δ + 2))(n− (δ + 3))+

(m− δ)(n− (δ + 3))(n− (2δ + 1))+

(n−m− δ)(n− (2δ + 1))(n− (2δ + 2))

 < (n− δ)4 . (3.9)

We will return to this presently; but first we consider the case where G has at

least δ − 1 vertices with degree larger than m. An ordered independent set of size

δ + 1 in this case either begins with one of δ − 1 vertices of largest degree, in which

case there are strictly fewer than (n −m − 1)δ extensions, or it begins with one of

the remaining n − δ + 1 vertices. For each such vertex v in this second case, the

second vertex chosen is either one of the k = k(v) ≤ δ−1 vertices that have the same

neighborhood as v, in which case there are at most (n− (δ + 2))δ−1 extensions, or it

is one of the n−d(v)−1−k vertices that have a neighbor that is not a neighbor of v,

in which case there are at most (n− (δ + 3))δ−1 extensions. We get an upper bound

on the total number of extensions in this second case (starting with a vertex not

among the δ − 1 of largest degree) by taking k as large as possible and d(v) as small

as possible; this leads to a strict upper bound on the number of ordered independent

sets of size δ+ 1 in the case G has at least δ−1 vertices with degree larger than m of

(δ − 1)(n−m− 1)δ + (n− δ + 1)

 (δ − 1)(n− (δ + 2))δ−1+

(n− 2δ)(n− (δ + 3))δ−1

 .

We wish to show that this is at most (n−δ)δ+1. As long as m ≥ δ we have n−m−i ≤

n− δ − i, and so what we want is implied by


(δ − 1)(n−m− 1)(n−m− 2)+

(n− δ + 1)(δ − 1)(n− (δ + 2))+

(n− δ + 1)(n− 2δ)(n− (2δ + 1))

 ≤ (n− δ)3. (3.10)
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Setting m = n/2, we find that for δ ≥ 3, both (3.9) and (3.10) hold for all

n ≥ 3.2δ. Indeed, in both cases at n = 3.2δ the right-hand side minus the left-hand

side is a polynomial in δ (a quartic in the first case and a cubic in the second) that is

easily seen to be positive for all δ ≥ 3; and in both cases we can check that for each

fixed δ ≥ 3, when viewed as a function of n the right-hand side minus the left-hand

side has positive derivative for all n ≥ 3.2δ. This completes the proof of the first

statement. It is an easy check that both (3.9) and (3.10) hold for all n ≥ 8 in the

case δ = 3, completing the proof of the lemma.

3.5 Proof of Theorem 3.1.4 part 2 (δ = 3)

Recall that we are trying to show that for δ = 3, t ≥ 3 and G ∈ G(n, 3), we have

it(G) ≤ it(K3,n−3), and that for n ≥ 6 and t = 3 we have equality iff G = K3,n−3,

while for n ≥ 7 and 4 ≤ t ≤ n− 3 we have equality iff G is obtained from K3,n−3 by

adding some edges inside the partite set of size 3.

For t = 4 and n ≥ 7 we prove the result (including the characterization of

uniqueness) by induction on n, with the base case n = 7 trivial. For n ≥ 8, Lemma

3.4.1 gives strict inequality for all vertex-critical G, so we may assume that we are

working with a G which is non-vertex-critical. Lemma 3.2.3 now gives the inequality

i4(G) ≤ i4(K3,n−3), and the characterization of cases of inequality goes through

exactly as it did for Theorem 3.1.4 parts 1 and 3. The result for larger t (including

the characterization of uniqueness) now follows from Lemma 3.2.1.

For t = 3, we also argue by induction on n, with the base case n = 6 trivial. For

n ≥ 7, if G is not vertex-critical then the inequality i3(G) ≤ i3(K3,n−3) follows from

Lemma 3.2.3, and the fact that there is equality in this case only for G = K3,n−3

follows exactly as it did in the proofs of Theorem 3.1.4 parts 1 and 3. So we may

assume that G is vertex-critical. We will also assume that G is edge-critical (this

assumption is justified because in what follows we will show i3(G) < i3(K3,n−3), and
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restoring the edges removed to achieve edge-criticality maintains the strictness of the

inequality). Our study of critical 3-regular graphs will be based on a case analysis

that adds ever more structure to the G under consideration. A useful preliminary

observation is the following.

Lemma 3.5.1. Fix δ = 3. If a critical graph G has a vertex w of degree n − 3 or

greater, then i3(G) < i3(K3,n−3).

Proof. If d(w) > n − 3 then there are no independent sets of size 3 containing w,

and by Theorem 3.1.4 part 1 the number of independent sets of size 3 in G − w (a

graph of minimum degree 2) is at most
(
n−3

3

)
< i3(K3,n−3). If d(w) = n− 3 and the

two non-neighbors of w are adjacent, then we get the same bound. If they are not

adjacent (so there is one independent set of size 3 containing w) and G − w is not

extremal among minimum degree 2 graphs for the count of independent sets of size

3, then we also get the same bound, since now i3(G − w) ≤
(
n−3

3

)
− 1. If G − w

is extremal it is either K2,n−3 or K ′2,n−3, and in either case w must be adjacent to

everything in the partite set of size n− 3 (to ensure that G has minimum degree 3),

and then, since the non-neighbors of w are non-adjacent, it must be that G = K3,n−3,

a contradiction since we are assuming that G is critical.

3.5.1 Regular G

If G is 3-regular then we have i3(G) <
(
n−3

3

)
+ 1. We see this by considering

ordered independent sets of size 3. Given an initial vertex v, we extend to an ordered

independent set of size 3 by adding ordered non-edges from V \(N(v)∪{v}). SinceG is

3-regular there are 3n ordered edges in total, with at most 18 of them adjacent either

to v or to something in N(v). This means that the number of ordered independent

sets of size 3 in G is at most

n((n− 4)(n− 5)− (3n− 18)) < (n− 3)(n− 4)(n− 5) + 6
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with the inequality valid as long as n ≥ 7. So from here on we may assume that G

is not 3-regular, or equivalently that V>3 6= ∅.

Remark. The argument above generalizes to show that δ-regular graphs have at most(
n−δ

3

)
+
(
δ
3

)
independent sets of size 3, with equality only possible when n = 2δ.

Let v ∈ V (G) have a neighbor in V>δ. By criticality d(v) = 3. Let w1, w2, and w3

be the neighbors of v, listed in decreasing order of degree, so d(w1) = d, d(w2) = x

and d(w3) = 3 satisfy 3 ≤ x ≤ d ≤ n− 4 (the last inequality by Lemma 3.5.1) as well

as d > 3 (see Figure 3.3).

v

w1 with degree d > 3

w2 with degree 3 ≤ x ≤ d

w3 with degree 3

Figure 3.3. The generic situation from the end of Section 3.5.1 on.

3.5.2 No edge between w3 and w2

We now precede by a case analysis that depends on the value of x as well as on

the set of edges present among the wi’s. The first case we consider is w3 � w2. In

this case we give upper bounds on the number of independent sets of size 3 which

contain v and the number which do not. There are
(
n−4

2

)
− |E(Y )| independent sets

of size 3 which include v, where Y = V \ (N(v) ∪ {v}). We lower bound |E(Y )| by

lower bounding the sum of the degrees in Y and then subtracting off the number of
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edges from Y to {v} ∪N(v). This gives

|E(Y )| ≥ 3(n− 4)− 2− (d− 1)− (x− 1)

2
=

3(n− 4)− x− d
2

. (3.11)

To bound the number of independent sets of size 3 which don’t include v, we begin

by forming G′ from G by deleting v and (to restore minimum degree 3) adding an

edge between w3 and w2 (we will later account for independent sets that contain both

w2 and w3). The number of independent sets of size 3 in G′ is, by induction, at most

i3(K3,n−4). But in fact, we may assume that the count is strictly smaller than this.

To see this, note that if we get exactly i3(K3,n−4) then by induction G′ = K3,n−4. For

n = 7 this forces G to have a vertex of degree 4 and so i3(G) < i3(K3,4) by Lemma

3.5.1. For n > 7, w3 must be in the partite set of size n− 4 in G′ (to have degree 3)

so since w2 ∼ w3 (in G′), w2 must be in the partite set of size 3. To avoid creating a

vertex of degree n− 3 in G, w1 must be in the partite set of size n− 4. But then all

other vertices in the partite set of size n− 4 only have neighbors of degree n− 4 (in

G), contradicting criticality.

So we may now assume that the number of independent sets of size 3 in G which

do not include v is at most

(
n− 4

3

)
+ (n− x− 2), (3.12)

the extra n− x− 2 being an upper bound on the number of independent sets of size

3 that include both w3 and w2. Combining (3.11) and (3.12) we find that in this case

i3(G) ≤
(
n− 4

2

)
− 3(n− 4)− x− d

2
+

(
n− 4

3

)
+ (n− x− 2). (3.13)

As long as d < n + x − 6 this is strictly smaller that i3(K3,n−3). Since x ≥ 3 and

d < n− 3, this completes the case w3 � w2.
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3.5.3 Edge between w3 and w2, no edge between w3 and w1, degree of w2 large

The next case we consider is w3 ∼ w2, w3 � w1, and x > 3. In this case we

can run an almost identical the argument to that of Section 3.5.2, this time adding

the edge from w1 to w3 when counting the number of independent sets of size 3 that

don’t include v. We add 1 to the right-hand side of (3.11) (to account for the fact

that there is now only one edge from w3 to Y instead of 2, and only x − 2 from w2

to Y instead of x − 1) and replace (3.12) with
(
n−4

3

)
+ 1 + (n − d − 2) (the 1 since

in this case we do not need strict inequality in the induction step). Upper bounding

−d in this latter expression by −x, we get the same inequality as (3.13).

3.5.4 Edge between w3 and w2, edge between w3 and w1, degree of w2 large

Next we consider the case w3 ∼ w2, w3 ∼ w1, and x > 3. Here we must have

w1 � w2, since otherwise G would not be edge-critical. The situation is illustrated

in Figure 3.4. To bound i3(G), we consider v and w3. Arguing as in Section 3.5.2

w3 w2

v w1

Figure 3.4. The situation in Section 3.5.4.
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(around (3.11)), the number of independent sets including one of v, w3 is at most

2

((
n− 4

2

)
− 3(n− 4)− (d− 2)− (x− 2)

2

)

To obtain an upper bound on the number of independent sets including neither v nor

w3, we delete both vertices, add an edge from w1 to w2 (to restore minimum degree

3) and use induction to get a bound of

(
n− 5

3

)
+ 1 + (n− d− 2)

(where the n− d− 2 bounds the number of independent sets containing both w1 and

w2). Since x ≤ n− 2 the sum of these two bound is strictly smaller than i3(K3,n−3).

3.5.5 None of the above

If there is no v of degree 3 that puts us into one of the previous cases, then every

v of degree 3 that has a neighbor w1 of degree strictly greater than 3 may be assumed

to have two others of degree 3, w2 and w3 say, with vw2w3 a triangle (see Figure 3.5).

v

w1

w2

w3

Figure 3.5. The situation in Section 3.5.5.
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Since every neighbor of a vertex of degree greater than 3 has degree exactly 3 (by

criticality) it follows that for every w1 of degree greater than 3, every neighbor of w1

is a vertex of a triangle all of whose vertices have degree 3. We claim that two of

these triangles must be vertex disjoint. Indeed, if w1 has two neighbors a and b with

a ∼ b then the triangles associated with a and b must be the same, and by considering

degrees we see that the triangle associated with any other neighbor of w1 must be

vertex disjoint from it. If a and b are not adjacent and their associated triangles

have no vertex in common, then we are done; but if they have a vertex in common

then (again by considering degrees) they must have two vertices in common, and the

triangle associated with any other neighbor of w1 must be vertex disjoint from both.

By suitable relabeling, we may therefore assume that G has distinct vertices w1

(of degree greater than 3) and x, y2, y3, v, w2 and w3 (all of degree 3), with x and v

adjacent to w1, and with xy2y3 and vw2w3 forming triangles (see Figure 3.6). By

considering degrees, we may also assume that the wi’s and yi’s are ordered so that

wi � yi for i = 1, 2.

v

w1

w2

w3

x
y2

y3

Figure 3.6. The forced structure in Section 3.5.5, before modification.
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From G we create G′ by removing the edges w2w3 and y2y3, and adding the edges

w2y2 and w3y3 (see Figure 3.7). We will argue that i3(G) ≤ i3(G′); but then by

the argument of Section 3.5.2 we have i3(G′) < i3(K3,n−3), and the proof will be

complete.

v

w1

w2

w3

x
y2

y3

Figure 3.7. The forced structure in Section 3.5.5, after modification (i.e. in
G′).

Independent sets of size 3 in G partition into Iw2y2 (those containing both w2

and y2, and so neither of y3, w3), Iw3y3 (containing both w3 and y3), and Irest, the

rest. Independent sets of size 3 in G′ partition into I ′w2w3
, I ′y2y3

, and I ′rest. We have

|Irest| = |I ′rest| (in fact Irest = I ′rest). We will show i3(G) ≤ i3(G′) by exhibiting an

injection from Iw2y2 into I ′w2w3
and one from Iw3y3 into I ′y2y3

.

If it happens that for every independent set {w2, y2, a} in G, the set {w2, w3, a} is

also an independent set in G′, then we have a simple injection from Iw2y2 into I ′w2w3
.

There is only one way it can happen that {w2, y2, a
′} is an independent set in G but
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{w2, w3, a
′} is not one in G′; this is when a′ is the neighbor of w3 that is not v or w2.

If {w2, y2, a
′} is indeed an independent set in G in this case, then letting b′ be the

neighbor of y2 that is not x or y3, we find that {w2, w3, b
′} is an independent set in

G′, but {w2, y2, b
′} is not one in G. So in this case we get an injection from Iw2y2 into

I ′w2w3
by sending {w2, y2, a} to {w2, w3, a} for all a 6= a′, and sending {w2, y2, a

′} to

{w2, w3, b
′}. The injection from Iw3y3 into I ′y2y3

is almost identical and we omit the

details.
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CHAPTER 4

EXTREMAL H-COLORINGS

4.1 Introduction and statement of results

Fix a graph H with no isolated vertices (we will assume this for all H under

consideration in this chapter). A natural extremal question to ask is the following:

for a given family of graphs G, which graphs G in G maximize hom(G,H)?

If we assume that all graphs in G have n vertices, then there are several cases

where this question has a trivial answer. First, if H = K loop
q , the fully looped

complete graph on q vertices, then every map f : V (G) → V (H) is an H-coloring

(and so hom(G,K loop
q ) = qn). Second, if the empty graph Kn is contained in G, then

again every map f : V (Kn)→ V (H) is an H-coloring (i.e. hom(Kn, H) = |V (H)|n).

Motivated by this second trivial case, it is interesting to consider families G for which

each G ∈ G has many edges.

For the family of n-vertex m-edge graphs, this question was first posed for H = Kq

around 1986, independently, by Linial and Wilf. Lazebnik provided an answer for

q = 2 [46], but for general q there is still not a complete answer. However, much

progress has been made (see [49] and the references therein). Recently, Cutler and

Radcliffe answered this question for H = Hind, H = HWR, and another class of H

[15, 16]. Many of the results in this family generally require a different set of extremal

graphs for each choice of H.

Another interesting family to consider is the family of n-vertex d-regular graphs.

Here, Kahn [39] used entropy methods to show that every n-vertex d-regular bipartite
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graph G satisfies hom(G,Hind) ≤ hom(Kd,d, Hind)
n
2d . Notice that when 2d|n this

bound is achieved by n
2d
Kd,d, the disjoint union of n/2d copies of Kd,d. Galvin and

Tetali [32] generalized this entropy argument, showing that for any H and any n-

vertex d-regular bipartite G,

hom(G,H) ≤ hom(Kd,d, H)
n
2d . (4.1)

Kahn conjectured that (4.1) should hold for H = Hind for all (not necessarily

bipartite)G, and Zhao [67] resolved this conjecture affirmatively, deducing the general

result from the bipartite case. Interestingly, (4.1) does not hold for general H when

biparticity is dropped, as there are examples of n, d, and H for which n
d+1

Kd+1, the

disjoint union of n/(d+1) copies of the complete graph Kd+1, maximizes the number

of H-colorings of graphs in this family. (For example, take H to be the disjoint union

of two looped vertices; here log2(hom(G,H)) equals the number of components of

G.) Galvin proposes the following conjecture [28].

Conjecture 4.1.1 (Galvin, 2013 [28]). Let G be an n-vertex d-regular graph. Then,

for any H,

hom(G,H) ≤ max{hom(Kd+1, H)
n
d+1 , hom(Kd,d, H)

n
2d}.

When 2d(d+ 1)|n, this bound is achieved by either n
2d
Kd,d or n

d+1
Kd+1. Evidence

for this conjecture is given by Zhao [67, 68], who provided a large class of H for

which hom(G,H) ≤ hom(Kd,d, H)
n
2d . Galvin [28, 29] provides further results for

various H (including triples (n, d,H) for which hom(G,H) ≤ hom(Kd+1, H)
n
d+1 ) and

asymptotic evidence for the conjecture.

It is clear that Conjecture 4.1.1 is true when d = 1, since the graph consisting of

n/2 disjoint copies of an edge is the only 1-regular graph on n vertices. We prove the

conjecture for d = 2 and also characterize the cases of equality.
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Theorem 4.1.2. Let G be an n-vertex 2-regular graph. Then, for any H,

hom(G,H) ≤ max{hom(C3, H)
n
3 , hom(C4, H)

n
4 }.

If H 6= K loop
q , the only graphs achieving equality are G = n

3
C3 (when hom(C3, H)

n
3 >

hom(C4, H)
n
4 ), G = n

4
C4 (when hom(C3, H)

n
3 < hom(C4, H)

n
4 ), or the disjoint union

of copies of C3 and copies of C4 (when hom(C3, H)
n
3 = hom(C4, H)

n
4 ).

It is possible for each of the equality conditions in Theorem 4.1.2 to occur. The

first two sitations arise when H is a disjoint union of two looped vertices and H = K2,

respectively. For the third situation, we utilize that if G is connected and H is the

disjoint union of H1 and H2, then hom(G,H) = hom(G,H1) + hom(G,H2). Letting

H be the disjoint union of 8 copies of a single looped vertex and and 4 copies of K2

gives hom(C3, H)
1
3 = hom(C4, H)

1
4 = 2. We prove Theorem 4.1.2 in Section 4.4 by

analyzing H-colorings of cycles via the trace of the adjacency matrix for H.

Another natural and related family to study is G(n, δ), the set of all n-vertex

graphs with minimum degree δ (see e.g. Chapter 3). Our question here becomes: for

a given H, which G ∈ G(n, δ) maximizes hom(G,H)? Since removing edges increases

the number of H-colorings, it is tempting to believe that the answer to this question

will be a graph that is δ-regular (or close to δ-regular). This in fact is not the case,

even for H = Hind. The following result appears in [27].

Theorem 4.1.3 (Galvin, 2011 [27]). For δ ≥ 1, n ≥ 8δ2, and G ∈ G(n, δ), we have

hom(G,Hind) ≤ hom(Kδ,n−δ, Hind), with equality only for G = Kδ,n−δ.

With Conjecture 4.1.1 and the results of Theorem 4.1.3 in mind, the following

conjecture is natural.

Conjecture 4.1.4. Fix δ ≥ 1 and H. There exists a constant c(δ,H) (depending on
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δ and H) such that for n ≥ c(δ,H) and G ∈ G(n, δ),

hom(G,H) ≤ max{hom(Kδ+1, H)
n
δ+1 , hom(Kδ,δ, H)

n
2δ , hom(Kδ,n−δ, H)}.

This conjecture stands in marked contrast to the situation for the family of n-

vertex m-edge graphs, where each choice of H seems to create a different set of

extremal graphs. Here, we conjecture that for any H, one of exactly three situations

can occur. For 2δ(δ + 1)|n and n large, this represents the best possible conjecture,

since for H consisting of a disjoint union of two looped vertices, H = K2, and

H = Hind, the number of H-colorings of a graph G ∈ G(n, δ) is maximized by

G = n
δ+1

Kδ+1, G = n
2δ
Kδ,δ, and G = Kδ,n−δ, respectively.

The purpose of this chapter is to make progress toward Conjecture 4.1.4. We first

fully resolve the conjecture for δ = 1 and δ = 2, and characterize the graphs that

achieve equality. Before we formally state these theorems, we highlight the degree

conventions and notations that we will follow for the remainder of the chapter.

Convention. For a vertex v, let d(v) denote the degree of v, where loops count once

toward the degree. While δ will always refer to the minimum degree of a graph G, in

this chapter ∆ will always denote the maximum degree of a graph H (unless explicity

stated otherwise).

Theorem 4.1.5. (δ = 1). Fix H, n ≥ 2 and G ∈ G(n, 1).

1. Suppose that H 6= K loop
∆ satisfies

∑
v∈V (H) d(v) ≥ ∆2. Then hom(G,H) ≤

hom(K2, H)
n
2 , with equality only for G = n

2
K2.

2. Suppose that H satisfies
∑

v∈V (H) d(v) < ∆2, and let n0 = n0(H) be the smallest

integer in {3, 4, . . .} satisfying
∑

v∈V (H) d(v) <
(∑

v∈V (H) d(v)n0−1
) 2
n0 .

1. If 2 ≤ n < n0, then hom(G,H) ≤ hom(K2, H)
n
2 , with equality only for G =

n
2
K2 [unless n = n0−1 and

∑
v∈V (H) d(v) =

(∑
v∈V (H) d(v)n0−2

) 2
n0−1

, in which

case G = K1,n−1 also achieves equality].
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2. If n ≥ n0, then hom(G,H) ≤ hom(K1,n−1, H), with equality only for G =
K1,n−1.

Theorem 4.1.6. (δ = 2). Fix H.

1. Suppose that H 6= K loop
∆ satisfies max{hom(C3, H)

1
3 , hom(C4, H)

1
4} ≥ ∆. Then

for all n ≥ 3 and G ∈ G(n, 2), hom(G,H) ≤ max{hom(C3, H)
n
3 , hom(C4, H)

n
4 },

with equality only for G = n
3
C3 (when hom(C3, H)

n
3 > hom(C4, H)

n
4 ), G = n

4
C4

(when hom(C3, H)
n
3 < hom(C4, H)

n
4 ), or the disjoint union of copies of C3 and

copies of C4 (when hom(C3, H)
n
3 = hom(C4, H)

n
4 ).

2. Suppose that H satisfies max{hom(C3, H)
1
3 , hom(C4, H)

1
4} < ∆. Then there

exists a constant cH such that for n > cH and G ∈ G(n, 2), hom(G,H) ≤
hom(K2,n−2, H), with equality only for G = K2,n−2.

Theorems 4.1.5 and 4.1.6 are easily seen to resolve Conjecture 4.1.4 when δ = 1

and δ = 2, respectively. Notice that if G′ is obtained from G by deleting some

edges from G, then hom(G,H) ≤ hom(G′, H). Because of this, their proofs focus

on G which are edge-critical for δ (recall that we will be using the notations and

definitions from Section 2.2 in this chapter).

The edge-critical graphs in G(n, 1) are disjoint unions of stars, and the proof of

Theorem 4.1.5 critically uses this fact. Theorem 4.1.6 relies on a nice structural

decomposition of edge-critical graphs in G(n, 2) (in particular Corollary 2.2.2) and

also uses Theorem 4.1.2. The global structure of edge-critical graphs in G(n, δ) for

δ ≥ 3 is not very well understood (note that Section 3.5 exploits the local structure

of critical graphs when δ = 3).

We also make some progress in the general δ case of Conjecture 4.1.4 by providing

a large class of H for which Kδ,n−δ maximizes the number of H-colorings.

Theorem 4.1.7. Fix δ and H. Suppose that H satisfies

∑
v∈V (H)

d(v) < ∆2. (4.2)
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Then there exists a constant cH such that for all n ≥ (cH)δ and G ∈ G(n, δ),

hom(G,H) ≤ hom(Kδ,n−δ, H), with equality only for G = Kδ,n−δ.

If H has the property that all vertices of degree ∆ share the same ∆ neighbors,

then the same result holds for all n ≥ cHδ
2.

We prove Theorem 4.1.7 in Section 4.2 by partitioning G(n, δ) based on the size

of a maximal matching. The following corollary to Theorem 4.1.7 warrants special

attention, and is immediate.

Corollary 4.1.8. Suppose that H 6= K loop
∆ has a looped dominating vertex, or that H

satisfies (4.2) and H has a unique vertex of degree ∆. Then there exists a constant

cH such that for all n ≥ cHδ
2 and G ∈ G(n, δ), hom(G,H) ≤ hom(Kδ,n−δ, H), with

equality only for G = Kδ,n−δ.

The graphs H = Hind and H = HWR satisfy the conditions of Corollary 4.1.8,

so in particular we provide an alternate proof of Galvin’s result for H = Hind [27].

Another important graph H which satisfies the conditions of Corollary 4.1.8 is the k-

state hard-core constraint graph H(k) (k ≥ 1), the graph with vertex set {0, 1, . . . , k}

and edge i ∼H(k) j if i+ j ≤ k (note that H(1) = Hind). This graph naturally occurs

in the study of multicast communications networks, and has been considered in e.g.

[31, 57].

Notice that the condition on H in Theorem 4.1.7 is necessary but not sufficient

for hom(G,H) ≤ hom(Kδ,n−δ, H) for all G ∈ G(n, δ). Indeed, if H is a path on 3

vertices with a loop on one endpoint of the path, then
∑

v∈V (H) d(v) = 5 while ∆ = 2.

However, for large enough n and G ∈ G(n, 2), hom(G,H) ≤ hom(K2,n−2, H), as can

be seen by computing hom(C3, H), hom(C4, H), and applying Theorem 4.1.6.

It is also interesting to consider a maximum degree condition in addition to a

minimal degree condition (see e.g. [1, 33, 39]). Let G(n, δ,D) denote the set of graphs

on n vertices with minimum degree δ and maximum degree at most D. Which graphs
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G ∈ G(n, δ,D) maximize hom(G,H)? For a fixed δ, this question is interesting for

the H with the property that hom(G,H) ≤ hom(Kδ,n−δ, H) for all G ∈ G(n, δ), as

Kδ,n−δ ∈ G(n, δ,D) only when D ≥ n− δ.

For δ = 1 and any D ≥ 1, we provide an answer.

Theorem 4.1.9. Fix H and D ≥ 1. For any G ∈ G(n, 1, D),

hom(G,H) ≤ max{hom(K2, H)
n
2 , hom(K1,D, H)

n
D+1},

with the cases of equality as in Theorem 4.1.5.

The proof of Theorem 4.1.9 is given in Section 4.3, and again utilizes the fact that

edge-critical graphs for δ = 1 are disjoint unions of stars.

Our results generalize naturally to weighted H-colorings, where for weight set Λ

each f ∈ Hom(G,H) is given weight wΛ(f) (as defined in Section 2.1). Although the

proofs of the weighted versions come with almost no extra effort, for the clarity of

presentation we will not do this here (the necessary changes are described in [19]).

4.2 Proof of Theorem 4.1.7

Suppose that we have a graph H satisfying

∑
v∈V (H)

d(v) < ∆2, (4.3)

and let G be a graph with minimum degree δ. Let M be the edge set of a matching

of maximum size in G and I the set of unmatched vertices.

We first derive some structural properties of our graph G based on M . Since M is

maximal, I forms an independent set. Furthermore, suppose that x1 and x2 in V (G)

are matched in M . If x1 has at least two edges into I, then x2 cannot be adjacent to

any vertex in I, as this would create an augmenting path (a path which starts and
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ends at distinct unmatched vertices and alternates edges in and out of M) of length

3 and therefore a matching of larger size. In summary:

At most one vertex in an edge of the matching M can have degree at

least 2 into I, and if one has degree at least 2 into I then the other

has degree 0 into I.

(4.4)

For each edge in M , put the endpoint with the largest degree into I in a set

J ⊂ V (G), and put the other endpoint in a set K ⊂ V (G). (If the degrees are equal,

make an arbitrary choice.) A schematic picture of G is shown in Figure 4.2; there

are at most |K| = |M | total edges between I and K.

J
{K
{ }

I

Figure 4.1. The relevant structure for G.

Also, if there are more than |M | vertices in I that are adjacent to both endpoints

of some edge in M , then by the pigeonhole principle there are distinct y1, y2 ∈ I

that are adjacent to both endpoints of some fixed edge in M . This would force

both endpoints of an edge in M to have degree at least 2 into I, contradicting (4.4).

Therefore we have:

There are at most |M | vertices in I adjacent to both endpoints of

some edge in M.
(4.5)
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In particular, suppose n ≥ 3δ− 2. Then if |M | < δ we have |I| ≥ δ. Since each x ∈ I

has at least δ neighbors to M , each x ∈ I is adjacent to both endpoints of some edge

in M . Since |I| ≥ δ > |M |, this contradicts (4.5). Therefore if n ≥ 3δ − 2 we have

|M | ≥ δ for all G ∈ G(n, δ). We will first analyze the graphs where |M | = δ and then

the graphs where |M | > δ.

Case 1: Suppose that |M | = δ and n > 3δ, so by (4.5) at most δ vertices in I

are adjacent to both endpoints of some edge in M . Then there is at least one vertex

in I that is adjacent to exactly one endpoint of each edge in M . However, this shows

that no vertex in I can be adjacent to both endpoints of any edge in M , since any

vertex in I adjacent to both vertices of an edge in M would force one endpoint of M

to have degree at least 2 into I and the other endpoint of M to have degree at least

1 into I (contradicting (4.4)). It follows that each vertex in I must be adjacent to

each vertex in J , and so by (4.4) there are no edges between I and K.

Now suppose k1, k2 ∈ K with k1 ∼ k2. Then there exist distinct j1, j2 ∈ J with

k1 ∼M j1 and k2 ∼M j2. Letting i1 and i2 denote any two distinct vertices in I (and

recalling that everything in I is adjacent to everything in J), i1 ∼ j1 ∼ k1 ∼ k2 ∼

j2 ∼ i2 is an augmenting path of length 5, which contradicts the maximality of M .

Therefore K is an independent set and so K ∪ I is an independent set. Since G has

minimum degree δ, every vertex in K ∪ I is adjacent to every vertex in J , and so

G must be the complete bipartite graph Kδ,n−δ with some edges added to the size δ

partition class.

We now show that adding any edge to the size δ partition class in Kδ,n−δ will

strictly decrease the number of H-colorings. Since H cannot contain K loop
∆ (by (4.3)),

there are two (possibly non-distinct) non-adjacent neighbors of a vertex in H with

degree ∆. If any edge is added to the size δ partition class in Kδ,n−δ, then it is

impossible for any H-coloring to color the endpoints of that edge with the non-

adjacent vertices in H, but such a coloring is possible in Kδ,n−δ. Since any H-coloring
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of Kδ,n−δ with an edge added is an H-coloring of Kδ,n−δ, this shows that the number

of H-colorings strictly decreases whenever an edge is added to Kδ,n−δ

In summary, we have shown that if G satisfies n > 3δ, |M | ≤ δ, and G 6= Kδ,n−δ

then hom(G,H) < hom(Kδ,n−δ, H).

Case 2: Now suppose that |M | = k ≥ δ + 1. We will show that for large enough

n we have hom(G,H) < hom(Kδ,n−δ, H), which will complete the proof.

Let S(δ,H) denote the vectors in V (H)δ with the property that the elements

of the vector have ∆ common neighbors, and let s(δ,H) = |S(δ,H)|. (Note that

S(δ,H) 6= ∅, since if v ∈ V (H) with d(v) = ∆ then (v, v, . . . , v) ∈ S(δ,H).) We

obtain a lower bound on hom(Kδ,n−δ, H) by coloring the size δ partition class using

an element of S(δ,H), and then independently coloring the vertices in the size n− δ

partition class using the ∆ common neighbors. This gives

hom(Kδ,n−δ, H) ≥ s(δ,H)∆n−δ.

We will show that for n large and k ≥ δ + 1, hom(G,H) < s(δ,H)∆n−δ.

Our initial coloring scheme will be to color J arbitrarily first, then K, then I,

keeping track of an upper bound on the number of choices we have for the color at

each vertex. If a vertex in J is colored with v ∈ V (H), its neighbor in M has at most

d(v) choices for a color. Since each vertex in I is adjacent to some vertex in J ∪K,

there are at most ∆ choices for the color of each vertex in I. This gives

hom(G,H) ≤

 ∑
v∈V (H)

d(v)

k

∆n−2k = ∆n

(∑
v∈V (H) d(v)

∆2

)k

.

Recalling that H satisfies (4.3), if k > δ log ∆/ log
(

∆2∑
v∈V (H) d(v)

)
= CHδ this upper

bound is smaller than ∆n−δ. So we may further assume that δ + 1 ≤ k ≤ CHδ.

Let I ′ ⊂ I be the set of vertices in I with neighbors exclusively in J , so by (4.4)
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we have |I ′| ≥ n−3k. Since each vertex in I ′ has at least δ neighbors in J , we imagine

each x ∈ I ′ picking a subset of size δ from J (from among the
(
k
δ

)
possibilities). By

the pigeonhole principle there is a set J1 ⊂ J with |J1| = δ and at least (n− 3k)/
(
k
δ

)
vertices in I ′ adjacent to each vertex in J1. See Figure 4.2.

J
{K
{ }

I

J1

I ′

Figure 4.2. Vertices in I ′ adjacent to every vertex in J1.

We’ll partition the H-colorings of G based on whether the colors on J1 form a

vector in S(δ,H) or not. If they do, then we next color J \ J1, then K, and then I,

giving at most

s(δ,H) ·

 ∑
v∈V (H)

d(v)

k−δ

·∆δ ·∆n−2k

H-colorings of G of this type.

If the colors on J1 do not form a vector in S(δ,H), then we have at least (n −

3k)/
(
k
δ

)
vertices in I (namely those in I ′) that have at most ∆ − 1 choices for their

color (here we’re using that all edges are present between I ′ and J1). Utilizing only

this restriction, coloring J \ J1, then K, then I gives at most

 ∑
v∈V (H)

d(v)

k

∆n−2k

(
∆− 1

∆

)n−3k

(kδ)
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H-colorings of G of this type. Therefore, using k ≤ CHδ and
(
a
b

)
≤
(
ea
b

)b
, we have

hom(G,H) ≤ s(δ,H) ·

 ∑
v∈V (H)

d(v)

k−δ

∆n−2k+δ

+

 ∑
v∈V (H)

d(v)

k

∆n−2k

(
∆− 1

∆

)n−3k

(kδ)

≤ s(δ,H) ·

(∑
v∈V (H) d(v)

∆2

)k−δ

∆n−δ

+

(∑
v∈V (H) d(v)

∆2

)k

∆n

(
∆− 1

∆

)n−3CHδ

(e·CH )δ

so that

hom(G,H) ≤ s(δ,H)∆n−δ

(∑
v∈V (H) d(v)

∆2

)k−δ

(1 + r1(δ,H))

where

r1(δ,H) =
1

s(δ,H)

(∑
v∈V (H) d(v)

∆

)δ (
∆− 1

∆

)n−3CHδ

(e·CH )δ

.

For δ + 1 ≤ k ≤ CHδ and n ≥ (cH)δ, this is smaller than s(δ,H)∆n−δ.

We sharpen the bounds on n when all of the vertices of H with degree ∆ have

identical neighborhoods. (Notice that this only requires a new argument for the range

δ + 1 ≤ k ≤ CHδ.) Recall from Section 2.2 that V=∆(H) denotes the set of degree ∆

vertices, and so by assumption each vertex in V=∆(H) has the same ∆ neighbors (and

also s(δ,H) = |V=∆(H)|δ). Our strategy is to find a set of δ vertices in J with large

degree to I individually instead of finding those with a large common neighborhood

in I.

Let J = {x1, . . . , xk} and let at denote the number of edges from xt to I for each

t. Without loss of generality, assume a1 ≥ a2 ≥ · · · ≥ ak. Since I is an independent

set of size n−2k, there are at least δ(n−2k) edges from I to J ∪K. Since the degree
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to I of each vertex in K is at most 1 and each at ≤ n− 2k, we have

δ(n− 2k)− k ≤
k∑
t=1

at ≤ (k − δ + 1)aδ + (δ − 1)(n− 2k),

since (n− 2k)− k is a lower bound on the number of edges from I to J , aδ + aδ+1 +

· · ·+ ak ≤ (k − δ + 1)aδ (by the ordering of the ai’s), and aδ−1 ≤ · · · ≤ a1 ≤ n− 2k.

This gives

aδ ≥
n− 3k

k − δ + 1
.

Now set J2 = {x1, . . . , xδ}. We first upper bound the number of H-colorings of G

that color each vertex in J2 with a color from V=∆(H). By coloring J \J2 arbitrarily,

then coloring K, then coloring I, we have at most

s(δ,H)

 ∑
v∈V (H)

d(v)

k−δ

∆n−2k+δ = s(δ,H)∆n−δ

(∑
v∈V (H) d(v)

∆2

)k−δ

(4.6)

H-colorings of G of this type.

The number of H-colorings of G that have some vertex of J2 colored from V (H)\

V=∆(H) can be given an upper bound through similar means. Here, at least n−3k
k−δ+1

vertices in I will have at most ∆ − 1 choices of a color for each coloring of J ∪ K.

Using k ≤ CHδ, we have at most

 ∑
v∈V (H)

d(v)

k

∆n−2k

(
∆− 1

∆

) n−3k
k−δ+1

≤ ∆n−δ

(∑
v∈V (H) d(v)

∆2

)k

∆δ

(
∆− 1

∆

) n−3CHδ

CHδ−δ+1

(4.7)

H-colorings of G of this type. Combining (4.6) and (4.7) we find that

hom(G,H) ≤ s(δ,H)∆n−δ
(∑

v∈V (H) d(v)

∆2

)k−δ
(1 + r2(δ,H))
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where

r2(δ,H) =
1

s(δ,H)

(∑
v∈V (H) d(v)

∆

)δ (
∆− 1

∆

) n−3CHδ

CHδ−δ+1

For δ + 1 ≤ k ≤ CHδ and n > cHδ
2, this is smaller than s(δ,H)∆n−δ.

4.3 Proof of Theorems 4.1.5 and 4.1.9 (δ = 1)

We begin with the proof of Theorem 4.1.5. Recall that we will assume that

|V (H)| = q, and furthermore we will assume that G is edge-critical, so G has no edge

between two vertices of degree larger than one. (This will give us the inequalities

desired; we will address the uniqueness statements in the theorems separately.) In

particular, G is the disjoint union of stars, so we can write G = ∪iK1,ni−1, where∑
i ni = n. See Figure 4.3.

Figure 4.3. A graph G that is the disjoint union of stars; here we may take
n1 = 2, n2 = 1, n3 = 2, and n4 = 4.

Since the stars K1,ni−1 are disjoint and can therefore be colored independently,

we have

hom(G,H) =
∏
i

hom(K1,ni−1, H) =
∏
i

hom(K1,ni−1, H)
ni
ni .
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If x is an integer value in [2, n] that maximizes hom(K1,x−1, H)
1
x , then

hom(G,H) ≤
∏
i

hom(K1,x−1, H)
ni
x = hom(K1,x−1, H)

n
x , (4.8)

with equality occurring (when x|n) for n
x
K1,x−1. Because of this, it will be useful to

know the integer value(s) of x ≥ 2 that maximize hom(K1,x−1, H)
1
x .

First we derive a formula for hom(K1,x−1, H)
1
x for each integer x ≥ 2. Notice that

all H-colorings of K1,x−1 can be obtained by coloring the center of the star with any

v ∈ V (H) and then coloring the leaves (independently) with any neighbor of v, so

hom(K1,x−1, H) =
∑

v∈V (H)

d(v)x−1. (4.9)

Now (4.9) holds for each integer x ≥ 2, and so it will be useful to know the

maximum value of  ∑
v∈V (H)

d(v)x−1

 1
x

(4.10)

over all integers x ≥ 2. In fact, we will study (4.10) in a slightly more general setting;

for the remainder of this proof we will analyze (4.10) over all real numbers x ≥ 2.

Recall that we are assuming that H has no isolated vertices, so for all v ∈ V (H)

we have 1 ≤ d(v) ≤ ∆. Since there exists a w ∈ V (H) with d(w) = ∆, we have

 ∑
v∈V (H)

d(v)x−1

 1
x

→ ∆ as x→∞. (4.11)

To obtain more information, for a fixed real x ≥ 2 let a = a(x,H) ∈ R be such

that

d(v1)x−1 + · · ·+ d(vq)
x−1 = ax.
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Since 1 ≤ d(v) ≤ ∆ for all v ∈ V (H), for any ε > 0 we have

d(v1)x−1+ε + · · ·+ d(vq)
x−1+ε ≤ ∆ε

(
d(v1)x−1 + · · ·+ d(vq)

x−1
)

= ∆εax, (4.12)

with strict inequality if d(vi) < ∆ for some i. Therefore for any ε > 0 (4.12) gives

a > ∆ =⇒

 ∑
v∈V (H)

d(v)x−1+ε

 1
x+ε

<

 ∑
v∈V (H)

d(v)x−1

 1
x

. (4.13)

If a = ∆ and d(vi) = ∆ for all i, then (4.12) gives q∆x−1 = ∆x so H = K loop
q . If

a = ∆ and d(vi) < ∆ for some i, then for any ε > 0 (4.12) gives

 ∑
v∈V (H)

d(v)x−1+ε

 1
x+ε

< ∆ =

 ∑
v∈V (H)

d(v)x−1

 1
x

. (4.14)

Finally, for any ε > 0, if a < ∆ then ∆εax < ∆x+ε, and so (4.12) gives

a < ∆ =⇒

 ∑
v∈V (H)

d(v)x−1+ε

 1
x+ε

< ∆. (4.15)

This already provides a substantial amount of information, fully analyzing the

graphs H where
∑

v∈V (H) d(v) ≥ ∆2 (here we focus on x = 2 and so the condition

on H means a = a(2, H) ≥ ∆). Indeed, for H 6= K loop
q , (4.13) and (4.14) applied at

x = 2 imply  ∑
v∈V (H)

d(v)y−1

 1
y

<

 ∑
v∈V (H)

d(v)

 1
2

for any y > 2, which implies hom(K1,x−1, H)
1
x < hom(K1,1, H)

1
2 for any integer x > 2.

For the graphs H satisfying
∑

v∈V (H) d(v) < ∆2, we may already obtain a state-

ment for large n (using (4.11) and also (4.15) at x = 2), but with an additional

argument we can obtain a statement for all n. We utilize the following lemma, which

61



we will prove momentarily.

Lemma 4.3.1. The function
(∑

v∈V (H) d(v)x−1
) 1
x

has at most one local maximum

or minimum.

If we assume Lemma 4.3.1, then (4.11), (4.13), (4.14), and (4.15) show that for

H 6= K loop
q the function

(∑
v∈V (H) d(v)x−1

) 1
x

is either decreasing to ∆ on (2,∞),

increasing to ∆ on (2,∞), or decreasing on (2, x0) and increasing to ∆ on (x0,∞)

for some x0 > 2. See Figure 4.4 for the possible behaviors of
(∑

v∈V (H) d(v)x−1
) 1
x
.

So if H 6= K loop
q , then (4.8) shows that Theorem 4.1.5 holds for any edge-critical

G ∈ G(n, 1). This implies that the upper bounds given in Theorem 4.1.5 hold for any

G ∈ G(n, 1).

∆

x
|
2

Figure 4.4. The possible behaviors of the function
(∑

v∈V (H) d(v)x−1
) 1
x

for

H 6= K loop
∆ .

Finally, we need to argue that for H 6= K loop
q , the edge-critical graphs in G(n, 1)

which achieve equality are the only possible graphs in G(n, 1) which achieve equality.
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It suffices to consider the addition of a single edge to one of the graphs achieving

equality and showing that the number of H-colorings decreases in this case.

By considering the neighbors of a vertex v ∈ V (H) with d(v) = ∆, adding any

edge to a disjoint union of stars strictly lowers the number of H-colorings unless H

contains K loop
∆ (a slight modification of the argument given in Case 1 of Section 4.2

will work, realizing that we need to consider both edges joining vertices in the same

component and also edges joining vertices in different components). If H does contain

K loop
∆ and H 6= K loop

∆ , then H contains some other component and furthermore H

satisfies part 1 of the theorem. Since n
2
K2 is the unique edge-critical graph achieving

equality for this H and H has at least 2 components, adding any edge to n
2
K2 (which

will necessarily join together two components of n
2
K2) will lower the number of H-

colorings in this case as well. This completes the proof of Theorem 4.1.5.

Proof of Lemma 4.3.1: This lemma is a corollary of the following proposition

about Lp norms, which is a special case of Lemma 1.11.5 in [63] (or, equivalently,

Lemma 2 in Terence Tao’s blog post 245C, Notes 1: Interpolation of Lp spaces).

Recall that we assume H has no isolated vertices.

Proposition 4.3.2. Define a measure µ on V (H) by µ(v) = 1
d(v)

, and let g : V (H)→

R be given by g(v) = d(v). Then the function defined by 1
x
7→ ||g||Lx(V (H)) =(∑

v∈V (H) d(v)x−1
) 1
x

is log-convex for x ∈ (2,∞).

Recall that a log-convex function can has most one local maximum or local mini-

mum. The composition of the reciprocal map and the map given in Proposition 4.3.2

is the function defined by x 7→
(∑

v∈V (H) d(v)x−1
) 1
x
. Since the reciprocal is strictly

monotone and therefore preserves local extremal values, Lemma 4.3.1 follows.

Lastly, we prove Theorem 4.1.9. Notice that we can still delete any edge from a

graph G ∈ G(n, δ,D) and remain in G(n, δ,D) as long the edge deletion does not lower

the minimum degree. Therefore the proof of Theorem 4.1.5 also proves Theorem 4.1.9
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by restricting the function
(∑

v∈V (H) d(v)x−1
) 1
x

to values in [2, D + 1].

4.4 Proof of Theorem 4.1.2

Recall that we will assume that that |V (H)| = q, and we begin with a few remarks

about the number of H-colorings of a cycle Ck. Let A denote the adjacency matrix

of H. Then for k ≥ 3, hom(Ck, H) = TrAk; indeed, the diagonal entry (ii) in Ak

counts the number of H-colorings of the path on k + 1 vertices Pk+1 that color both

endpoints with color i, and by identifying the endpoints we obtain a coloring of Ck

with one fixed vertex having color i. Therefore if λ1, λ2, . . . , λq are the eigenvalues of

A, then

hom(Ck, H) = λk1 + · · ·+ λkq . (4.16)

It is possible to obtain results using ideas based on Proposition 4.3.2 (with some

additional observations); we provide an alternate proof. Without loss of generality,

assume that λ1 ≥ λ2 ≥ · · · ≥ λq. Notice that λ1 > 0 and λ1 ≥ |λq|; this follows from

the Perron-Frobenius theorem (see e.g. [61]), but is also readily seen since otherwise

(4.16) would imply that hom(Ck, H) < 0 for large odd k.

First we address the inequality, and deal with the cases of equality at the end.

Suppose k ≥ 4 is even and let b = b(k,H) ≥ λ1 be such that

λk1 + λk2 + · · ·+ λkq = bk.

Then

λk+2
1 + · · ·+ λk+2

q ≤ λ2
1(λk1 + · · ·+ λkq) ≤ b2(λk1 + · · ·+ λkq) = bk+2,
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with equality only for b = λ1, so

(λk+2
1 + · · ·+ λk+2

q )
1
k+2 ≤ (λk1 + · · ·+ λkq)

1
k , (4.17)

which implies that hom(Ck, H)
1
k ≤ hom(C4, H)

1
4 for even k ≥ 6.

Suppose next that k ≥ 5 is odd, and so as above we have λk−1
1 + · · ·+λk−1

q = bk−1.

Then

λk1 + · · ·+ λkq ≤ |λ1|λk−1
1 + · · ·+ |λq|λk−1

q ≤ λ1b
k−1 ≤ bk, (4.18)

with equality only for b = λ1, which implies that hom(Ck, H)
1
k ≤ hom(Ck−1, H)

1
k−1 .

Summarizing the above, the function hom(Ck, H)
1
k is non-increasing from every

even k ≥ 4 to both k + 1 and k + 2 and so, for k ≥ 5, hom(Ck, H)
1
k ≤ hom(C4, H)

1
4 .

Therefore for all k ≥ 3,

hom(Ck, H)
1
k ≤ max{hom(C3, H)

1
3 , hom(C4, H)

1
4}.

Now, if G is any 2-regular graph, then G is the disjoint union of cycles Cki . So if

hom(C4, H)
1
4 ≥ hom(C3, H)

1
3 ,

hom(G,H) =
∏
i

hom(Cki , H) ≤
∏
i

hom(C4, H)
ki
4 = hom(C4, H)

n
4 ,

with a similar statement holding if hom(C3, H)
1
3 ≥ hom(C4, H)

1
4 .

Finally, we deal with the cases of equality. There is equality in (4.17) and (4.18)

only when b = λ1 (and so λ2 = · · · = λq = 0). Recall that A is symmetric and

so has distinct eigenvectors associated to each λi, so in this case A has rank 1 and

therefore all rows of A are scalar multiples of any other row. If any entry A(ij) = 0,

then some column and row of A is the 0 vector, which corresponds to an isolated

vertex in H. Since we assume H has no isolated vertices, A must be the matrix
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of all 1’s and so H = K loop
q . Therefore, for H 6= K loop

q we have hom(Ck, H)
1
k <

max{hom(C3, H)
1
3 , hom(C4, H)

1
4} whenever k ≥ 5. The statement in the theorem

about equality is now evident.

4.5 Proof of Theorem 4.1.6 (δ = 2)

4.5.1 Preliminary remarks

We first gather together a number of observations that we’ll use in the proof. We

will use both Lemma 2.2.1 and Corollary 2.2.2. In fact, Lemma 2.2.1 is enough to

prove the case when max{hom(C3, H)
n
3 , hom(C4, H)

n
4 } ≥ ∆n (without a character-

ization of uniqueness); we will delay the details of this until Section 4.5.2. A graph

H which satisfies

max{hom(C3, H)
1
3 , hom(C4, H)

1
4} < ∆ (4.19)

requires a few more observations.

Lemma 4.5.1. Suppose that the endpoints of P4 are mapped to H. Then there are

at most ∆2 extensions to an H-coloring of P4. If H does not contain K loop
∆ or K∆,∆

as a component, then there are strictly fewer than ∆2 extensions to an H-coloring of

P4.

Proof. The first statement is obvious, since P4 is connected and the maximum degree

of H is ∆. Suppose there are ∆2 extensions to an H-coloring of P4. Let w1 ∼P4

w2 ∼P4 w3 ∼P4 w4 denote the vertices of P4, and let w1 and w4 be given colors v1 and

v4 in H, respectively. We color w2 first and then w3, conditioning on whether v1 is

looped or not.

Suppose that v1 is unlooped in H. Clearly d(v1) = ∆ and each neighbor of v1

also has degree ∆. Since some of the ∆2 paths from v1 map w3 to v1, it must be the

case that v4 ∼H v1. Furthermore, if w2 maps to v2 (necessarily v2 ∼H v1), then every
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neighbor of v2 is adjacent to v4. Since v2 can be any neighbor of v1, this implies that

K∆,∆ is the component of H containing v1 and v4.

A similar analysis for looped v1 shows that K loop
∆ is the component of H containing

v1 and v4.

Corollary 4.5.2. Suppose that H satisfies (4.19). If k ≥ 4 and the endpoints of Pk

are mapped to H, then there are strictly fewer than ∆k−2 extensions to an H-coloring

of Pk.

Proof. Notice that hom(C4, K∆,∆)
1
4 ≥ ∆ and hom(C4, K

loop
∆ )

1
4 = ∆. Color, beginning

from one endpoint, until there are two uncolored vertices left. Then apply Lemma

4.5.1.

We can strengthen Corollary 4.5.2 when k is large.

Lemma 4.5.3. Suppose that H satisfies (4.19). Then there exists a constant lH

(depending on H) such that if k ≥ lH and the endpoints of Pk are mapped to H, then

there are strictly fewer than 1
|V (H)|2 ∆k−4 extensions to an H-coloring of Pk.

Proof. Notice that a path must be mapped to a connected component of H; focus on

that component. If A is the adjacency matrix of that component, then the number

of H-colorings of Pk with endpoints colored i and j is Ak(ij). If λ1 denotes the largest

eigenvalue of A, then by the Perron-Frobenius Theorem (see for example [61, Theorem

1.5]) there exists a strictly positive vector x such that Akx = λk1x for all k ≥ 1. By

considering the row of A containing maxi,j A
k
(ij), we see that there is a constant c such

that maxi,j A
k
(ij) ≤ cλk1 (we can take c = maxj xj/minj xj, where x = (xj)). Since

λ1 ≤ (
∑

i λ
4
i )

1
4 = hom(C4, H)

1
4 < ∆ implies λ < ∆, this proves the lemma.
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4.5.2 The proof

We are now ready to prove Theorem 4.1.6. We assume that G is edge-critical until

we discuss the cases of equality in the upper bound. First, suppose that H satisfies

max{hom(C3, H)
1
3 , hom(C4, H)

1
4} ≥ ∆. (4.20)

Using induction on n, we’ll show that for any G ∈ G(n, 2),

hom(G,H) ≤ max{hom(C3, H)
n
3 , hom(C4, H)

n
4 }.

The base case n = 3 is trivial.

For the inductive step, assume first that hom(C3, H)
1
3 ≤ hom(C4, H)

1
4 . If all

components of G are cycles, then we’re finished by Theorem 4.1.2. If some component

of G is not a cycle, then by Lemma 2.2.1 we can partition V (G) into Y1 ∪ Y2, with

1 ≤ |Y1| ≤ n − 3 and Y1 connected to Y2. We imagine first coloring Y2 and then

extending this to Y1. By induction, there are at most hom(C4, H)
n−|Y1|

4 H-colorings

of Y2. But since Y1 is connected to Y2, for every fixed H-coloring of Y2, each vertex

in Y1 has at most ∆ choices for a color. Therefore,

hom(G,H) ≤ ∆|Y1| hom(C4, H)
n−|Y1|

4 ≤ hom(C4, H)
n
4 . (4.21)

The case when hom(C3, H)
1
3 ≥ hom(C4, H)

1
4 is similar.

With the upper bound established in this case, we turn to the cases of equality.

First suppose that H satisfies max{hom(C3, H)
1
3 , hom(C4, H)

1
4} > ∆. Then (4.21)

is strict, which implies that equality can only be obtained for the disjoint union of

cycles and hence Theorem 4.1.2 provides the cases of equality among edge-critical

graphs.

Now suppose max{hom(C3, H)
1
3 , hom(C4, H)

1
4} = ∆ (which implies that H can-
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not have K∆,∆ as a component). Notice that equality is achieved for any G with

hom(G,H) = ∆n, and suppose that H 6= K loop
∆ (so since hom(C4, H)

1
4 ≤ ∆, H

cannot contain K loop
∆ as a component). By Theorem 4.1.2, the construction of G

in Corollary 2.2.2 must start with disjoint copies of C3 and/or C4. Corollary 4.5.2

implies that only paths of length 1 may be added to these cycles, and to achieve the

bound of ∆n, every coloring of these cycles must provide ∆ choices for the color of

the vertex in the path of length 1. We outline the possible situations which occur

when adding a path of length 1 to the cycles in Figure 4.5; the vertex labeled v must

have ∆ choices for a color regardless of how the adjacent cycles are colored.

1.

v

2.

v

3.

v

4. v

5.

v

6.

v

Figure 4.5. The possible situations which occur when a path of length 1
(labeled v) is added to the cycles.
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We’ll prove that in the situation of Case 5 from Figure 4.5, having ∆ choices for

the color on v for each coloring of C4 forces H to contain K loop
∆ as a component.

Suppose that the neighbors of v have colors i and j. We can assume that i 6= j,

since C4 can map its partition classes to the endpoints of any edge in H. Since v

has ∆ possibilities for its color, necessarily i and j must each have ∆ neighbors and

furthermore those ∆ neighbors must be simultaneously neighbors of both i and j. In

particular, since i and j are on adjacent vertices of C4, we have i ∼H j and so i and

j must be possible colors for v. This means that i and j must be looped and that

all neighbors of i are also neighbors of j. But if k is any other neighbor of i, then a

similar argument (replacing j by k) shows that k is looped and is adjacent to all other

neighbors of i. Therefore the component containing i is K loop
∆ , which contradicts our

assumption that K loop
∆ is not a component of H.

A routine but tedious analysis of the other cases shows that having ∆ choices

for the color of the vertex in a path of length 1 always forces H to contain K loop
∆

as a component. Therefore, equality can only occur when G is a disjoint union of

cycles, so Theorem 4.1.2 again characterizes the cases of equality among edge-critical

graphs.

Finally we need to show that edge-critical graphs are the only graphs achieving

equality. Arguing as in Case 1 of Section 4.2, adding any edge to a C4 will strictly

lower the number of H-colorings unless H contains K loop
∆ . The cases of adding an edge

between two disjoint cycles is similar, and so adding any edge to a graph achieving

equality will strictly lower the number of H-colorings unless H is the disjoint union

of some number of fully looped complete graphs. If H is of this form and H 6= K loop
∆ ,

then hom(C3, H)
1
3 > hom(C4, H)

1
4 , and so in fact adding any edge to n

3
C3 will strictly

lower the number of H-colorings since the disjoint copies of C3 can be colored using

different components of H, but the copies of C3 joined by an edge must all be colored

by a single component of H.
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Now suppose that H satisfies

max{hom(C3, H)
1
3 , hom(C4, H)

1
4} < ∆. (4.22)

Recall that from Theorem 4.1.2 we have

hom(Ck, H)1/k ≤ max{hom(C3, H)1/3, hom(C4, H)1/4},

which we bound (for simplicity) by

hom(Ck, H) ≤ (∆4 − 1)k/4 for k ≥ 3. (4.23)

As in the proof of Theorem 4.1.7, we will let S(2, H) denotes the vectors in V (H)2

with the property that the elements of the vector have ∆ common neighbors, and

s(2, H) = |S(2, H)|. Notice that hom(K2,n−2) ≥ s(2, H)∆n−2.

Suppose again that G is edge-critical. We’ll utilize the construction of G from

Corollary 2.2.2 to produce all H-colorings of G by coloring the disjoint cycles first

and then coloring the paths. If there are more than k vertices in the disjoint cycles,

then by (4.23) we have hom(G,H) ≤ (∆4 − 1)k/4∆n−k. Therefore, we may assume

that there are at most c1 vertices in disjoint cycles. (All constants in the remainder

of this proof will depend on H but will be independent of n.)

After coloring the cycles, we look at the paths that are added iteratively. If

any path has length longer than some constant l, then by Lemma 4.5.3 we have

hom(G,H) < ∆n−2. Since a path of length k, for 2 ≤ k ≤ l, has at most ∆k − 1

extensions to an H-coloring by Corollary 4.5.2, if there are more than c2 such paths

then

hom(G,H) <

c2∏
i=1

(∆ki − 1)∆n−
∑O(1)
i=1 ki < ∆n−2.
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So, we may assume that the decomposition of G from Corollary 2.2.2 has fewer

than c3 vertices in either disjoint cycles or paths of length 2 ≤ k ≤ l, and no paths

of length k > l. Therefore, the decomposition has at least n − c3 vertices in paths

of length 1. Furthermore, each path of length 1 must be attached to two of the at

most c3 vertices composing the disjoint cycles and the paths of length at least 2. By

the pigeonhole priciple there exists a c4 > 0 and two vertices in G with at least c4n

paths of length 1 joining them.

We have shown that every edge-critical graph G which does not have two vertices

with at least c4n paths of length 1 joining them has hom(G,H) < ∆n−2, Furthermore,

by Lemma 4.5.3 we have the same bound on hom(G,H) if G has a path of length

longer than l. We now deal with the remaining edge-critical graphs G.

Let w1 and w2 denote the vertices in G joined by at least c4n paths of length 1.

Recall from Section 4.2 that S(2, H) is the set of vectors in V (H)2 with the property

that the elements of the vector have ∆ common neighbors, and s(2, H) = |S(2, H)|.

Suppose first that the colors on w1 and w2 are an element of S(2, H). If G is different

from K2,n−2, then w1, w2, and the at least c4n paths of length 1 between them do

not form all of G. But then G must contain either a cycle which does not include w1

or w2, or a path of length k (for 2 ≤ k ≤ lH) from wi to wj for some i, j ∈ {1, 2}. By

first coloring w1 and w2, then any remaining disjoint cycles, and finally the remaining

vertices, Corollary 4.5.2 and (4.23) imply that there exists a c5 < 1 such that there

are at most

s(2, H)c5∆n−2 (4.24)

H-colorings of G of this type.

Now suppose that the colors on w1 and w2 are not an element of S(2, H). By

first coloring w1 and w2, then any remaining disjoint cycles, and finally the remaining
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vertices, we have at most

|V (H)|2∆n−c4n−2(∆− 1)c4n (4.25)

H-colorings of G of this type.

Combining (4.24) and (4.25) gives

hom(G,H) ≤ |V (H)|2∆n−2

(
∆− 1

∆

)c4n
+ s(2, H)c5∆n−2 < s(2, H)∆n−2,

with the last inequality holding for large enough n.

We’ve shown that the only edge-critical graph which achieves equality is K2,n−2.

We repeat an argument given from Case 1 in Section 4.2 to prove that this is the

only graph which achieves equality. Since H cannot contain K loop
∆ (by (4.22)), there

are two (possibly non-distinct) non-adjacent neighbors of a vertex v ∈ V (H) with

degree ∆. If any edge is added to K2,n−2 (necessarily within a partition class), then

it is impossible for any H-coloring to color the endpoints of that edge with the non-

adjacent vertices, but such a coloring is possible in K2,n−2. Therefore adding any

edges to K2,n−2 produces a graph G with hom(G,H) < hom(K2,n−2, H).
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CHAPTER 5

H-COLORING BIPARTITE GRAPHS

5.1 Introduction and statement of results

Fix graphs G, H, a set of positive weights Λ = {λi : i ∈ V (H)} indexed by the

vertices of H, and the associated probability distribution pΛ (as defined in Section

2.3). The question to be addressed in this chapter is the following. What can be

said about an f that is drawn from Hom(G,H) according to the distribution pΛ?

Specifically, for each f ∈ Hom(G,H) and k ∈ V (H) set

s(k, f) =
|f−1(k)|
|V (G)|

,

the proportion of vertices receiving color k, and

p̄Λ(k) =
1

|V (G)|
∑

v∈V (G)

pΛ(f(v) = k) (= EΛ (s(k, f))) .

The aim of this chapter is to give fairly precise estimates for p̄Λ(k) and the distribution

of s(k, f) for f chosen according to pΛ, when G is bipartite and either regular or

sufficiently close to regular. We will prove the results for regular bipartite G, and

will discuss the necessary modifications for close to regular bipartite G in Section 5.4;

proofs of these latter results can be found in [20].

The point of departure for this work is a result of Kahn on the hard-core model.

When H = Hind with V (Hind) = {0, 1} and E(Hind) = {00, 01}, the set of vertices of

G mapped to 1 forms an independent set in G, and Hom(G,Hind) can be identified
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with I(G), the set of independent sets in G. For each λ > 0, the hard-core model

on G is the probability distribution hc(λ) on I(G) that assigns to each I ∈ I(G) a

probability proportional to λ|I|. One of the oldest and most studied spin models in

statistical physics, this is a simple mathematical model of the occupation of space

(represented byG) by particles of non-negligible size. The model can easily be realized

as a spin model with distribution pΛ given by assigning weights λ0 = 1 and λ1 = λ

to the vertices of Hind. See Figure 5.1.

1 λ

Figure 5.1. The graph Hind with weighting λ0 = 1 and λ1 = λ.

Kahn [39] studied this model on a regular bipartite graph G. He proved that

for all fixed λ > 0, the model exhibits a phase coexistence in the sense that if G has

equipartition E∪O then most hc(λ) independent sets tend to come either mostly from

E or mostly from O, in the sense that the size of an independent set chosen according

to hc(λ) is concentrated close to λ/(2(1 + λ)), which is exactly the expected size of

an independent set chosen according to the distribution that half the time picks a

hc(λ) independent set from E and half the time picks from O. The following theorem

([39, Theorem 1.4 & Corollary 1.5]) formalizes this.

Theorem 5.1.1 (Kahn, 2001 [39]). Let λ > 0 be fixed. There are positive constants

c1, c2, c3 and c4 (depending on λ) such that for every d-regular bipartite graph G on
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n vertices, the following two statements hold. Firstly, for every ε ≥ c1/
√
d, if I is

chosen from I(G) according to the distribution hc(λ) then

Pr

(∣∣∣∣|I| − λn

2(1 + λ)

∣∣∣∣ ≥ εn

)
≤ c2ε

−12−c3ε
2n.

Secondly, ∣∣∣∣E(|I|)
n
− λ

2(1 + λ)

∣∣∣∣ ≤ c4ζ

where

ζ = max

{
1√
d
,

√
log n

n

}
. (5.1)

In particular, a uniformly chosen independent set (λ = 1) from a regular bipartite

graph consists, with high probability, of close to one quarter of the vertices. While

this corollary may seem more natural than the formulation of Theorem 5.1.1, it is

worth noting that in order to prove the theorem in the special case of λ = 1 it is

necessary (at least using the entropy methods of [39]) to pass to the more general

weighted model first. Similarly, it might seem more natural in the present chapter

to focus on the structure of uniform H-colorings, but we are unable to obtain any

results without introducing weights.

From (5.1) we see that Theorem 5.1.1 only gives a concentration result when we

consider families of graphs with d going to infinity. This is not just an artifact of

the proof. For families of graphs with d fixed (and only n going to infinity), the

behavior of E(|I|)/n depends very much on the particular choice of family. As an

example, consider the case d = 2. If Gn is the disjoint union of n/4 copies of the

cycle C4, and I is chosen uniformly from I(G), then E(|I|)/n is easily seen to be

concentrated close to 2/7. If, however, Gn is the disjoint union of n/6 copies of the

cycle C6, then E(|I|)/n is concentrated close to 5/18. For this reason we implicitly

assume throughout that d is going to infinity.
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We now set up some notation that allows us to state our main result, which

is an extension of Theorem 5.1.1 to arbitrary weighted H-colorings. This notation

established in Section 2.3 will be used here and it is a good idea to review that section

before continuing on with the remainder of this chapter. From the remainder of this

chapter, whenever H and Λ are mentioned, it will be assumed that H is a finite graph

without multiple edges but perhaps with loops, and that Λ is a set of positive weights

indexed by the vertices of H. Recall that for A,B ⊆ V (H) we write A ∼ B if for all

u ∈ A and v ∈ B we have u ∼H v, and set

ηΛ(H) = max {λAλB : A ∼ B}

where λ• =
∑

i∈• λi. (We will abuse notation and write λH for λV (H).) Also recall

that

MΛ(H) = {(A,B) ∈ V (H)2 : A ∼ B, λAλB = ηΛ(H)}.

Next define

a+
Λ(k) =

max
{
λAλk1{k∈B} + λBλk1{k∈A} : (A,B) ∈MΛ(H)

}
2ηΛ(H)

and define a−Λ(k) similarly, with max replaced by min. (After the statement of The-

orem 5.1.4, we will give some explicit examples to illuminate these definitions.) We

make a few remarks regarding the definitions of a+
Λ(k) and a−Λ(k). Note that if k

does not appear in any (A,B) ∈ MΛ(H) then a+
Λ(k) = 0 and that if there is a

pair (A,B) ∈ MΛ(H) in which k does not appear then a−Λ(k) = 0. Note also that

a−Λ(k) ≤ a+
Λ(k). Finally, note that a+

Λ(k) and a−Λ(k) both take the form

λk1{k∈A}
2λA

+
λk1{k∈B}

2λB

for some (A,B) ∈ MΛ(H). We may interpret this quantity as the expected propor-

77



tion of vertices mapped to k in a pure-(A,B) coloring chosen according to pΛ, i.e.,

a pΛ-chosen H-coloring subject to the condition that all vertices from one partition

class of G get mapped to A and all from the other class get mapped to B.

Finally, for every ε > 0 and k ∈ V (H) define

Ik(ε) = [0, a−Λ(k)− ε) ∪ (a+
Λ(k) + ε, 1].

Before stating our main result, we motivate it by considering weighted H-colorings

of Kd,d, the complete bipartite graph with d vertices in each partition class, for some

fixed H and Λ. The adjacency structure of Kd,d ensures that all H-colorings are pure-

(A,B) for some (A,B) with A ∼ B, and that moreover all but a vanishing proportion

(in d) of ZΛ(Kd,d, H) comes from pure-(A,B) colorings for some (A,B) ∈ MΛ(H).

It follows that for each k ∈ V (H), in an H-coloring chosen according to pΛ we have

that with probability 1− o(1) the proportion of vertices of Kd,d mapped to k will be

between a−Λ(k)− o(1) and a+
Λ(k) + o(1). Our main result, which we now state, asserts

that this property of Kd,d is essentially shared by all d-regular graphs.

Theorem 5.1.2. Fix H and Λ. There are positive constants c1, c2, c3 and c4 (de-

pending on H and Λ) such that for every d-regular bipartite graph G on n vertices,

the following two statements hold. Firstly, for every ε ≥ c1/
√
d and k ∈ V (H) we

have

pΛ (s(k, f) ∈ Ik(ε)) ≤ c2ε
−12−c3ε

2n. (5.2)

Secondly, for each k ∈ V (H) we have

p̄Λ(k) ∈
[
a−Λ(k)− c4ζ, a

+
Λ(k) + c4ζ

]
(5.3)

where ζ is as defined in (5.1).

In other words, for regular bipartite G the distribution pΛ is concentrated on H-
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colorings for which, for every k ∈ V (H), the proportion of vertices mapped to k is

roughly between a−Λ(k) and a+
Λ(k).

We prove Theorem 5.1.2 in Section 5.2; the proof goes along the following lines.

We upper bound the contribution to ZΛ(G,H) from those f ∈ Hom(G,H) with

|f−1(k)|/n = γ ≥ a+(k) + ε by ZΛ(k,δ)(G,H)/(1 + δ)γn for some suitably small δ > 0

(where Λ(k, δ) is obtained from Λ by multiplying λk by 1 + δ and leaving all other

λi unchanged). We in turn upper bound ZΛ(k,δ)(G,H) using a result of Galvin and

Tetali [32] to the effect that for all H and Λ and all d-regular bipartite graphs G on

n vertices we have

ZΛ(G,H) ≤ ZΛ(Kd,d, H)
n
2d (5.4)

(where recall Kd,d is the complete bipartite graph with d vertices in each partition

class). We upper bound ZΛ(k,δ)(Kd,d, H) in terms of ηΛ(k,δ)(H), and in the end we

get, using our choice of a+
Λ(k) and for some sufficiently small δ, an upper bound on

the contribution that is significantly smaller than a trivial lower bound on ZΛ(G,H),

showing that those f ∈ Hom(G,H) with |f−1(k)|/n ≥ a+(k) + ε do not contribute

greatly to the partition function. The same strategy works for |f−1(k)|/n falling

significantly below a−(k). The details are given in Section 5.2.

When a−Λ(k) = a+
Λ(k) for all k, we obtain a single vector around which (s(k, f) :

k ∈ V (H)) is concentrated for f chosen according to pΛ.

Corollary 5.1.3. Fix H and Λ. Suppose that for all k ∈ V (H) there is an aΛ(k)

such that a−Λ(k) = a+
Λ(k) = aΛ(k). Then there are positive constants c1, c2, c3 and c4

(depending on H and Λ) such that for every d-regular, bipartite graph G on n vertices

the following two statements hold. Firstly, for ε ≥ c1/
√
d we have

pΛ

(∣∣∣∣(s(k, f))k∈V (H) − (aΛ(k))k∈V (H)

∣∣∣∣
∞ ≥ ε

)
≤ c2ε

−12−c3ε
2n.
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Secondly, we have

∣∣∣∣(p̄Λ(k))k∈V (H) − (aΛ(k))k∈V (H)

∣∣∣∣
∞ ≤ c4ζ

with ζ as in (5.1).

A situation in which Corollary 5.1.3 applies is when either MΛ(H) = {(A,A)}

or MΛ(H) = {(A,B), (B,A)} (for some A 6= B). This is in a sense the generic

situation. Indeed, for every H, if the weights λi are chosen from any continuous

distribution supported on {x ∈ R|V (H)| : x > 0}, then with probability 1 we will have

MΛ(H) of the form described. As we will see in Example C below, Corollary 5.1.3

also applies in some other natural situations.

The gap between a−Λ(k) and a+
Λ(k) (if there is one) cannot be closed in general, as

the first part of the following theorem shows.

Theorem 5.1.4. Fix H and Λ. There is a family {Gd}∞d=1 of d-regular bipartite

graphs, a function g(d) = o(1) and a positive constant c (depending on H and Λ)

such that for each k ∈ V (H),

pΛ

(∣∣s(k, f)− a+
Λ(k)

∣∣ ≤ g(d)
)

pΛ

(∣∣s(k, f)− a−Λ(k)
∣∣ ≤ g(d)

)
 ≥ c− g(d).

There is also a family {G′d}∞d=1 of d-regular bipartite graphs, a function g(d) = o(1)

and (for each k ∈ V (H)) an aΛ(k) satisfying a−Λ(k) ≤ aΛ(k) ≤ a+
Λ(k) such that for

each k,

pΛ (|s(k, f)− aΛ(k)| ≤ g(d)) ≥ 1− g(d)

and

|p̄Λ(k)− aΛ(k)| ≤ g(d).

We prove Theorem 5.1.4 in Section 5.3. The graphs Gd we exhibit will be suitably
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chosen random regular graphs, and we will use the expansion of these graphs to show

that all but o(1) of pΛ is concentrated on pure-(A,B) colorings for (A,B) ∈MΛ(H).

The graphs G′d will be disjoint unions of complete bipartite graphs on 2d vertices.

Basic concentration estimates together with the independence of the components will

give the claimed result.

We now explore the consequences of Theorem 5.1.2 for some specific choices of H

and Λ.

Example A (Hard-core model) Let H = Hind be as described earlier, with λ0 = 1

and λ1 = λ. We have seen that an element of Hom(G,Hind) chosen according to pΛ

is a configuration in the hard-core model on G with activity λ. With these choices

we have MΛ(Hind) = {({0}, {0, 1}), ({0, 1}, {0})} and

a−Λ(1) = a+
Λ(1) =

λ

2(1 + λ)

and so Theorem 5.1.2 indeed generalizes Theorem 5.1.1, as claimed.

Example B (Multistate hard-core model) Let H = Hk be the graph on vertex

set {0, . . . , k} with i ∼Hk j if and only if i + j ≤ k, and λi = λi for some fixed

λ > 0. An element of Hom(G,Hk) chosen according to pΛ is exactly a configuration

of the multistate hard-core (or multicast communications) model on G with activity

λ. This model allows multiple particles (up to and including k) at each site, with

the restriction that there are no more than k particles in total across each edge.

A generalization of the hard-core model (the case k = 1), it has been studied in a

variety of contexts: in communications [57], statistical physics [51] and combinatorics

[31]. For k even the unique pair (A,A) ∈ MΛ(Hk) has A = {1, . . . , k/2}, while for

k odd, say k = 2` + 1, we have MΛ(Hk) = {(A,B), (B,A)} with A = {1, . . . , `}

and B = {1, . . . , ` + 1}. In either case Corollary 5.1.3 shows that for this model

(s(k, f) : k ∈ V (H)) is concentrated close to a single value for f chosen according to
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pΛ.

Example C (Uniform proper q-colorings) Let H = Kq, the complete graph on q

vertices, and Λ = (1, . . . , 1). An element of Hom(G,Kq) chosen according to pΛ

corresponds to a uniform proper q-coloring of G. In this case elements of MΛ(Kq)

consist of all partitions of V (Kq) into two classes as near equal in size as possible,

and an easy calculation gives that for all colors k

a−Λ(k) =
1

2dq/2e
and a+

Λ(k) =
1

2bq/2c

so that in particular a−Λ(k) = a+
Λ(k) = 1/q for q even, and we get the following

corollary of Theorem 5.1.2.

Corollary 5.1.5. Fix q ∈ N. There are positive constants c1, c2 and c3 (depending

on q) such that for every d-regular, bipartite graph G on n vertices, the following

statements hold. If χ is a uniformly chosen q-coloring of G and ε ≥ c1/
√
d then for

q even

Pr

(
∃k ∈ V (H) :

∣∣∣∣ |χ−1(k)|
n

− 1

q

∣∣∣∣ ≥ ε

)
≤ c2ε

−12−c3ε
2n,

and for q odd

Pr
(
∃k ∈ V (H) : |χ

−1(k)|
n
≤ 1

q+1
− ε
)

Pr
(
∃k ∈ V (H) : |χ

−1(k)|
n
≥ 1

q−1
+ ε
)
 < c2ε

−12−c3ε
2n.

Recall that a coloring is said to be equitable if the number of vertices in any two

color classes differ by at most 1; that is, the partition of vertices among the color

classes is as uniform as possible. So for even q, Corollary 5.1.5 states that almost all

proper q-colorings of a regular bipartite graph are “almost equitable”. Of course, by

the symmetry of Kq we have E(|χ−1(k)|) = n/q for all k in this case.
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5.2 Proof of Theorem 5.1.2

We use (5.4) to upper bound ZΛ(G,H). For each of the at most 4|V (H)| ordered

pairs A ∼ B of subsets of H, the contribution to ZΛ(Kd,d, H) from those f with one

partition class of Kd,d mapped onto A and the other partition class mapped onto B

is at most

(λAλB)d

and so

ZΛ(G,H) ≤ ZΛ(Kd,d, H)
n
2d ≤ ηΛ(H)

n
2 4

n|V (H)|
2d = ηΛ(H)

n
2C

n
d , (5.5)

where C is a positive constant depending only on H.

On the other hand, we get a lower bound (with any λAλB = ηΛ(H)) of

ZΛ(G,H) ≥ ηΛ(H)
n
2 . (5.6)

We now use (5.5) and (5.6) to prove (5.2). Fix k ∈ V (H) and an integer nk

satisfying 0 ≤ nk ≤ n and

nk
n
∈ [0, a−Λ(k)− ε) ∪ (a+

Λ(k) + ε, 1] (= Ik(ε)) .

Write ck(nk) for the contribution to ZΛ(G,H) from those f ∈ Hom(G,H) with

|f−1(k)| = nk. We aim to obtain an upper bound on ck(nk) (via (5.5)) which is

substantially lower than the lower bound (5.6), indicating that this term does not

contribute greatly to ZΛ(G,H).

We begin by considering nk for which

γ :=
nk
n

= a+
Λ(k) + ε′

for some ε′ satisfying ε ≤ ε′ ≤ 1− a+
Λ(k). For any δ > 0 let Λ(k, δ) be obtained from
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Λ by replacing λk with (1 + δ)λk and leaving all other λi’s unchanged (and let λ(k,δ),A

denote
∑

j∈A λj with λj in Λ(k, δ)). By (5.5) we have

(1 + δ)nkck(nk) ≤ ZΛ(k,δ)(G,H)

≤ ηΛ(k,δ)(H)
n
2C

n
d . (5.7)

Before proceeding, we need to understand ηΛ(k,δ)(H). Viewed as a function of

δ, the quantity λ(k,δ),Aλ(k,δ),B (for (A,B) ∈ MΛ(H)) is of the form a + bδ + cδ2

where a = ηΛ(H), b = λAλk1{k∈B} + λBλk1{k∈A} and c = λ2
k1{k∈A∩B}. From this

formulation we can easily identify that set ∅ 6= S+
Λ (k,H) ⊆ MΛ(H) with the prop-

erty that for all δ > 0, all (A,B) ∈ MΛ(H) and all (A′, B′) ∈ S+
Λ (k,H) we have

λ(k,δ),A′λ(k,δ),B′ ≥ λ(k,δ),Aλ(k,δ),B: S+
Λ (k,H) consists of all those (A′, B′) ∈ MΛ(H)

for which b is maximum and (subject to this condition) c is maximum. This latter

condition simply means that if some of the pairs that maximize b have c > 0 we only

take those pairs, and if they all have c = 0 we take all pairs.

It is easily seen that there is a sufficiently small δ+
k > 0 (depending on H and Λ)

with the property that for all 0 < δ < δ+
k and (A′, B′) ∈ S+

Λ (k,H) we have (A′, B′) ∈

MΛ(k,δ)(H). Choose one such, (A+, B+), arbitrarily. Note that by construction

a+
Λ(k) =

(λA+)λk1{k∈B+} + (λB+)λk1{k∈A+}

2ηΛ(H)
=
λk1{k∈A+}

2λA+

+
λk1{k∈B+}

2λB+

.

Now combining (5.6) and (5.7) and choosing δ < δ+
k we have

pΛ(|f−1(k)| = nk) =
ck(nk)

ZΛ(G,H)

≤ C
n
d

(
(λ(k,δ),A+)(λ(k,δ),B+)

(λA+)(λB+)(1 + δ)2(a+
Λ (k)+ε′)

)n
2

. (5.8)

Our aim is to show that there is a positive constant c (depending on H and Λ) such
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that for all 0 < ε′ ≤ 1− a+
Λ(k) we can find a 0 < δ < δ+

k for which

(λ(k,δ),A+)(λ(k,δ),B+)

(λA+)(λB+)(1 + δ)2(a+
Λ (k)+ε′)

≤ 2−cε
′2
. (5.9)

Combining this with (5.8) we see that if ε > c/
√
d for some suitably large positive

constant c (depending on Λ and H) then for all ε < ε′ ≤ 1 − a+
Λ(k) for which

a+(k)n+ ε′n is an integer we have

pΛ

(
|f−1(k)| = a+(k)n+ ε′n

)
≤ 2−c

′ε′2n

for a suitable positive c′, and so

pΛ

(
|f−1(k)| ≥ a+(k)n+ εn

)
≤

∑
`≥εn

2−
c′`2
n

≤ 2−c
′ε2n
∑
`≥0

2−2`c′ε

≤ c′′ε−12−c
′ε2n (5.10)

for suitably large c′′ (depending on c′). An almost identical argument (the details of

which we leave to the reader) yields

pΛ

(
|f−1(k)| ≤ a−(k)n− εn

)
≤ c′′ε−12−c

′ε2n (5.11)

for ε > c/
√
d. Combining (5.10) and (5.11) gives (5.2).

We now turn to (5.9). Observe that it is enough to prove (5.9) for all 0 < ε′ ≤ ε0,

where ε0 ≤ 1−a+
Λ(k) may be any constant (perhaps depending on H and Λ). Indeed,

for any ε′ ≥ ε0 we know that there is a choice of δ < δ+
k for which

(λ(k,δ)A+)(λ(k,δ),B+)

(λA+)(λB+)(1 + δ)2(a+
Λ (k)+ε′)

≤
(λ(k,δ),A+)(λ(k,δ)B+)

(λA+)(λB+)(1 + δ)2(a+
Λ (k)+ε0)

≤ 2−cε
2
0 .
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Setting c′ = cε2
0 we have 2−cε

2
0 ≤ 2−c

′ε′2 for ε′ ≥ ε0 and 2−cε
′2 ≤ 2−c

′ε′2 for ε′ < ε0, so

we may replace c with c′ to obtain the result for the full range of ε′. From now on

we will assume that ε′ < ε0, for a certain ε0 that will be specified later.

Setting

γA =
λk1{k∈A+}

2λA+

, γB =
λk1{k∈B+}

2λB+

(so a+
Λ(k) = γA + γB) the left-hand side of (5.9) becomes

(λA+) + δλk1{k∈A+}

(1 + δ)2γA+ε′(λA+)
×

(λB+) + δλk1{k∈B+}

(1 + δ)2γB+ε′(λB+)
. (5.12)

If either A+ = {k} or k 6∈ A+ then the first term of (5.12) is (1 + δ)−ε
′

so that in this

case we have that for any 0 < ε′ ≤ 1 there is a small enough δ > 0 with

(λA+) + δλk1{k∈A+}

(1 + δ)2γA+ε′(λA+)
≤ 2−cε

′ ≤ 2−cε
′2
,

where c is a positive constant depending on H and Λ (the last inequality using ε′ ≤ 1).

If k ∈ A+ and |A+| > 1 then the first term of (5.12) takes the form

(λA+) + δλk
(1 + δ)2γA+ε′(λA+)

≤ 1 + δ(λk/λA+)

1 + δ(2γA + ε′)

= 1− δε′

1 + δ(λk/(λA+) + ε′)

≤ 1− δε′

3
, (5.13)

with (5.13) valid for sufficiently small ε′. Now taking δ = ε′ (having chosen ε0 small

enough that this choice is allowed, and that (5.13) holds), we get a bound of 2−cε
′2

on the first term of (5.12), where c is a positive constant depending on H and Λ only.

Repeating this analysis for the second term of (5.12), we obtain (5.9) and thus

(5.2).

Applying (5.2) with ε = c
√

(log n)/n (if (log n)/n > 1/d) and ε = c/
√
d (other-
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wise), where c ≥ c1 satisfies c2c3 ≥ 1, we easily obtain (5.3), based on the observation

that in both cases

EΛ(s(k, f)) ≤ (a+
Λ(k) + ε)

(
1− c2ε

−12−c3ε
2n
)

+ c2ε
−12−c3ε

2n

with a similar lower bound involving a−Λ(k).

5.3 Proof of Theorem 5.1.4

The graph Gd will be a random d-regular bipartite graph on n = cd/ log d ver-

tices (where c > 1 will depend on the particular H and Λ under consideration).

A standard method of constructing such a graph is as follows. We begin with a

set of size nd consisting of nd/2 type I vertices {uij : 1 ≤ i ≤ n/2, 1 ≤ j ≤ d}

and nd/2 type II vertices {vij : 1 ≤ i ≤ n/2, 1 ≤ j ≤ d}. We then choose a uni-

formly random perfect matching from the type I vertices to the type II vertices,

and turn this into a d-regular bipartite multigraph on n vertices with bipartition

classes E = {u1, . . . , un/2},O = {v1, . . . , vn/2} by, for each i = 1, . . . , n/2, identifying

ui,1, . . . , ui,d with ui and vi,1, . . . , vi,d with vi. Finally, we condition on the result being

a simple graph. This process generates a d-regular bipartite graph on n vertices with

bipartition classes E , O, uniformly (see for example [66]).

O’Neil [53] showed that the probability that the multigraph produced by this

process is simple is (for large enough d) at least e−d
2/3. It follows that if we establish

that the multigraph produced (before conditioning on being simple) has a certain

property with probability at least 1 − e−d
2

(say), then there is a simple d-regular

graph with that property.

We want to establish that for large enough d the multigraph has a number of

desirable expansion properties. First, we want to show that for each C log d ≤ j ≤

3n(log d)/d (for some constant C > 0, depending on c), every subset of E of size j and
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every subset of O of size j has at least αj distinct neighbors where α = d/(C log d).

For a particular such j, the probability that the graph fails to have this property is

(by a union bound) at most

2

(
n/2

j

)(
n/2

αj

)
(αjd)jd

(nd/2)jd
≤

(
en

2αj

)2αj (
2αj

n

)jd
= e

2jd
C log d

(
2jd

Cn log d

)jd− 2jd
C log d

≤ e
2jd

C log d

(
2jd

Cn log d

)jd/2

(for large enough d, depending on C) with the first inequality using
(
n
r

)
≤ (en/r)r.

For j ≥ d log d we bound 2jd/(Cn log d) ≤ 1/2 (valid for C ≥ 12) so that for large

enough d (depending on C)

e
2jd

C log d

(
2jd

Cn log d

)jd/2
≤ 1.4−jd ≤ e−2d2

.

For j ≤ d log d we instead bound (2dj)/(Cn log d) ≤ d2/n (valid for C ≥ 2). We now

have

e
2jd

C log d

(
2jd

Cn log d

)jd/2
≤ exp

{
2jd log d− jd2 log c

2 log d

}
≤ exp

{
−jd2 log c

3 log d

}

(again for large d, recalling n = cd/ log d), which is at most e−2d2
for j ≥ C log d

for suitable C depending on c. Since there are at most n = cd/ log d choices for j,

the probability that the graph fails to have the desired property for some j is at

most e−d
2
. If the process results in a simple graph, then we trivially get the same

expansion for subsets of E or O of size at most C log d, since for 1 ≤ j ≤ C log d there

is a trivial lower bound of d on the neighborhood size of a set of size j, and we have

d ≥ jd/(C log d) for j in this range.

Next we establish that the graph has the property that for every subset A of E of
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size 3n(log d)/d and every subset B of O of size 3n(log d)/d, there is an edge joining a

vertex of A to a vertex of B. By a union bound, the probability that the multigraph

fails to have the property is at most

(
n/2

βn

)2
(nd/2− βnd)βnd

(nd/2)βnd
≤ exp

{
2βn log(e/(2β))− 2β2dn

}
where β = 3(log d)/d. With n = cd/ log d, this is at most e−d

2
for large enough d

(depending on c). We have shown the following.

Lemma 5.3.1. Fix c > 1. There are d0 ≥ 1 and positive C, both depending on c,

such that for all d ≥ d0 there is a d-regular, bipartite graph Gd on n = cd/ log d vertices

with bipartition classes E and O satisfying the following:

1. Every subset of E or O of size j, with 1 ≤ j ≤ 3n(log d)/d, has at least jd/(C log d)
neighbors.

2. Every pair of subsets each of size 3n(log d)/d, one from E and one from O, have
an edge between them.

We now fix such a Gd and study ZΛ(Gd, H). Given f ∈ Hom(Gd, H) set

E(f) = {k ∈ V (H) : |f−1(k) ∩ E| ≥ 3n(log d)/d}

and

O(f) = {k ∈ V (H) : |f−1(k) ∩ O| ≥ 3n(log d)/d}.

Clearly both E(f) and O(f) are non-empty, and by Lemma 5.3.1, we have E(f) ∼

O(f) (that is, everything in E(f) is adjacent to everything in O(f)). So we can

partition Hom(Gd, H) into classes indexed by pairs (A,B) with A ∼ B. Write C(A,B)

for the class corresponding to (A,B). We want to establish that for (A,B) ∈MΛ(H)

we have ∑
f∈C(A,B)

wΛ(f) = (1 + o(1))ηΛ(H)n/2 (5.14)
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while for all other (A,B) we have

∑
f∈C(A,B)

wΛ(f) = o
(
ηΛ(H)n/2

)
, (5.15)

where all asymptotic terms are (unless stated otherwise) as d → ∞. From this we

see that

ZΛ(Gd, H) = |MΛ(H)|(1 + o(1))ηΛ(H)n/2,

and that all but a vanishing proportion of ZΛ(Gd, H) comes from pure-(A,B) col-

orings (with (A,B) ∈ MΛ(H)) in which E is mapped to A and O to B, with each

such (A,B) contributing equally to ZΛ(Gd, H); this is enough to give the first part

of Theorem 5.1.4. Indeed, fix (A,B) ∈ MΛ(H). A proportion (1 + o(1))/|MΛ| of

ZΛ(Gd, H) is obtained by independently coloring E from A and O from B according

to the given weights. Fix k ∈ A. We claim that with very high probability, a pro-

portion very close to λk/λA of E gets mapped to k. Set p = λk/λA and m = n/2.

The number Uk of vertices of E mapped to k is a binomial random variable with

parameters m and p. So by Tchebychev’s inequality,

Pr
(
|Uk − pm| ≥ logm

√
mp(1− p)

)
≤ 1

log2m
.

This shows that the proportion of vertices mapped to k in a pure-(A,B) coloring is

very close to

λk1{k∈A}
2λA

+
λk1{k∈B}

2λB

with high probability. Applying this with (A,B) = (A+, B+) and (A,B) = (A−, B−),

the first part of Theorem 5.1.4 follows.

The lower bound in (5.14) is obtained by considering pure-(A,B) colorings with

E mapped to A and O to B. To establish (5.15) and the upper bound in (5.14), fix

0 ≤ j ≤ 3n(log d)/d, let q = |V (H)|, and assume that d is large. We consider the
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contribution to
∑

f∈C(A,B) wΛ(f) from those f ∈ C(A,B) in which, for each k 6∈ A∪B,

we have at most j vertices mapped to k, and we have at least one k′ 6∈ A ∪B whose

preimage has size j. To bound the contribution from these f , we first bound the

number of ways of locating the vertices that are mapped to k for each k /∈ A ∪ B

by
(∑

i≤j
(
n
i

))q
. The contribution to the sum of the weights from these exceptional

vertices is at most (λH)qj. For the contribution from the remaining vertices, we deal

separately with the cases (A,B) ∈ MΛ(H) and (A,B) 6∈ MΛ(H). For (A,B) 6∈

MΛ(H), we simply upper bound the contribution by (λAλB)n/2, leading to

∑
f∈C(A,B)

wΛ(f) ≤ (λAλB)
n
2

(∑
i≤j

(
n

i

))q

(λH)qj

= o
(
ηΛ(H)n/2

)
,

as required. For (A,B) ∈ MΛ(H), consider a k′ that has preimage size j. We claim

that there are at least jd/(2C log d) vertices which, in the specification of f , need to

be mapped to A∪B and which are adjacent to at least one of the j vertices mapped

to k′. Indeed, by Lemma 5.3.1, the neighborhood size of the j vertices mapped to

k′ is at least jd/(C log d), and at most qj vertices have been mapped to vertices

from outside A ∪ B, so there are at least jd/(C log d) − qj > jd/(2C log d) vertices

that are adjacent to a vertex mapped to k′ and need to be mapped to vertices from

A ∪ B. Since k′ cannot be adjacent to everything in A, nor can it be adjacent to

everything in B (else we would not have (A,B) ∈ MΛ(H)), our choice on these at

least jd/(2C log d) vertices is restricted to a proper subset of A∪B; the contribution

we get from the remaining vertices (those mapped to A ∪B) is therefore at most

(λAλB)
n
2

(1 + ε)
jd

2C log d

where ε > 0 (depending onH and Λ) can be chosen uniformly for all A, B. Combining
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these observations we get that

∑
f∈C(A,B)

wΛ(f) ≤ ηΛ(H)
n
2

(∑
i≤j
(
n
i

))q
(λH)qj

(1 + ε)
jd

2C log d

.

If j = 0, the right-hand side above is (λAλB)n/2. For j > 0 it can be bounded above

by

ηΛ(H)n/2

(
1

(1 + ε′)
d

log d

)j

for some ε′ > 0 (depending on H and Λ) for all j in the range 1 ≤ j ≤ 3n(log d)/d,

as long as c is sufficiently small (recall n = cd/ log d). Summing over j gives the upper

bound in (5.14).

We now turn to the second part of Theorem 5.1.4. We take G′d to be the disjoint

union of m copies of Kd,d where m = m(d) = ω(1). Fix k ∈ V (H). Let X be the

number of vertices mapped to k in a pΛ-chosen H-coloring of G′d, and Xi the number

mapped to k in the ith copy of Kd,d. Define aΛ(k) by E(Xi) = 2daΛ(k), and note that

Var(Xi) ≤ 4d2. Since X =
∑m

i=1 Xi we have E(X) = 2dmaΛ(k) and Var(X) ≤ 4md2.

By Tchebychev’s inequality,

P (|X − 2dmaΛ(k)| > 2dmε) = P (|X/2dm− aΛ(k)| > ε) ≤ 1/mε2.

So choosing ε = o(1) with mε2 = ω(1) (for example, ε = 1/m1/3), the probability

that the proportion of vertices mapped to k in a pΛ-chosen H-coloring of G′d differs

from aΛ(k) by more than o(1) is at most o(1). The claimed bound on s(k, f) follows,

as does the estimate of p̄Λ(k).
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5.4 Results for non-regular graphs

The condition that G be regular can be relaxed quite a bit; we simply require that

G has not too many low degree vertices, that the sum of the degrees of high degree

vertices is not too large, and that the difference between the sizes of the partition

classes is not too great. Here we state the theorems and describe the main differences

in the proofs; for details we refer the reader to [20].

Theorem 5.4.1. Fix H and Λ. There are positive constants c1, c2, c3 and c4 (de-

pending on H and Λ) such that the following statements hold. Let G be a bipartite

graph on n vertices with bipartition classes E and O (with |O| ≥ |E|). Let d be an

arbitrary positive parameter. Let ε satisfy ε ≥ c1

√
h(G, d) where

h(G, d) =
1

d
+
|{v ∈ E : d(v) < d}|

n
+
|O| − |E|

n
+

1

dn

∑
v∈O

(d(v)− d)1{d(v)≥d}.

Then for each k ∈ V (H) we have (5.2), as well as (5.3) with now

ζ = max

{√
h(G, d),

√
log n

n

}
.

If G is d-regular then h(G, d) = 1/d and so Theorem 5.4.1 is a generalization of

Theorem 5.1.2. The proof of Theorem 5.4.1 follows the same lines as already described

for Theorem 5.1.2, except that we now require a new upper bound on ZΛ(G,H). We

modified the entropy-based proof of (5.4) to obtain the following, which is just what

we need for Theorem 5.4.1.

Theorem 5.4.2. Fix H and Λ, and suppose that λi > 1 for all i ∈ V (H). Let G be

any bipartite graph on bipartition classes E and O, with |O| ≥ |E|, and let d be an

arbitrary positive parameter. Then

ZΛ(G,H) ≤ (λH)|{w∈E:d(w)<d}|
∏
v∈O

ZΛ(Kd(v),d, H)
1
d .
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Note that if G is d-regular then Theorem 5.4.2 reduces to (5.4). Note also that

the condition imposed on the λi by Theorem 5.4.2 is not restrictive: if Λ′ is obtained

from Λ by multiplying all λi ∈ Λ by the same positive constant then pΛ(n1(f) = ·) =

pΛ′(n1(f) = ·) and so we may assume without loss of generality that min{λi : i ∈

V (H)} > 1.

Theorem 5.4.1 is only of interest in situations where h(G, d) can be shown to be

small (as, for example, when G is d-regular). A natural situation where we can say

something about h(G, d) is in percolation. Given a graph G and a parameter 0 ≤ p ≤

1, let Gp be a random subgraph of G obtained by deleting each edge independently

with probability 1− p (so the probability that Gp = H is p|E(H)|(1− p)|E(G)|−|E(H)|).

A corollary of Theorem 5.4.1 is the following “phase transition” phenomenon for

percolation on a regular bipartite graph. If G is a d-regular bipartite graph and p is

much greater than 1/d, then the typical appearance of a pΛ-chosen H-coloring of Gp

is similar to that of a pΛ-chosen H-coloring of G, whereas if p is much smaller than

1/d, then as long as there is some k ∈ V (H) with λk/λH 6∈ [a−Λ(k), a+
Λ(k)], these two

objects have different appearances.

Corollary 5.4.3. Fix H and Λ. Let f(d) = ω(1). There is a function g(d) = o(1)

(depending on f(d)) such that if {Gd}∞d=1 is a sequence of d-regular bipartite graphs

and p satisfies p ≥ f(d)/d, then with probability at least 1−g(d) the graph Gd
p satisfies

that for each k ∈ V (H) we have

pΛ (s(k, f) ∈ Ik(g(d))) ≤ g(d)

and

p̄Λ(k) ∈
[
a−Λ(k)− g(d), a+

Λ(k) + g(d)
]
.

If on the other hand p ≤ 1/(f(d)d) then with probability at least 1 − g(d) we have
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that for each k ∈ V (H),

pΛ

(∣∣∣∣s(k, f)− λk
λH

∣∣∣∣ ≤ g(d)

)
≥ 1− g(d)

and ∣∣∣∣p̄Λ(k)− λk
λH

∣∣∣∣ ≤ g(d).

For the multicast model (Example B), for example, we have

a−Λ(0) = a+
Λ(0) =

1

2
(∑

i≤bk/2c λ
i
) +

1

2
(∑

i≤dk/2e λ
i
) > 1∑

i≤k λ
i

and so Corollary 5.4.3 shows a phase transition for this model. For the uniform

q-coloring model (Example C), on the other hand, Corollary 5.4.3 gives no infor-

mation about what happens as p crosses 1/d. Indeed, for uniform colorings we

have a−(k) = 1
2dq/2e and a+(k) = 1

2bq/2c for all k, and λk/λH = 1/q. Therefore

λk/λH ∈ [a−(k), a+(k)] for all colors k.

95



CHAPTER 6

H-COLORING TORI

6.1 Introduction and statement of results

There have been numerous papers devoted to the study of the space of H-colorings

of particular graphs and families of graphs, for various special instances of H. Some

recent papers (see for example [7], [9], [24], [32], and also chapter 5) have taken a

broader approach, treating the space of H-colorings for arbitrary H. This chapter

also falls into this latter category.

Many of the graphs G on which it is natural (from a statistical physics viewpoint)

to study Hom(G,H) are regular and bipartite. Examples include the infinite lattice

Zd, the hexagonal lattice, and the Bethe lattice (regular tree). For this reason much

attention has been focused on this special case, and in this chapter that is also where

our focus lies. The notation established in Section 2.3 will be used here and it is

a good idea to review that section before continuing on with the remainder of this

chapter.

In [32], an entropy approach was taken to obtain nearly matching upper and lower

bounds on |Hom(G,H)| for arbitrary H and d-regular bipartite G, specifically

η(H)
|V (G)|

2 ≤ |Hom(G,H)| ≤ η(H)
|V (G)|

2 2
|V (G)||V (H)|

2d . (6.1)

In Chapter 5, this work was extended considerably. For all H and k ∈ V (H), optimal

numbers a+(k) and a−(k) are constructed with the following property: for each

ε > 0, if f is uniformly chosen from Hom(G,H), then (for suitably large d) with high
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probability the proportion of vertices of G mapped to k is between a−(k) − ε and

a+(k) + ε.

Let G be a bipartite graph with fixed bipartition E ∪ O. Recall that for A,B ⊆

V (H) with A ∼ B, a pure-(A,B) coloring is an f ∈ Hom(G,H) with f(u) ∈ A for

all u ∈ E and f(v) ∈ B for all v ∈ O. If G is regular and has n vertices, then the

number of pure-(A,B) colorings of G is (|A||B|)n/2. An intuition driving the results

of [32] and Chapter 5 is that in a certain sense, most f ∈ Hom(G,H) are close to

pure-(A,B) colorings for some (A,B) that maximizes |A||B| ∈ M(H).

Such an intuition cannot be formalized for all regular bipartite G — for example,

by the independence of the coloring on different components of a disconnected graph,

it is easy to see that the intuition cannot be true for a graph that consist of a large

number of small components (see e.g. the family {G′d}∞d=1 from Theorem 5.1.4). If,

however, we are working with connected graphs with reasonable expansion (meaning

that each subset of vertices from one partition class has a reasonably large number

of neighbors in the other class) then we might expect it to be true that most f ∈

Hom(G,H) are close to pure-(A,B) colorings for some (A,B). This is shown for

random regular bipartite graphs, for example, in Theorem 5.1.4; the proof critically

uses the excellent expansion of random graphs.

For other graphs with weaker but still good expansion we expect similar results.

One family of graphs that is of particular interest, given the statistical physics in-

terpretation of H-colorings, is the integer lattice Zd with the usual nearest neighbor

adjacency, together with its finite analog the discrete torus Zdm, the graph obtained

from an axis-parallel box in Zd by identifying opposite faces. These graphs have been

focus of study for particular homomorphism models (see e.g. [30] for independent

sets and [8] for proper colorings), as well as for general H-colorings (see e.g. [7]).

In Chapter 5 information is given about the number of occurrences of each color

in a uniformly chosen H-coloring of Zdm, but no information is given about how the
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vertices of a particular color are distributed between E and O. Some special cases of

this problem have been previously addressed, as we now discuss.

In [43], in the course of deriving the asymptotic formula

|Hom(Qd, Hind)| = (2
√
e+ o(1))22d−1

(6.2)

(as d → ∞), Korshunov and Sapozhenko showed that if I is a uniformly chosen

independent set from Qd (that is, if I is the preimage of the unlooped vertex in a

uniformly chosen f from Hom(Qd, Hind)), then with high probability I has size close

to 2d/4 and is contained almost entirely in a single partition class. Kahn [39] and

Galvin [26] extended these results to the case of I chosen from the set of independent

sets according to the hard-core distribution with parameter λ, that is, the distribution

in which each set I is chosen with probability proportional to λ|I| for some λ > 0

(Korshunov and Sapozhenko’s setting is λ = 1).

In [40], Kahn considered the set Hom(Qd,Z)/∼ (where Z is given a graph structure

by declaring consecutive integers to be adjacent, and ∼ is the equivalence relation

defined by h ∼ g if and only if h − g is a constant function). Answering a question

of Benjamini, Häggström and Mossel [4], he showed that if f is a uniformly chosen

element from this set (a “cube-indexed random walk”), then with high probability

f takes on only constantly many values (independent of d). Extending this work,

Galvin [23] showed that in fact f takes on only at most five (consecutive) values, that

f is constant on all but o(2d) (actually, at most g(d) for any g(d) = ω(1)) vertices on

one of the two bipartition classes of Qd, and that on the other partition classes each of

two values appear on (1/4− o(1))2d of the vertices. Using a correspondence between

Hom(Qd,Z)/∼ and Hom(Qd, K3), the results of [23] also answer the question of the

structure of a typical (uniformly chosen) proper 3-coloring of Qd. In the process of
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showing

|Hom(Qd, K3)| = (6e+ o(1))22d−1

(6.3)

it is shown in [23] that Hom(Qd, K3) may be partitioned into an exceptional subset

of size o(1)|Hom(Qd, K3)|, and six equal sized subsets, with the property that within

each of these six subsets, all colorings are constant on all but o(2d) (again, actually

at most g(d) for any g(d) = ω(1)) vertices on one of the two bipartition classes of

Qd, and on the other partition classes each of two colors appear on (1/4 − o(1))2d

of the vertices. Peled [55] has recently extended these results on the 3-coloring and

cube-indexed random walk models to more general tori.

One of the main purposes of this chapter is to extend these structural characteri-

zations of Hom(Qd, Hind) and Hom(Qd, K3) to arbitrary H and from Qd to Zdm for all

even m. We also extend to the class of probability distributions pΛ on Hom(Zdm, H)

(as defined in Section 2.3). Because of a technical limitation of one step in our proof,

all weights λi under consideration in this paper will be rational.

We will always think of d as the variable in our functions, with m, H and (when

present) Λ some fixed parameters, and so all implicit constants depend only on m, H

and Λ, but not on d. Where necessary we will always assume that d is large enough

to support our assertions.

Recall some basic notation as defined in Section 2.3: for S ⊆ Hom(Zdm, H) and

T ⊆ V (H) we write wΛ(S) for
∑

f∈S wΛ(f) and λT for
∑

k∈T λk. Set

ηΛ(H) = max {λAλB : A,B ⊆ V (H), A ∼ B}

and

MΛ(H) =
{

(A,B) ∈ V (H)2 : A ∼ B, λAλB = ηΛ(H)
}
.

We now state our first main result, a structural decomposition of Hom(Zdm, H) (in
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the presence of weight-set Λ) into finitely many classes of similar-looking colorings.

Theorem 6.1.1. Fix H, rational Λ and m ≥ 2 even. There is a partition of

Hom(Zdm, H) into |MΛ(H)|+ 1 classes as

Hom(Zdm, H) = DΛ(0) ∪
⋃

(A,B)∈MΛ(H)

DΛ(A,B)

with the following properties.

1. wΛ(DΛ(0)) ≤ 2−Ω(d)ZΛ(Zdm, H).

2. For each (A,B) ∈MΛ(H) and f ∈ DΛ(A,B), the number of vertices v ∈ E (resp.
O) with f(v) 6∈ A (resp. f(v) 6∈ B) is at most (m− Ω(1))d, and moreover all but
at most (m − Ω(1))d vertices w of O (resp. E) have the property that all colors
from A (resp. B) appear on N(w).

We prove Theorem 6.1.1 in Section 6.3. This decomposition already gives sig-

nificant information about the structure of Hom(Zdm, H) and the distribution pΛ on

Hom(Zdm, H). For the purpose of obtaining long-range influence results (see Section

6.2), we need a slightly stronger decomposition result that in addition quantifies the

number of vertices of each color in an arbitrary element of each partition class as well

as the sizes of the partition classes. In what follows we use X = Y (1 ± 2−Ω(d)) to

indicate |X/Y − 1| ≤ 2−Ω(d).

Theorem 6.1.2. Fix H, rational Λ and m ≥ 2 even. There is a partition of

Hom(Zdm, H) into |MΛ(H)|+ 1 classes as

Hom(Zdm, H) = CΛ(0) ∪
⋃

(A,B)∈MΛ(H)

CΛ(A,B)

with the following properties.

1. wΛ(CΛ(0)) ≤ 2−Ω(d)ZΛ(Zdm, H).

2. For each (A,B) ∈ MΛ(H), f ∈ CΛ(A,B), k ∈ A and ` ∈ B, the proportion of
vertices of E (resp. O) colored k (resp. `) is within 2−Ω(d) of λk/λA (resp. λ`/λB).
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3. If A 6= B is such that (A,B), (B,A) ∈MΛ(H) then

wΛ(CΛ(A,B)) = wΛ(CΛ(B,A))
(
1± 2−Ω(d)

)
.

4. If (A,B), (Ã, B̃) ∈ MΛ(H) are such that ϕ(A) = Ã and ϕ(B) = B̃ for some
weight preserving automorphism ϕ of H, then

wΛ(CΛ(A,B)) = wΛ(CΛ(Ã, B̃))
(
1± 2−Ω(d)

)
.

5. For each (A,B) ∈MΛ(H), x ∈ E, y ∈ O, k ∈ A and ` ∈ B,

pΛ(f(x) = k|f ∈ CΛ(A,B)) =
(1± 2−Ω(d))λk

λA

and

pΛ(f(y) = `|f ∈ CΛ(A,B)) =
(1± 2−Ω(d))λ`

λB
.

In Section 6.3 we derive Theorem 6.1.2 from Theorem 6.1.4. In Section 6.2 we

discuss a long-range influence phenomenon that is implied by Theorem 6.1.2.

Theorem 6.1.2 does not make a general statement about the relative sizes of

the CΛ(A,B)’s, but there are two important situations in which we can conclude

that the partition of Hom(Zdm, H) guaranteed by Theorem 6.1.2 is an approximate

equipartition.

Definition 6.1.3. Fix H, rational Λ and m ≥ 2 even. An approximate equipartition

of Hom(Zdm, H) is a partition into |MΛ(H)| + 1 classes satisfying conditions (1)

through (5) of Theorem 6.1.2, as well as the condition that for all (A,B), (A′, B′) ∈

MΛ(H) we have

wΛ(CΛ(A,B)) =
(
1± 2−Ω(d)

)
wΛ(CΛ(A′, B′)).

A corollary of statements 1 and 3 is that if MΛ(H) = {(A,B), (B,A)} for some

A 6= B (as, for example, in the case H = Hind for arbitrary Λ), then the Theorem
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6.1.2 partition of Hom(Zdm, H) is an approximate equipartition with

wΛ (CΛ(A,B)) , wΛ (CΛ(B,A)) = ZΛ(Zdm, H)

(
1

2
± 2−Ω(d)

)
.

Furthermore, if MΛ(H) = {(A,A)} for some A then the Theorem 6.1.2 parti-

tion of Hom(Zdm, H) is trivially an approximate equipartition with wΛ (CΛ(A,A)) =

ZΛ(Zdm, H)
(
1− 2−Ω(d)

)
. These are in a sense the two generic situations, as for ev-

ery H, if the weights λi are chosen from any continuous distribution supported on

{x ∈ R|V (H)| : x > 0} then with probability 1 we will have MΛ(H) of one of the two

forms described.

A corollary of statements 1 and 4 is that if MΛ(H) is transitive, that is, if for

each (A,B), (Ã, B̃) ∈ MΛ(H) there is a weight preserving automorphism ϕ of H

with ϕ(A) = Ã and ϕ(B) = B̃, then the partition of Hom(Zdm, H) is an approximate

equipartition with

wΛ (CΛ(A,B)) = ZΛ(Zdm, H)

(
1

|MΛ(H)|
± 2−Ω(d)

)
.

This is far from a generic situation, but is the case for a number of very important

examples, such as the uniform proper q-coloring model (H = Kq and Λ = (1, . . . , 1)),

where it easily seen that

|MΛ(Kq)| =


(
q
q/2

)
if q even(

q
(q−1)/2

)
+
(

q
(q+1)/2

)
if q odd,

or more concisely |MΛ(Kq)| = (1 + 1{q odd})
(

q
[q/2]

)
. (Note that M(Kq) consists of

all pairs (A,B) with A and B disjoint, A ∪ B = V (Kq), and |A|, |B| as near equal

as possible). Another example of this behavior is the uniform Widom-Rowlinson

model (H the complete looped path on three vertices, or equivalently the complete
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looped graph on {1, 2, 3} with edge 13 removed). In this case we have MΛ(H) =

{(A,A), (B,B)} with A = {1, 2} and B = {2, 3}.

The existence of these equipartitions is what drives our long-range influence re-

sults: Corollaries 6.2.2, 6.2.3 and 6.2.4 in Section 6.2. A representative result from

that section is the following: in a proper q-coloring of Qd chosen uniformly condi-

tioned on a particular vertex v ∈ E being colored 1, the probability that another

vertex u ∈ E is colored 1 is close to 2/q, whereas the probability that a vertex w ∈ O

is colored 1 is close to 0, regardless of the distances between u, v and w.

In general, we cannot say anything more about the relative (Λ-weighted) sizes of

the CΛ(A,B) as various different types of behaviors are possible. We’ll illustrate this

now with two examples. A fact that we use in both examples is that for G connected

and H consisting of components H1 and H2 we can identify Hom(G,H) with the

disjoint union of Hom(G,H1) and Hom(G,H2).

First, consider H the disjoint union of Hind and K3 (note that η(Hind) = η(K3) =

2) with Λ = (1, . . . , 1). The results of [43] and [23] (see (6.2), (6.3) and the discussions

around these equations) together imply that in any decomposition of Hom(Qd, H)

satisfying the conditions of Theorem 6.1.2, along with the exceptional class we have

eight partition classes. Six of these correspond to the six elements of M(K3), and

these each have size (1 + o(1))e/(6e + 2
√
e)|Hom(Qd, H)| ≈ .14|Hom(Qd, H)|. The

two remaining classes correspond to the two elements ofM(Hind) and each have size

(1 + o(1))
√
e/(6e+ 2

√
e)|Hom(Qd, H)| ≈ .08|Hom(Qd, H)|.

For an example with a different type of behavior, let H be the disjoint union

of K loop
4 (the complete looped graph on four vertices) and K8 (note that η(K8) =

η(K loop
4 ) = 16, with M(K loop

4 ) = (V (K loop
4 ), V (K loop

4 ))), again with Λ = (1, . . . , 1).

It is immediate that |Hom(Qd, K
loop
4 )| = 162d−1

and that all colorings in this set

are pure-(V (K loop
4 ), V (K loop

4 )) colorings. It is also fairly straightforward to verify

that |Hom(Qd, K8)| = ω(162d−1
). Indeed, consider proper 8-colorings of Qd which
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are pure-(A,B) for some (A,B), except that there is one vertex from E that is

colored from B. An easy count gives that there are (1/2)(3/2)d162d−1
such colorings.

This implies that in any decomposition of Hom(Qd, H) satisfying the conditions of

Theorem 6.1.2, along with the exceptional set we have
(

8
4

)
+ 1 partition classes. The

first
(

8
4

)
of these classes correspond to the elements of M(K8) and each have size

Ω(|Hom(Qd, H)|), and the last class corresponds to the unique element of M(K loop
4 )

and has size o(|Hom(Qd, H)|).

The proof of Theorem 6.1.2 is based on the notion of an ideal edge. Let H and

f ∈ Hom(Zdm, H) be given. Say that an edge e = uv ∈ E (with u ∈ E) is ideal (with

respect to f) if f(N(u)) = B and f(N(v)) = A for some (A,B) ∈ M(H). We will

only be interested in the probability that a particular edge is not ideal with respect

to f , when f is chosen uniformly from Hom(Zdm, H). Note that by the symmetry of

the torus, this probability is independent of the particular edge we choose. Our main

technical result is the following.

Theorem 6.1.4. Fix H, m ≥ 2 even, and e ∈ E. If f is chosen uniformly from

Hom(Zdm, H) then

Pr(e is not ideal with respect to f) ≤ 2−Ω(d).

The analogous result for m = 2 and H = Z (with two elements of Hom(Qd,Z)

identified if they differ by a constant) was proved by Kahn in [40], and our proof

follows similar lines. A standard trick of comparing a weighted H-coloring model to

a uniform H ′-coloring model for a certain graph H ′ (depending on H an Λ) makes

the generalization from uniform to arbitrary Λ relatively straightforward.

All of our results are for fixed m, and become interesting as d grows. It would be

of great interest to obtain similar results for fixed d, as m grows (as Peled [55] has

done in the case H = K3), as this would allow us to say something about the space of
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Gibbs measures for the probability distribution pΛ on the infinite space Hom(Zd, H)

(see for example [7], [9], for a discussion of Gibbs measures in the specific context

of homomorphism models). Unfortunately, a careful examination of our proof of

Theorem 6.1.4, keeping track of the dependency of the final constants on m, shows

that at best we may take m = c log d for some absolute constant c > 0 if we wish to

obtain useful results.

6.2 Long-range influence

Roughly speaking we say that a distribution pΛ on Hom(Zdm, H) exhibits long-

range influence if the distribution of pΛ restricted to a single vertex x is sensitive to

conditioning on the color of another vertex y, even in the limit as d and the distance

from x to y go to infinity.

More formally, given a graph H, a weight set Λ and even m, we say that the

Λ-weighted H-coloring model on Zdm exhibits long-range influence if there is a choice

of x, y ∈ V and k, ` ∈ V (H) (actually a sequence of choices, one for each d) with

dist(x, y) = ω(1) (where dist is usual graph distance) such that

pΛ(f(x) = k|f(y) = `)

pΛ(f(x) = k)
6→ 1 as d→∞. (6.4)

Theorem 6.1.2 strongly implies such a phenomenon, at least in the case where the

partition of Hom(Zdm, H) guaranteed by Theorem 6.1.2 is an approximate equipar-

tition. The following is an immediate corollary of Theorem 6.1.2, and in particular

statement 5 of that theorem.

Theorem 6.2.1. Fix H, rational Λ and m ≥ 2 even. Suppose that the Theorem 6.1.2

partition of Hom(Zdm, H) is an approximate equipartition. Fix k, ` ∈ V (H). For all
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x ∈ E we have

pΛ(f(x) = k) =

(
1

|MΛ(H)|
± 2−Ω(d)

) ∑
(A,B)∈MΛ(H) : k∈A

λk
λA

(and by symmetry this is also true for x ∈ O). On the other hand, if x, y ∈ E then

pΛ(f(x) = k|f(y) = `) =

(
1

|MΛ(H)|
± 2−Ω(d)

) ∑
(A,B)∈MΛ(H) : `, k∈A

λk
λA

and if x ∈ E and y ∈ O then

pΛ(f(x) = k|f(y) = `) =

(
1

|MΛ(H)|
± 2−Ω(d)

) ∑
(A,B)∈MΛ(H) : k∈A, `∈B

λk
λA
.

By choosing k, ` appropriately, these three quantities can be made to be different

(in the limit as d → ∞). Rather than stating an unwieldy general proposition to

this effect, we illustrate it with three examples. It will be helpful first to set up some

notation. Fix m, H and Λ. For each d ∈ N and x ∈ V , we define the occupation

probability vector ~vd(x) by

~vd(x) = (pΛ(f(x) = k) : k ∈ V (H)) .

(We suppress dependance on m, H and Λ to aid readability.) If the choice of f

is conditioned on an event E we use ~vd(x|E) to denote the conditional occupation

probability vector, that is,

~vd(x|E) = (pΛ(f(x) = k|E) : k ∈ V (H)) .

In what follows we use d∞(·, ·) for `∞ distance.

Our first example is the independent set model, that is, H = Hind where V (Hind) =
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{0, 1} and E(Hind) = {00, 01}. We list 0 first in the occupation and conditional occu-

pation probability vectors. Our weighting vector will assign weight 1 to 0 and rational

weight λ to 1. (This is the hard-core model with fugacity λ, results on which from

[39] have been discussed earlier.) Noting that Mλ(Hind) = {(A,B), (B,A)} where

A = {0, 1} and B = {0}, we have the following.

Corollary 6.2.2. Fix m ≥ 2 even and rational λ > 0. For all x ∈ V we have

d∞

(
~vd(x),

(
2 + λ

2(1 + λ)
,

λ

2(1 + λ)

))
≤ 2−Ω(d).

On the other hand, if x, y ∈ E then

d∞

(
~vd(x|{f(y) = 1}),

(
1

1 + λ
,

λ

1 + λ

))
≤ 2−Ω(d)

and if x ∈ E and y ∈ O then

d∞ (~vd(x|{f(y) = 1}), (1, 0)) ≤ 2−Ω(d).

(This result was earlier proven in [26] for m = 2 and all λ (not necessarily rational)

satisfying λ > cd−1/3 log d for some constant c > 0.)

Our second example is the uniform Widom-Rowlinson model. Here H = HWR is

the graph on vertex set {1, 2, 3} with all edges (and loops) present except the edge

connecting 1 and 3. In the occupation and conditional occupation probability vectors

we list the vertices in numerical order. Noting that M(HWR) = {(A,A), (B,B)}

where A = {1, 2} and B = {2, 3}, we get the following via a routine calculation.

Corollary 6.2.3. Fix m ≥ 2 even. For all x ∈ V we have

d∞

(
~vd(x),

(
1

4
,
1

2
,
1

4

))
≤ 2−Ω(d).
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On the other hand, if x, y ∈ E then

d∞

(
~vd(x|f(y) = 1),

(
1

2
,
1

2
, 0

))
≤ 2−Ω(d)

while if x ∈ E and y ∈ O then

d∞

(
~vd(x|f(y) = 1),

(
0,

1

2
,
1

2

))
≤ 2−Ω(d).

Our final example is the uniform proper q-coloring model (H = Kq where V (Kq) =

{1, . . . , q} and E(Kq) = {ij : i 6= j}, and Λ = ~1). We list color 1 first in the

occupation and conditional occupation probability vectors. By our earlier observation

that M(H) consists of all pairs (A,B) with A ∪ B = {1, . . . , q}, A ∩ B = ∅ and

|A| − |B| ∈ {0,±1}, we get the following via a routine calculation.

Corollary 6.2.4. Fix m ≥ 2 even and q ∈ N. For all x ∈ V we have

~vd(x) =

(
1

q
, . . . ,

1

q

)
.

On the other hand, if x, y ∈ E then

d∞

(
~vd(x|f(y) = 1),

(
2

q
,
q − 2

q(q − 1)
, . . . ,

q − 2

q(q − 1)

))
≤ 2−Ω(d)

and if x ∈ E and y ∈ O then

d∞

(
~vd(x|f(y) = 1),

(
0,

1

q − 1
, . . . ,

1

q − 1

))
≤ 2−Ω(d).

The exact equality for ~vd(x) here follows by symmetry. This corollary, in the

special case m = 2 and q = 3, was proved in [25] (and is implicit in [23]).

In the uniform proper q-coloring model it is natural to allow q, the number of
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colors, to vary with d (see e.g. [11, 37, 38, 59]). We may define long-range influence

in this case exactly as in (6.4), simply allowing H to also change with d.

The Dobrushin uniqueness theorem [18, 59] implies that we do not have long-

range influence in the q-coloring model on Zdm when q > 2d (in the case m = 2) or

q > 4d (in the case m ≥ 4). On the other hand, Corollary 6.2.4 establishes that we

do have long-range influence for all constant q.

We can in fact say a little bit more. Using a techniques described in this chapter

(we will not outline the necessary changes here; a description may be found in [21]),

we can prove the following.

Theorem 6.2.5. Fix m ≥ 2 even. If f is chosen uniformly from Hom(Zdm, Kq) with

q < (log d)/(m+ 2), then for any x, y ∈ E and k ∈ {1, . . . , q} we have

lim
d→∞

Pr(f(x) = k)

Pr(f(x) = k|f(y) = k)
=

1

2
.

6.3 Proofs of Theorems 6.1.1 and 6.1.2

We first note that if the weight set Λ′ is obtained from Λ by multiplying each

λk by the same constant, then the distributions pΛ and pΛ′ are identical. We may

therefore assume without loss of generality that λk ≥ 1 for all k ∈ V (H).

Our main technical result (Theorem 6.1.4) considers uniformly chosen homomor-

phisms, so to apply it to homomorphisms chosen according to pΛ we need to first

relate pΛ to uniform distribution on a graph H(Λ) built from H and Λ. We use a

technique introduced in [9].

Let C = C(Λ) be the smallest integer such that Cλk is an integer for all k ∈ V (H).

For each k let Sk be an arbitrary set of size Cλk, with the Sk’s disjoint. We construct

H(Λ) on vertex set ∪k∈V (H)Sk by joining x and y if and only if x ∈ Sk and y ∈ S` for

some k` ∈ E(H). Equivalently, H(Λ) is obtained from H by replacing each vertex

k by a set of size Cλk, each edge by a complete bipartite graph and each loop by a
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complete looped graph; see Figure 6.1.

1

2

3

H

v1

v2

v3

w1

w2

u1

u2

H(Λ)

Figure 6.1. An example H and H(Λ) with λ1 = 1, λ2 = 3/2 and λ3 = 1, so
C = 2. Here S1 = {v1, v2, v3}, S2 = {u1, u2}, and S3 = {w1, w2}.

For each f ∈ Hom(Zdm, H) let Af consist of those g ∈ Hom(Zdm, H(Λ)) with

g(v) ∈ Sf(v) for each v ∈ V . It is straightforward to verify that each Af satisfies

|Af | = CmdwΛ(f), and that the Af ’s form a partition of Hom(Zdm, H(Λ)). This

implies that choosing an element g uniformly from Hom(Zdm, H(Λ)) and then letting

f ∈ Hom(Zdm, H) be such that g ∈ Af is equivalent to choosing f from Hom(Zdm, H)

according to pΛ.

Before continuing, we note the following easily established correspondence be-
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tween M(H(Λ)) and MΛ(H):

|M(H(Λ))| = |MΛ(H)|

and

(A′, B′) ∈M(H(Λ)) if and only if

A′ = ∪k∈ASk and B′ = ∪`∈BS` for some (A,B) ∈MΛ(H).

(6.5)

Now let g be chosen uniformly from Hom(Zdm, H(Λ)). By Theorem 6.1.4, the

expected number of non-ideal edges of g is at most (m− Ω(1))d and so by Markov’s

inequality there is a subset Hom′(Zdm, H(Λ)) of Hom(Zdm, H(Λ)) with

|Hom′(Zdm, H(Λ))| ≥
(
1− 2−Ω(d)

)
|Hom(Zdm, H(Λ))| (6.6)

and with each g ∈ Hom′(Zdm, H(Λ)) having at most (m− Ω(1))d non-ideal edges.

We now need an isoperimetric bound on the discrete torus. The following result

is due to Bollobás and Leader [6, Theorem 8].

Lemma 6.3.1. Let X ⊆ V satisfy |X| ≤ md/2. The number of edges in E which

have exactly one vertex in common with X is at least |X|(d−1)/d.

We will use the following corollary.

Corollary 6.3.2. Let a satisfy (ma)d/(d−1) < 1/4. If at most mda edges are deleted

from Zdm then the resulting graph has a component with at least md(1− (ma)d/(d−1))

vertices.

Proof. Let D be the set of deleted edges, and let C1, C2, . . . , Ck be the components

of the graph on vertex set V with edge set E \ D, listed in order of increasing size

(where size is measured by number of vertices). If k = 1, we are done. Otherwise,

let X = ∪`i=1Ci where ` is chosen as large as possible so that |X| ≤ md/2. Since D

includes all of the edges which have exactly one vertex in common with X, we have
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by Lemma 6.3.1

mda ≥ |D| ≥ |X|
d−1
d

and so

|X| ≤ md(ma)
d
d−1 < md/4

(the final inequality by hypothesis). By the definition of `, we have |C`+1| > md/4.

If ` = k − 1, we are done (since then |Ck| ≥ md(1− (ma)d/(d−1))). We complete the

proof by arguing that we must have ` = k − 1. If not, let X ′ be the union of all

the components other than C`+1 and those in X. By the same argument as above

(since |X ′| ≤ md/2) we have |X ′| < md/4 < |C`+1|. This is a contradiction, since by

our ordering of the components X ′ is a union of components all at least as large as

C`+1.

Corollary 6.3.2 implies that for each g ∈ Hom′(Zdm, H(Λ)) there is a collection

F of edges which spans a connected subgraph of Zdm on at least md − (m − Ω(1))d

vertices, and that all of these edges are ideal (note that in this application we have

a = 2−Ω(d) and so certainly (ma)d/(d−1) < 1/4). By the connectivity of the subgraph

induced by these edges, it follows that there is some (A′, B′) ∈ M(H(Λ)) such that

for each uv ∈ F with u ∈ O, we have that N(u) is colored from A′ (and so in

particular v is) and N(v) is colored from B′ (and so in particular u is). We may

therefore decompose Hom′(Zdm, H(Λ)) as

Hom′(Zdm, H(Λ)) = ∪(A′,B′)∈M(H(Λ))D(A′, B′)

with the property that for each g ∈ D(A′, B′) we can find a subset of V of size at

least md − (m − Ω(1))d with each vertex of this set colored from A′ (resp. B′) if it

is in E (resp. O), and moreover all but at most (m− Ω(1))d vertices of O (resp. E)

have all of A′ (resp. B′) appearing on their neighborhoods.
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We now pass to a partition of Hom(Zdm, H). For each (A,B) ∈ MΛ(H), let

DΛ(A,B) be the set of all f ∈ Hom(Zdm, H) for which there is some g ∈ Af with

g ∈ D(A′, B′), where (A′, B′) is obtained from (A,B) by the correspondence described

in (6.5). The DΛ(A,B)’s are disjoint, for if f ∈ DΛ(A,B) (with corresponding

g ∈ D(A′, B′)) and f̃ ∈ DΛ(Ã, B̃) (with corresponding g̃ ∈ D(Ã′, B̃′)) with (A,B) 6=

(Ã, B̃), the neighborhoods of the endvertices of any edge which is ideal for both g

and g̃ witness that f 6= f̃ .

Moreover, DΛ(A,B) inherits fromD(A′, B′) that for all f ∈ DΛ(A,B), the number

of vertices v ∈ E (resp. O) with f(v) 6∈ A (resp. f(v) 6∈ B) is at most (m − Ω(1))d

(for concreteness, (m− κ)d for some 0 < κ < m that depends on H and Λ but may

be chosen to be independent of (A,B)), and moreover all but at most (m − Ω(1))d

vertices w of O (resp. E) have the property that all colors from A (resp. B) appear

on N(w).

Set DΛ(0) = Hom(Zdm, H) \ ∪(A,B)∈MΛ(H)DΛ(A,B). If f ∈ DΛ(0) then Af ⊆

Hom(Zdm, H(Λ)) \ Hom′(Zdm, H(Λ)) and so by (6.6)

CmdwΛ(DΛ(0)) ≤ 2−Ω(d)|Hom(Zdm, H(Λ))| = 2−Ω(d)CmdZΛ(Zdm, H(Λ)).

This completes the proof of Theorem 6.1.1.

We now turn to Theorem 6.1.2. Our construction of the CΛ(A,B)’s will be from

scratch (and so in particular we will not refer to ideal edges); however, to establish

the required properties of the CΛ(A,B)’s we will relate them to the DΛ(A,B)’s.

For each (A,B) ∈ MΛ(H) we define a set CΛ(A,B)′ as follows. First, for each

F1 ⊆ E and F2 ⊆ O with |F1|+|F2| ≤ (m−κ)d (with κ as described in the construction

of DΛ(A,B) above), let C
(F1,F2)
Λ (A,B)′ include all f ∈ Hom(Zdm, H) for which every

vertex of E \ F1 is colored from A, every vertex from F1 is colored from Ac, every

vertex of O\F2 is colored from B, and every vertex from F2 is colored from Bc (note
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that for some choices of (F1, F2) we may have C
(F1,F2)
Λ (A,B)′ = ∅). Next, set

CΛ(A,B)′ = ∪(F1,F2)C
(F1,F2)
Λ (A,B)′.

By our upper bound on |F1| + |F2|, we have DΛ(A,B) ⊆ CΛ(A,B)′ for each

(A,B). It is also clear that |CΛ(A,B)′| = |CΛ(B,A)′| (because the mapping from

Hom(Zdm, H) to itself, induced by any automorphism of Zdm that maps E to O, maps

CΛ(A,B)′ to CΛ(B,A)′ bijectively, and is weight-preserving), and (for a similar rea-

son) that if ϕ(A) = Ã and ϕ(B) = B̃ for some weight-preserving automorphism ϕ of

H then |CΛ(A,B)′| = |CΛ(Ã, B̃)′|. We do not yet have a partition of Hom(Zdm, H),

however, as the CΛ(A,B)′’s are not necessarily disjoint.

Most of the rest of the proof is devoted to establishing the following two facts.

First, for each (A,B) ∈MΛ(H), x ∈ E , y ∈ O, k ∈ A and ` ∈ B, if f is chosen from

Hom(Zdm, H) according to pΛ then

pΛ(f(x) = k|f ∈ CΛ(A,B)′) =
(1+2−Ω(d))λk

λA
,

pΛ(f(y) = `|f ∈ CΛ(A,B)′) =
(1+2−Ω(d))λ`

λB
.

(6.7)

For the second, say that f ∈ CΛ(A,B)′ is balanced if for each k ∈ A (resp. ` ∈ B)

the proportion of vertices of E (resp. O) colored k (resp. `) is within a multiplicative

factor 1 ± (1 − κ/(4m))d of λk/λA (resp. λ`/λB). For all (A,B) ∈ MΛ(H) we have

the following:

pΛ (f is not balanced|f ∈ CΛ(A,B)′) ≤ exp

{
−
(
m− κ

2

)d
/4

}
. (6.8)

These two facts allow us to swiftly complete the proof of Theorem 6.1.2. In-

deed, for each (A,B) ∈ MΛ(H), let CΛ(A,B) be the subset of CΛ(A,B)′ con-

sisting of balanced homomorphisms. The CΛ(A,B)’s are clearly disjoint. Letting
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CΛ(0) be the complement of the union of the CΛ(A,B)’s, we have that wΛ(CΛ(0)) ≤

2−Ω(d)ZΛ(Zdm, H) as it consists of the unbalanced homomorphisms removed from the

CΛ(A,B)′’s (a collection with total weight at most exp{−(m−κ/2)d/4}ZΛ(Zdm, H), by

(6.8)) together with a subset of DΛ(0) (with total weight at most 2−Ω(d)ZΛ(Zdm, H)).

This establishes that our partition satisfies statement 1 of Theorem 6.1.2.

Statement 2 is immediate from the construction of the CΛ(A,B)’s. Statements 3

and 4 follow from the corresponding statements for the CΛ(A,B)′’s, since the sizes of

CΛ(A,B)′ and CΛ(A,B) differ by a multiplicative factor of no more than 1± 2−Ω(d).

Finally, statement 5 follows from (6.7) for the same reason.

We now begin the verification of (6.7) and (6.8), beginning with (6.7). Fix

(A,B) ∈ MΛ(H), x ∈ E and k ∈ A (the case y ∈ O and ` ∈ B is analogous). If

(F1, F2) is such that x 6∈ F1∪N(F2), then since x is adjacent to vertices colored from

B, and all vertices of A are adjacent to all vertices of B, we have the following: for f

chosen from C
(F1,F2)
Λ (A,B)′ according to pΛ, the probability that f(x) = k is exactly

λk/λA. Thus (6.7) will follow if we can show that the contribution to wΛ(CΛ(A,B)′)

from those C
(F1,F2)
Λ (A,B)′’s with x ∈ F1 ∪N(F2) is at most 2−Ω(d)wΛ(CΛ(A,B)′). To

establish this, note that

∑
(F1,F2)

wΛ(C
(F1,F2)
Λ (A,B)′)1{x∈F1∪N(F2)}

=
1

md

∑
y∈E

∑
(F1,F2)

wΛ(C
(F1,F2)
Λ (A,B)′)1{y∈F1∪N(F2)}

≤ 1

md

∑
(F1,F2)

|F1 ∪N(F2)|wΛ(C
(F1,F2)
Λ (A,B)′)

≤ (2d+ 1)(m− κ)d

md
wΛ(CΛ(A,B)′).

The first equality follows from the symmetry of both Zdm and the construction of

CΛ(A,B)′. In the first inequality we reverse the order of summation, and in the

second we bound |F1 ∪N(F2)| by (2d+ 1)(m− κ)d.
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Now we consider (6.8), and so we again fix (A,B) ∈ MΛ(H). A lower bound on

wΛ(C
(F1,F2)
Λ (A,B)′) (for C

(F1,F2)
Λ (A,B)′ 6= ∅) is

λ
md/2−|F1∪N(F2)|
A λ

md/2−|F2∪N(F1)|
B . (6.9)

As before, this is because every vertex in E \ F1 ∪N(F2) is adjacent only to vertices

colored only from B and so may be given any color from A, with a similar argument

for vertices from O \ F2 ∪ N(F1) (note that in this lower bound we are using the

assumption λi ≥ 1 for all i).

For δ > 0, an upper bound on the sum of the weights of those f ∈ C(F1,F2)
Λ (A,B)′ in

which a particular color k from A appears either on a proportion less than (λk/λA−δ)

of E , or on a proportion greater than (λk/λA + δ), is

 ∑
i≤(λk/λA−δ)md/2
i≥(λk/λA+δ)md/2

(
md/2

i

)
(λA − λk)m

d/2−iλik

λ
md/2
B λ

|F1∪N(F2)|+|F2∪N(F1)|
H . (6.10)

By standard Binomial concentration inequalities (see for example [34] or [3, Appendix

A], we have

∑
i≤(λk/λA−δ)md/2
i≥(λk/λA+δ)md/2

(
md/2

i

)
(λA − λk)m

d/2−iλik ≤ 2 exp
{
−δ2md/2

}
λ
md/2
A . (6.11)

Now combining (6.9), (6.10) and (6.11) we find that for f chosen from non-empty

C
(F1,F2)
Λ (A,B)′ according to pΛ, the probability that a particular color appears either

on a proportion less than (λk/λA−δ) of E or on a proportion greater than (λk/λA+δ)

is at most

2λ
2|F1∪N(F2)|+2|F2∪N(F1)|
H

exp {δ2md/2}
≤ exp

{
−δ2md/2 +O(d(m− κ)d)

}
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(again using λi ≥ 1 for all i as well as our upper bound on |F1| + |F2|). Repeating

this argument for colors from B and applying the law of total probability and a union

bound, we find that for f chosen from CΛ(A,B)′ according to pΛ, the probability that

either there is some color k from A which fails to appear on a proportion between

(λk/λA − δ) and (λk/λA + δ) of E , or there is some color ` from B which fails

to appear on a proportion between (λ`/λB − δ) and (λ`/λB + δ) of O is at most

exp{−δ2md/2 +O(d(m− κ)d)}. Taking δ = (1− κ/(4m))d gives the required result.

6.4 Proof of Theorem 6.1.4

Our strategy is to put an upper bound on the entropy of a uniformly chosen

element of Hom(Zdm, H) that is smaller than a trivial lower bound unless ε is suitably

small. We build on ideas introduced by Kahn [40].

6.4.1 Entropy

In this section we very briefly review the entropy material that is relevant for the

proof of Theorem 6.1.4. See [40] for an expanded treatment appropriate to the present

application, or for example [50] for a very thorough discussion. In what follows, X, Y ,

etc. are discrete random variables, taking values in any finite set. Throughout, we

take log = log2.

The (binary) entropy function is H(α) = −α logα − (1 − α) log(1 − α). The

entropy of the random variable X is H(X) =
∑

x−p(x) log p(x) where we write p(x)

for Pr(X = x) (and later p(x|y) for Pr(X = x|Y = y)). The inequality that makes

entropy a useful tool for counting is

H(X) ≤ log |range(X)|, (6.12)

with equality if and only if X is uniform. For random variables X, Y and Z where
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Y determines Z, we also have

H(X|Y ) ≤ H(X) and H(X|Y ) ≤ H(X|Z), (6.13)

that is, dropping or lessening conditioning does not decrease entropy (here H(X|Y ) =∑
y p(y)

∑
x−p(x|y) log p(x|y) is a conditional entropy). We will also use the (condi-

tional) chain rule: for X = (X1, . . . , Xn) a random vector,

H(X|Y ) = H(X1|Y ) +H(X2|X1, Y ) + · · ·+H(Xn|X1, . . . , Xn−1, Y ). (6.14)

Finally, we will need the conditional version of Shearer’s lemma from [40] (extending

the original Shearer’s lemma from [13]). For a random vector X = (X1, . . . , Xm) and

A ⊆ [m] := {1, . . . ,m}, set XA = (Xi : i ∈ A).

Lemma 6.4.1. Let X = (X1, . . . , Xm) be a random vector and A a collection of

subsets (possibly with repeats) of [m], with each element of [m] contained in at least

t members of A. Then, for any partial order ≺ on [m],

H(X) ≤ 1

t

∑
A∈A

H(XA|(Xi : i ≺ A)),

where i ≺ A means i ≺ a for all a ∈ A.

6.4.2 Notation and definitions

It will be convenient to gather together all of our technical notation in a single

place. We will also utilize the notation from Section 2.3. Recall that

η(H) = max{|A||B| : A,B ⊆ V (H), A ∼ B}
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and

M(H) = {(A,B) : A,B ⊆ V (H), A ∼ B, |A||B| = η(H)}.

Define

S(H) = {A : (A,B) ∈M(H) for some B}.

For A ⊆ V (H) let n(A) = {v ∈ V (H) : {v} ∼ A}, and for A,B ⊆ V (H) let p(A,B)

be the number of pairs (a, b) ∈ A×B with a � b. Let

V ? = {x = (x1, . . . , xd) ∈ V : xd = 0, x ∈ E}

(a set of size md−1/2). For each v ∈ V ? set

C(v) = {v + (0, . . . , 0, i) : 0 ≤ i ≤ m− 1}.

In other words, C(v) is the set of all vertices in V which agree with v on the first

d − 1 coordinates; note that unless m = 2, C(v) induces a cycle in Zdm. (In the case

m = 2, C(v) simply induces an edge; this slight difference between m = 2 and m ≥ 4

is something that has to be accommodated throughout the proof.) Throughout the

proof we think of C(v) as an ordered tuple of vectors (v0, v1, . . . , vm−1) with each

vi = v + (0, . . . , 0, i).

For u ∈ C(v) for some v ∈ V ?, let u′+ = u+ (0, . . . , 0, 1) and u′− = u− (0, . . . , 0, 1)

(so u′+ = u′− if and only if m = 2), and set

Mu = N(u) \ {u′+, u′−}

and

MC(v) = Mv0 ∪ · · · ∪Mvm−1 .

A key observation that drives our proof is that the subgraph of Zdm induced by MC(v)
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is a disjoint union of 2d − 2 cycles of length m (when m ≥ 4) or of d − 1 disjoint

edges (when m = 2); this significantly restricts the appearance of an H-coloring on

MC(v) given its appearance on C(v).

To each v ∈ V ? with |v| ≥ 2m (where | · | indicates the sum of the coordinates)

associate a w(v) ∈ V ? with |w(v)| = |v| − 2m and with w(v) < v in the usual

component-wise partial order on Zd. For |v| < 2m we do not define a w(v), but it

will prove convenient to adopt the convention in this case that Mw = ∅. From now

on, whenever w appears, it will be w(v) for whatever v ∈ V ? is under consideration.

We will use (A0, . . . , Am−1) to indicate a tuple with each Ai ⊆ V (H), and when

(A0, . . . , Am−1) appears as a range of summation it will vary over all possible such

tuples. We will use alt(A,B) for the tuple (A,B, . . . , A,B), and n(A0, . . . , Am−1) for

the tuple (n(A0), . . . , n(Am−1)). We denote by g(A0, . . . , Am−1) the number of ways

of choosing (x0, . . . , xm−1) with xi ∈ Ai for each i and with x0 ∼ · · · ∼ xm−1 ∼ x0

(that is, with the xi’s, taken consecutively, forming a cycle).

6.4.3 Events and probabilities

Now let f be uniformly chosen from Hom(Zdm, H). We define a number of events

in the associated probability space. For A ⊆ V (H) and v ∈ V ?, let

Qv,A = {f(N(v)) = A},

Rv,A = {f(Mv) = A},

QC(v),(A0,...,Am−1) = ∩m−1
i=0 Qvi,Ai

and

RC(v),(A0,...,Am−1) = ∩m−1
i=0 Rvi,Ai .
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To denote the probability of each of these events, we will replace the leading upper

case letter with the corresponding lower case letter; so, for example,

qv,A = Pr (Qv,A) .

For u ∈ C(v) for some v ∈ V ? let Ru = {f(y) : y ∈ Mu} be the random variable

indicating the palette of colors used on Mu, and let

TC(v) = (Rv0 , . . . , Rvm−1).

Finally, define ε (depending on d, m and H, but by the symmetry of Zdm indepen-

dent of v) by

1− ε =
∑

(A,B)∈M(H)

rC(v),alt(A,B).

6.4.4 A partial order on V

For 0 ≤ k ≤ (m− 1)(d− 1), let

Lk =

{
x ∈ V :

d−1∑
i=1

xi = k

}
.

We refer to the Lk’s as the levels of V ; note that they partition V . Following the

approach of [40], we wish to put a partial order on V that satisfies (6.15) and (6.16)

below. We will achieve this by putting an order ≺ on the indices of the levels, as

follows. Begin by ordering the odd natural numbers in the usual order, up to m− 1.

Next put 0, then m+1, then 2, then m+3, etc., interleaving the standard order of the

evens and the odds. This order for m = 2 is used in [40], and begins 1 ≺ 0 ≺ 3 ≺ 2 ≺

5 ≺ 4 . . .. For m = 4, it begins 1 ≺ 3 ≺ 0 ≺ 5 ≺ 2 ≺ 7 ≺ 4 . . ., and for m = 6 it begins

1 ≺ 2 ≺ 5 ≺ 0 ≺ 7 ≺ 2 ≺ 9 ≺ 4 ≺ . . .. These orders are constructed specifically

to satisfy the follow property: for each even i ∈ N we have x ≺ i for all x ∈ Xi and
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y ≺ x for all x ∈ Xi and y ∈ Yi, where Xi = {i−m+ 1, i− 1, i+ 1, i+m− 1}∩N (or

{i−1, i+ 1}∩N if m = 2) and Yi = {i−3m+ 1, i−2m−1, i−2m+ 1, i−m−1}∩N

(or {i− 5, i− 3} ∩ N if m = 2).

We use ≺ to obtain a partial order (which we shall also call ≺) on V by declaring

Li ≺ Lj if and only if i ≺ j. This partial order has two properties that will be

critically important for us. For the first of these, note that for v ∈ V ?, if v ∈ Li for

some i (necessarily even), then C(v) ⊆ Li and MC(v) ⊆ ∪x∈XiLx, and so

MC(v) ⊆ {x : x ≺ C(v)}. (6.15)

For the second property, note that since Mw ⊆ ∪y∈YiLy for v ∈ Li we have

Mw ⊆ {x : x ≺MC(v)}. (6.16)

6.4.5 The proof of Theorem 6.1.4

We will show that ε < 2−Ω(d) (with the implicit constant depending on m and H).

From this, Theorem 6.1.4 follows. To see this, first observe that for (A,B) ∈ M(H)

we have QC(v),alt(A,B) ⊇ RC(v),alt(A,B). Indeed, consider any f ∈ RC(v),alt(A,B). For each

even i we must have f(vi) ∼ a for all a ∈ A, and so since (A,B) ∈ M(H), we must

have f(vi) ∈ B; similarly, for odd i we must have f(vi) ∈ A. It follows that

1− ε ≤
∑

(A,B)∈M(H)

qC(v),alt(A,B).

Now let e = xy be an edge of Zdm; by symmetry we may assume that e = v0v1 for some

v = v0 ∈ V ?. The event that e is ideal contains the event ∪(A,B)∈M(H)QC(v),alt(A,B) (a

union of disjoint events), and so the probability that e is ideal is at least 1− ε.

To bound ε we consider the entropy H(f) of an f ∈ Hom(Zdm, H), chosen uni-
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formly. We first put a trivial lower bound on H(f):

H(f) = log |Hom(Zdm, H)| ≥ md

2
log η(H), (6.17)

the equality from (6.12) and the inequality obtained by choosing any (A,B) ∈M(H)

and considering only pure-(A,B) colorings (as defined in Section 6.1). The bulk of

the proof will be devoted to finding an upper bound on H(f) which, for ε too large,

is smaller than this trivial lower bound.

We will upper bound H(f) by an application of Shearer’s lemma (with con-

ditioning), that is, Lemma 6.4.1. For m ≥ 4, we take as our covering family

{MC(v) : v ∈ V ?} together with 2d− 2 copies of C(v) for each v ∈ V ?. For m = 2 we

take {MC(v) : v ∈ V ?} together with d−1 copies of C(v) for each v ∈ V ?. Each vertex

of Zdm is covered 2d − 2 times by this family (in the case m ≥ 4) or d − 1 times (in

the case m = 2) and so, bearing (6.13), (6.15) and (6.16) in mind we have

H(f) ≤
∑
v∈V ?

H(f�C(v)|f�MC(v)
) +

(
1 + 1{m=2}

2d− 2

) ∑
v∈V ?

H(f�MC(v)
|f�Mw

), (6.18)

where f�S denotes the restriction of f to the set S ⊆ V (note that this is our only

use of the order ≺). For the first term on the right-hand side of (6.18) we expand

out the conditional entropy and use (6.12) to get

H(f�C(v)|f�MC(v)
)

≤
∑

(A0,...,Am−1)

rC(v),(A0,...,Am−1)H
(
f(C(v))|

{
TC(v) = (A0, . . . , Am−1)

})
≤

∑
(A0,...,Am−1)

rC(v),(A0,...,Am−1) log (g(n(A0, . . . , Am−1))) . (6.19)

We now turn to the second term on the right-hand side of (6.18). For |v| ≤ 2m−1
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we use (6.12) to naively bound

H(f�MC(v)
|f�Mw

) ≤
(

2d− 2

1 + 1{m=2}

)
m log |V (H)|; (6.20)

this will ultimately not be too costly since there are not too many such v. Specifically,

the number of such v is exactly the number of vectors (a1, . . . , ad−1) ∈ {0, . . . ,m −

1}d−1 with
∑d−1

i=0 ai ≤ 2m − 2 and even; this is at most the number of solutions to∑d
i=0 ai = 2m− 2 in non-negative integers, which is at most

(
2m+d−3

2m−2

)
.

For |v| ≥ 2m we use (6.13) and (6.14) to obtain

H(f�MC(v)
|f�Mw

) ≤ H(f�MC(v)
|Rw)

= H(f�MC(v)
, TC(v)|Rw)

≤ H(TC(v)|Rw) +H(f�MC(v)
|TC(v)), (6.21)

the equality holding since f�MC(v)
determines TC(v). For the second term on the right

hand side of (6.21) we expand out the conditional entropy and then use (6.12) to get

H(f�MC(v)
|TC(v))

=
∑

(A0,...,Am−1)

rC(v),(A0,...,Am−1)H(f�MC(v)
|{TC(v) = (A0, . . . , Am−1)})

≤
∑

(A0,...,Am−1)

rC(v),(A0,...,Am−1)

(
2d− 2

1 + 1{m=2}

)
log(g(A0, . . . , Am−1)). (6.22)

Here we use that MC(v) consists of 2d−2 disjoint cycles (in the case m ≥ 4) and d−1

disjoint edges (in the case m = 2).

Inserting (6.19), (6.20), (6.21) and (6.22) into (6.18), combining with (6.17), sum-

ming over v ∈ V ? (noting that |V ?| = md−1/2) and using the symmetry of Zdm we
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obtain

m log η(H)

≤
2
(

2m+d−3
2m−2

)
log |V (H)|

md−2
+

(
1 + 1{m=2}

2d− 2

)
H(TC(v)|Rw) (6.23)

+
∑

(A0,...,Am−1)

rC(v),(A0,...,Am−1) log (g(A0, . . . , Am−1)g(n(A0, . . . , Am−1))) .

We now focus on the sum on the right-hand side of (6.23). Using the trivial bound

g(A0, . . . , Am−1) ≤
m−1∏
i=0

|Ai| (6.24)

together with the observation that for any (A,B) ∈ M(H) we have n(A) = B and

n(B) = A, we have

g(alt(A,B))g(n(alt(A,B))) ≤ η(H)m (6.25)

for any such (A,B) (actually we have equality in (6.25), but we will not need it). On

the other hand, we claim that if (A0, . . . , Am−1) is not of the form alt(A,B) for some

(A,B) ∈M(H) then there is a constant δ(H) ≥ 1 such that

g(A0, . . . , Am−1)g(n(A0, . . . , Am−1)) ≤ η(H)m − δ(H). (6.26)

To see this, note first that if there is an A ∈ (A0, . . . , Am−1) with A 6∈ S(H), A0 say,

then from (6.24) we have

g(A0, . . . , Am−1)g(n(A0, . . . , Am−1)) ≤
m−1∏
i=0

|Ai||n(Ai)|,

and since each of the terms in the product above is at most η(H) and one (|A0||n(A0)|)

is strictly less than η(H), we get (6.26). So we may assume that (A0, . . . , Am−1) ∈
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S(H)m, but is not of the form alt(A,B). Since (A,B) ∈ M(H) is equivalent to

A,B ∈ S(H) and A = n(B), B = n(A), we may assume without loss of generality

that A1 6= n(A0). We have

g(A0, . . . , Am−1) ≤ (|A0||A1| − p(A0, A1))
m−1∏
i=2

|Ai|

and

g(n(A0, . . . , Am−1)) ≤ (|n(A0)||n(A1)| − p(n(A0), n(A1)))
m−1∏
i=2

|n(Ai)|.

If one of p(A0, A1), p(n(A0), n(A1)) is non-zero, then as before the product of these

two bounds is strictly less than η(H)m, giving (6.26) in this case. If they are both

0 then we have A0 ∼ A1 and n(A0) ∼ n(A1), so A1 ⊆ n(A0) and n(A0) ⊆ A1, so

A1 = n(A0), a contradiction.

Recalling the definition of ε, together (6.25) and (6.26) yield

∑
(A0,...,Am−1)

rC(v),(A0,...,Am−1) log (g(A0, . . . , Am−1)g(n(A0, . . . , Am−1)))

≤ ε log(η(H)m − δ(H)) + (1− ε) log η(H)m

= m log η(H) + ε log

(
1− δ(H)

η(H)m

)
≤ m log η(H)− εδ(H) log e

η(H)m

(recall log = log2). Inserting into (6.23) we get

εδ(H) log e

η(H)m
≤

2
(

2m+d−3
2m−2

)
log |V (H)|

md−2
+

(
1 + 1{m=2}

2d− 2

)
H(TC(v)|Rw). (6.27)

The final entropy term we need to analyze is H(TC(v)|Rw). A naive upper bound

from (6.12) is

H(TC(v)|Rw) ≤ |V (H)|m,
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the right-hand side being the logarithm of the size of the range of possible values.

Inserting this into (6.27) we have

εδ(H) log e

η(H)m
≤

2
(

2m+d−3
2m−2

)
log |V (H)|

md−2
+

(
1 + 1{m=2}

2d− 2

)
|V (H)|m, (6.28)

showing that ε ≤ c/d for some constant c depending on H and m.

The information that ε = o(1) as d → ∞ allows us to strengthen our bound on

H(TC(v)|Rw), via the following key lemma.

Lemma 6.4.2. For any (A,B) ∈M(H),

Pr(RC(v),alt(A,B)|Rw,A) ≥ 1− (3m− 1)ε

rw,A
,

and also ∑
A/∈S(H)

rw,A ≤ ε.

Proof. Choose w1, . . . , w2m−1 ∈ V ? with w < w1 < · · · < w2m−1 < v in the usual

partial ordering of Zd. Then

(
RC(v),alt(A,B)

)c ∩Rw,A ⊂ (Rw,A ∩ (Rw1,B)c) ∪ (Rw1,B ∩ (Rw2,A)c) ∪ · · ·

∪
(
Rw2m−1,B ∩ (Rv0,A)c

)
∪ (Rv0,A ∩ (Rv1,B)c) · · ·

∪
(
Rvm−2,A ∩

(
Rvm−1,B

)c)
,

and each of the 3m−1 events on the right hand side occurs with probability less that

ε, by symmetry of Zdm. Therefore

Pr(
(
RC(v),(A,B)

)c |Rw,A) =
Pr
((
RC(v),(A,B)

)c ∩Rw,A

)
rw,A

≤ (3m− 1)ε

rw,A
.
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Also, rw,A ≥ rC(w),alt(A,B) implies

∑
A∈S(H)

rw,A ≥
∑

A∈S(H)

rC(w),alt(A,B) =
∑

(A,B)∈M(H)

rC(w),alt(A,B) = 1− ε.

We now partition S(H) by S(H) = S1(H)∪S2(H), where A ∈ S1(H) if and only

if rw,A ≤ 2(3m− 1)ε (note that this partition depends on d as well as on H, and for

fixed m and H it may change for different values of d). For convenience we also write

S0(H) for the complement of S(H) (in the power set of V (H)). Expanding out the

conditional entropy we have

H(TC(v)|Rw) =
2∑
i=0

∑
A∈Si(H)

rw,AH(TC(v)|Rw,A).

Trivially (from (6.12) and the second statement of Lemma 6.4.2),

∑
A∈S0(H)

rw,AH(TC(v)|Rw,A) ≤ ε|V (H)|m. (6.29)

For the remaining two terms of the sum, we need to do a little groundwork. For each

A, −H(TC(v)|Rw,A) is the sum over all (A0, . . . , Am−1) of

Pr({TC(v) = (A0, . . . , Am−1)}|Rw,A) log
(
Pr({TC(v) = (A0, . . . , Am−1)}|Rw,A)

)
(by definition of entropy) and so

H(TC(v)|Rw,A) ≤
∑

(A0,...,Am−1)

H
(
Pr({TC(v) = (A0, . . . , Am−1)}|Rw,A)

)
. (6.30)

For A ∈ S1(H), we cannot do any better than bounding all 2|V (H)|m entropy terms
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in (6.30) by 1, leading to

∑
A∈S1(H)

rw,AH(TC(v)|Rw,A) ≤ 2|V (H)|m
∑

A∈S1(H)

rw,A

≤ 2(3m− 1)2|V (H)|(m+1)ε, (6.31)

since there are at most 2|V (H)| summands and each is at most 2(3m − 1)ε. For

A ∈ S2(H), on the other hand, we know by Lemma 6.4.2 and the definition of S2(H)

that

Pr({TC(v) = (A0, . . . , Am−1)}|Rw,A) ≤ (3m− 1)ε

rw,A
≤ 1

2

if (A0, . . . , Am−1) 6= alt(A,B), while

Pr({TC(v) = (A0, . . . , Am−1)}|Rw,A) ≥ 1− (3m− 1)ε

rw,A
≥ 1

2

if (A0, . . . , Am−1) = alt(A,B). We may therefore replace each of the entropy terms

in (6.30) by H((3m− 1)ε/rw,A), leading to

∑
A∈S2(H)

rw,AH(TC(v)|Rw,A)

≤ 2|V (H)|m
∑

A∈S2(H)

rw,AH

(
(3m− 1)ε

rw,A

)

≤ 2|V (H)|m

 ∑
A∈S2(H)

rw,A

H

(
|S2(H)|(3m− 1)ε∑

A∈S2(H) rw,A

)
(6.32)

with (6.32) an application of Jensen’s inequality. Now we use the fact that ε ≤ c/d

to conclude that the argument of the entropy term in (6.32) is bounded above by Cε

for some constant depending on m and H (this utilizes Lemma 6.4.2 and the fact
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that
∑

A∈S1(H) rw,A is at most cε) to get

∑
A∈S2(H)

rw,AH(TC(v)|Rw,A) ≤ CH(Cε). (6.33)

We now combine (6.29), (6.31) and (6.33) with (6.27) to find that there are

constants ci, i = 1, . . . , 4 (all depending on both m and H) such that

c1ε ≤
dc2

md
+
c3H(c4ε)

d
.

Using H(x) ≤ 2x log(1/x) for x ≤ 1/2 (a simple power series argument) this becomes

c1ε ≤
dc2

md
+
c3ε

d
log

1

c4ε
, (6.34)

from which it follows that ε ≤ 2−Ω(d).
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