CONSTRUCTING PIECEWISE LINEAR
2-KNOT COMPLEMENTS

JONATHAN DENT, JOHN ENGBERS, AND GERARD VENEMA

INTRODUCTION

The groups of high dimensional knots have been characterized by
Kervaire [7], but there is still no general description of all 2-knot groups.
Kervaire identified a large class of groups that are natural candidates
to serve as 2-knot groups and proved that each of these groups is the
group of the complement of a smooth 2-sphere in a homotopy 4-sphere.
Freedman’s solution to the 4-dimensional Poincaré conjecture implies
that the groups Kervaire identified are the groups of locally flat topo-
logical 2-knots, but it is not known whether all of them are groups of
piecewise linear (PL) 2-knots in S*. The best result is due to Levine
9], who observed that the Andrews-Curtis conjecture can be used to
show that all the groups identified by Kervaire are groups of PL 2-knots
in S4.

In this note we outline a new proof of Levine’s theorem. The proof
given here is entirely 4-dimensional; the Kirby calculus of links is used
to give an explicit picture of the 2-knot and its complement. By con-
trast, the usual proof of Levine’s theorem involves constructing a 5-
dimensional ball pair whose boundary is the knot. Our proof leads
to a piecewise linear knot with one nonlocally flat point. It is clear
from the construction that the link of the exceptional vertex is a rib-
bon link. The proof in this paper is based on a recent construction of
Lickorish [10].

1. PROPERTIES OF KNOT GROUPS
Before we can state the Kervaire theorem we need several definitions.

Definition. An n-knot is a topological embedding h : S™ — S™*+2.

It is usually assumed that the embedding A is either smooth or PL,
although knots in other categories can be profitably studied as well.

Definition. The group of the knot h : S™ — S™*2 is 7 (S™2  h(S™)).
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Definition. A group 7 has weight 1 if there exists one element z € 7
such that 7 is generated by conjugates of z and z~!. Such an element
z is called a meridian of the group.

It is relatively easy to see that the group 7 of any smooth or PL knot
has the following properties:
(1) = is finitely presented.
(2) The abelianized group «/[m, 7] is infinite cyclic.
(4) m has weight 1.
Kervaire [7] proved that these four properties completely characterize
the groups of high dimensional knots.

Theorem 1.1 (Kervaire). A group m is the group of a smooth n-knot,
n > 3, if and only if ™ satisfies (1) — (4).

Since a 2-knot can be suspended to a 3-knot, every 2-knot group
is a 3-knot group and therefore satisfies (1) — (4). But not every 3-
knot group is a 2-knot group—see [3|, for example. Hence stronger
conditions are needed to characterize 2-knot groups. The following
condition is a natural one to try in place of condition (3).

(3') 7 has deficiency 1.
Definition. The deficiency of a finite presentation for a group is
(# generators) — (# relations).
The deficiency of a finitely presented group is the maximal deficiency

of its presentations.

Kervaire [7] proved that any group satisfying (1), (3'), and (4) is the
fundamental group of the complement of a smooth 2-sphere in a homo-
topy 4-sphere. Combining that result with Freedman’s solution [5] to
the 4-dimensional topological Poincaré conjecture yields the following
theorem.

Theorem 1.2 (Kervaire-Freedman). If © satisfies (1), (3'), and (4),
then 7 is the group of a locally flat topological 2-knot in S*.

Remark. It is relatively easy to see [6, page 17] that
(1) +3)+ (@) =(2),
so it is not necessary to assume (2) in the Kervaire-Freedman theorem.

The Kervaire-Freedman theorem exhibits a large class of groups that
are 2-knot groups, but it does not characterize 2-knot groups. While
the conditions listed in the theorem are sufficient to guarantee that a
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group is a 2-knot group, they are not necessary. In particular, con-
dition (3') is not a necessary condition since the group of the 2-knot
described by Fox in [4, Example 12] does not have deficiency 1. In ad-
dition, Freedman’s theorem gives only a topological homeomorphism
between the homotopy 4-sphere and S*, so the theorem does not an-
swer the question of whether or not groups satisfying (1), (3'), and (4)
are the groups of smooth or PL 2-knots. It is the latter aspect of the
theorem that will be investigated in this paper; we will add an addi-
tional condition which allows us to construct a PL 2-knot realizing the

group.

2. ANDREWS-CURTIS MOVES AND THE THEOREM OF LEVINE

Levine [9] observed that a conjecture of Andrews and Curtis [1] can
be used to prove that groups satisfying (1), (3'), and (4) are the groups
of smooth or PL 2-knots.

Definition. Let P = (ay,...,a, | 1,...,7m) be a presentation of a
group. The following are called Andrews-Curtis moves on P:
e Replace r; by riajaj_l or Tiaj_laj.
e Replace r; by a cyclic permutation of r;.
e Replace r; by ;'
e Add a new generator a,,; and a new relation a,;w™*, where
w is an arbitrary word in aq, ..., a,.

Definition. Two finite presentations are said to be AC equivalent if it
is possible to get from one to the other by a finite sequence of Andrews-
Curtis moves or their inverses.

Suppose
P=A(ay,...,an| 711, ..., T0_1)
is a deficiency 1 presentation of a group m. If 7 has weight 1 and z is
a meridional element for 7, then

P ={ay,....,an |71, .., 0 1,2)
is presentation of the trivial group. Note that P’ has deficiency 0.

Definition. The presentation P’ is called the induced presentation of
the trivial group. The presentation (a | a) is called the trivial presen-
tation of the trivial group.

The Andrews-Curtis Conjecture. The Andrews-Curtis conjecture
states that if a finitely presented group has weight 1 and deficiency 1,
then the induced presentation of the trivial group is AC equivalent
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to the trivial presentation.! This conjecture is deep and has thus far
resisted all attempts at proof. Levine’s theorem [9] asserts that if the
Andrews-Curtis conjecture holds for a particular presentation, then the
group is the group of a PL 2-knot.

Theorem 2.1 (Levine). If 7 satisfies (1), (3'), and (4) and if © has
a presentation such that the induced presentation of the trivial group
is AC equivalent to the trivial presentation, then w is the group of a
locally flat PL 2-knot.

3. CONSTRUCTION OF PL 2-KNOTS

In this section we will outline a proof of Levine’s Theorem. The first
step is to get a presentation of the group that reflects the additional
structure given by the Andrews-Curtis moves.

Definition. Let 7 be a group of weight 1 with meridional element z.
A meridional presentation of 7 is a presentation of the form

P=A{a,...,an,2|7T1,...,70)

in which each r; is a product of conjugates of z and z71.

More specifically, each r; has the form

1

_ €1,,—1 €2, — €m. —1
Ty = Wi 2 Wy Wik "Wy - .- Wym, 2 ™ wimi

in which each ¢, = £1 and w;; is a word in a4, ..., a,, 2.

Lemma 3.1. If 7 satisfies (1), (3'), and (4) and if © has a presentation
such that the induced presentation of the trivial group is AC equivalent
to the trivial presentation, then ™ has a meridional presentation.

Sketch of proof. Assume 7 has a presentation P such that the induced
presentation P’ of the trivial group is AC equivalent to the trivial
presentation. Do the same Andrews-Curtis moves to P as to P’, but
without canceling the z’s. The same moves that transform P’ to the
trivial presentation will transform P to a meridional presentation. [J

Here is a statement of the theorem we will prove.

Theorem 3.2. If 7 satisfies (1), (3'), and (4) and if © has a pre-
sentation such that the induced presentation of the trivial group is AC
equivalent to the trivial presentation, then m is the group of a PL 2-
knot. Furthermore, the PL 2-knot is locally flat except at one point and
the complementary disk is a ribbon disk.

More generally, the Andrews-Curtis conjecture asserts that any two presenta-
tions of a group that have the same deficiency are AC equivalent.
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We will sketch the proof in a simple case. It will be evident how to
modify the proof to cover the general case.

Proof. By the lemma, we may assume that 7 has a meridional presen-

tation. Suppose, for example, that m has presentation
P=(r,y,z|o=y wzaly,y=ay zya")?

In order to simplify the notation we use a to denote the relation
x 'y lwze~ly and 3 to denote the relation y~taxy tzyz~!.

We begin by constructing the knot complement. Figure 1 shows a
Kirby diagram of a compact 4-manifold X. We are using the standard
Kirby calculus notation: a 1-handle attached to B? is the same as an
unknotted 2-handle subtracted from B*, so a 1-handle is indicated by

an unknotted circle with a large dot on it. It is clear that m(X) = .

FiGure 1. Kirby diagram of the complement X

Observe that X can be constructed as a subset of S*. To see this,
note that both x Uy U z and a U 8 are unlinks. We think of these two
links as lying on 9B* C S*. Since both links are trivial, we can attach
disjoint disks to # Uy U z in B* and attach disjoint disks to o U 3 in
S4\Int B* Then X is realized in S* by starting with B*, subtracting
neighborhoods of the inside disks, and adding neighborhoods of the
outside disks.

We now consider M = S*~ X. The proof of the theorem will be
completed by showing that M is a regular neighborhood of a PL 2-
sphere. We will accomplish this by first constructing a Kirby diagram
for M and then canceling handles to show that M has a handle decom-
position consisting of one 0-handle and one 2-handle.

2This is a meridional presentation of the figure-eight knot group.
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Note that M is obtained from the 4-ball S*\ Int B* by adding neigh-
borhoods of the disks attached to x Uy U z and subtracting neighbor-
hoods of the disks attached to a U 3. This means that the diagram
of M is obtained from the diagram of X by removing the dots from
x,y, z and placing new dots on «, J—see Figure 2.

F1GURE 2. Kirby diagram of M = 5%~ X

We now wish to simplify the handle decomposition of M. The decom-
position indicated in Figure 2 consists of one 0-handle, two 1-handles,
and three 2-handles. We will cancel two (1,2)-handle pairs, leaving
just a 0-handle with a single 2-handle attached. The first step is to
straighten out a and f—see Figure 3.

FIGURE 3. Make a and (3 look like the standard unlink

The next step is to slide the 2-handle z over over the 2-handle x and
then to cancel a U x—=see Figure 4.
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z

FIGURE 4. Slide z over x; then cancel oo U x

F1GURE 5. Slide z over y; then cancel S Uy

The final step is to slide the 2-handle z over over the other 2-handle
y and then to cancel g U y—see Figure 5.

We now see that M consists of a 0-handle with one 2-handle attached
along z. Thus M is a regular neighborhood of a PL 2-sphere. The 2-
sphere consists of the the core of the 2-handle plus the cone on z, so it
has one nonlocally flat point. It is clear from the construction that the
final 2-handle z is a ribbon knot and that the disk is the the ribbon
disk. O
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