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Good ultrafilters produce topological ultraproducts which enjoy a strong Baire category
property (depending upon how good the ultrafilter is). We exploit this property to prove a “uniform
boundedness” theorem as well as a theorem which says that, under the Generalized Continuum
Hypothesis (GCH), many ultraproduct spaces have families consisting of closed discrete sets of
high cardinality such that every nonempty open set contains one of these sets. In another section we
relate the strong Baire properties to the infinite distributivity of Boolean Algebras of regular open
sets. Finally, we prove that, under the GCH, a great many topological ultrapowers are homeomor-
phic to the corresponding ultrapower of the space of rational numbers; and we show further that
the GCH is indispensible to the proof. A purely model-theoretic application of our methods solves
a problem related to the Keisler-Shelah Ultrapower Theorem.
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0. Introduction

This report is a continuation of [3, 4, 5] and an expansion of the results announced

in [6, 7]. Our notation will follow current usage as much as possible (with[8, 11, 26]

as our main references); but we will assume some familiarity with the conventions
established in our earlier works. The central theme is the construction of topological

- ultraproducts using regular and (especially) good ultrafilters. The ultraproduct
H construction, traditionally a part of model theory, has been investigated in a
topological context and has proved to be an interesting source of uncountable
zero-dimensional spaces. Here we use good ultrafilters to obtain spaces which have
the Baire category property in higher cardinals as well as other combinatorial
properties (including regular-open algebras which have high-cardinal distributivity).

* Research partly supported by a Canadian N.R.C. Post-doctoral Fellowship at McMaster Univ.,
Hamilton, Ontario {present address: Math. Dept. Southern Ill. Univ., Carbondale, Itinois).
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122 P. Bankston [ Tapological reduced products

The broad motivation for studying topological ultraproducts is to establish a general
theory of topological reduced products, of which the familar box product is a special
case.

To review the basic definitions, let « be an infinite cardinal number and let
(Xa: a <«) be a x-sequence of topological spaces. An open box is a Cartesian
product [, U, where U, € r,, the topology on X,. The Cartesian product [], X,
together with the open boxes, form a space called the box product (again denoted
[1.X.). Let D be a filter of subsets of x, and define, for x, ye[[ X, x =y iff

{a: xo =y.}e D. This relation is clearly an equivalence, and the quotient space
[, Xa =11, X./D is the topological reduced product via D. The natural
projection T'p:[[ X,-[I, X, is an open map; and Io(l, Ua) =1, U. =
{x]o: {a: x. € U,}€ D} is called an open reduced box when the U, are open in the
corresponding X, A very elementary but important observation is that whenever &,
is a basis for 7, then [[, B, ={[[, U.: U, ¢ B, all @ < «} is a basis for the reduced
product topology. We also note that when D = {«}, the D-reduced product is just the
box product; and when D is an ultrafilter [1p X, is the D-ultraproduct of the X, ’s.

Because we will need to look at topological ultraproducts from the standpoint of
model theory, we take time out here to describe reduced products in an alternate
form: If (X, 7) is a space we treat it as a relational structure (X Ur; X, , €) with
universe X U7, unary relations X, 7, and the binary relation ¢ of membership
between elements of X and elements of . The topological reduced product [, X, is
then the structure ([, X. UTlp 72 [T Xa» TIp 72)*, [Io €.) where ([1, 7.)* is the
topology generated by [], 7. (clearly a topological base). The relation [I,€.isno
longer “real” membership ([x]p [15 €. [Ip U, iff{e ‘xa€ U, eD), but it is iso-
motphic in the model-theoretic sense to membership, so no real difficulties arise in
that regard. We will return to the model-theoretic approach to topological
ultraproducts in a later section where we prove the rather surprising result that
whenever (X,,: « <«) is a sequence of perfect regular spaces of cardinal + weight <
exp(«) (here “perfect”” means “having no isolated points”) and D is a good ultrafilter
on « then [[, X, =[],(Q), provided exp{x) =k (Q denotes the space of rational
numbers, and [I5(Y) =[], Y. where each Y, is Y. Also “=" denotes homeomor-
phism, not model-theoretic isomorphism which is signified by “="),

1. Basic concepts and combinatorial lemmas

Let « be acardinal number. A space X is x-Baire if intersections of <« dense open
sets are dense. X is k-additive (here we follow the usage of Sikorski (23).In[3,4, 5]
we used the terminology “x-open”; and in [12] the designation “P,-space” is given)
if intersections of <« open sets of X are open. w;-additive spaces are popularly
known as P-spaces. '
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Let F be a family of sets, with «, A <0 cardinals (we abuse notation slightly). F is
{k, A )-compact if whenever Fo C F has power <« and every F; C F of power <A has
nonempty intersection, then Fy has nonempty intersection. A space X is k-compact
if the collection of closed subsets of X is (0, x)-compact. We borrow some
terminology from model theory and say that X is weakly x-saturated if X has an
open basis which is (x, w)-compact.

Remark. All spaces are w-Baire, w-additive, and weakly o-saturated; the Baire
spaces are precisely the wy-Baire spaces; and Martin’s Axiom is equivalent to the
assertion that every compact Hausdorft space with the countable chain condition is
c-Baire, where ¢ = exp(w) = the power of the Continuum.

In the sequel we denote the set of subsets of S by P(S), with P..(S) denoting
{Ac S:|A| <k} for « a cardinal. Let D be an ultrafilter on x and let A be any
cardinal. D is A-regular if there is a “regularizing” set E = D of power A such that
every £ < k is contained in only finitely many members of E (i.e. E is point-finite). D
is A-good if D is countably incomplete (i.e. D is not closed under countable
intersections) and for all 4 <A any “‘monotone” F:P, ()~ D (F is monotone if F
is order-reversing, i.e. sct=>F(s)2F()) “dominates”’ 2 ‘“‘multiplicative”
G :P.(n)~ D (i.e. there is a function G such that G(s) < F(s) for all s P, {(u) and
GisUnN=G(s)~G()forall s, 1€ P ().

We collect some combinatorial results about regular and good ultrafilters, and
about the ultraproducts they form.

1.1. Proposition. Every countably incomplete ultrafilter is wy-good.

Proof. This is a standard result and a straightforward application of the
definition. [

1.2. Proposition. Let D be A-good on x. Then D is p-regular for all  <A.

Proof. This resultisalsostandard (see{8, 11]) butless straightforward, so we include
a proof.

First, since D is countably incomplete, we can find a sequence x = LizhLiz---of
elements of D whose intersection is empty. Define F:P,{u)>D by F (s)=1Ij.
Clearly F is monotone, so since D is A-good there is a multiplicative G=<F (i.e. G is
dominated by F). Let = < P, (1) be the singleton sets and define E = mg(G |E). We
show E is a u-regularizing set for D. Now given £ <«, {n<u:{¢€ G({n})} can have
no more elements than the number #(¢£) = max{m: £ € I,}. For suppose m1, . .., 7im
are distinct with £€ G({n;}) all 1 <i=<m. Then by multiplicativity,

§€ G({‘)’h, v ,ﬂm})EF({TIh ey nm})=Im9

so m < n(£). Thus E is point-finite. To show |E| = u, we know that |2] = u and for any
£ < x, |GHG €N < n(£). Thus the point inverses of G are finite. [




124 ' P. Bankston [ Topelogical reduced products

Remark. No ultrafilter on « can be x*-regular; and one can show quite easily that
x-regular ultrafilters abound. Thus, at best, we can hope for the existence of x *-good
ultrafilters on «. This was originally proved to be true by Keisler using x* = exp(x);
and subsequently by Kunen using only ZFC (see [12, 17]). If D is an ultrafilter on x,
we say D is regular if D is x-regular and D is good if D is «™-good.

We next turn to the cardinality of ultraproducts,

1.3. Proposition. Let S be an infinite set, D a regular ultrafilter on k. Then |, (S} =
IS*

Proof. This is a well-known result (see [8, 117y, O

1.4. Proposition. Let D be a countably incomplete ultrafilter on « and assume that
{nq: @ <) is a sequence of natural numbers such that foralll e D,sup{n,: a e I}=g.
Then [[1p nal=c. Moreover if D is good, then Mo 1| = exp(x).

Proof. The first assertion is well-known and can be found in [8, 11]. The second
assertion is due to Keisler and Prikry {15]. The proof proceeds as follows: Define
F:P,(k)»D by F(s)={a<«k: nm22""'}. F is monotone so let G<F be multi-
plicative. For a <« let s, = {8 <k:a ¢ G{BD}, a finite set. Then a € G{s,) < F(s,)
$0 n,=2% Let H, map 2% one-one into n,. For fe2“ define fell. n. by
fla)=H,(f|s,). : |
It £, g € 2%, fy # gg, then for all « € G{{8}) we have B e 5, SO flsa#g|s.and f, #g,;
whence f # g implies [f]p #[g]p and exp(x) < Mor. O

The next proposition is crucial to the establishment of Baire properties for
topological ultraproducts.

1.5. Proposition. Let (S,: a <«x) be a Kk-sequence of sets with D a A-good ultrafilter
on «. Then any family of ultraboxes in [, S, is (A, w)-compact.

Proof. Thisis proved in a manner similar to the way in which one proves that A -good
ultraproducts of relational structures are A -saturated in the sense of Morley and
Vaught (see [8, 11]).

Fix xk=Lhz=I=-+- as in the proof of Proposition 1.2 and let w <A with
M={1p M, £<pu) a family of x ultraboxes from IIp S. with the finite inter-
section property. We show [).# # 0. So let F:P,, (1) D be given by

F(s)=I|s|ﬂ{a: QSMQ,E;éﬂ].

F is monotone so let G <F be multiplicative, and define s, = {{ <u:a e G}, a
finite set (since G is multiplicative, |s,|< n(a)= max{m: a €I, }). Nowforeacha <«
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define

§€5a

{any member of [} M, if there is one,
Xo =

arbitrary otherwise,
and fix £<p. Then {a: x, e M, ¢} 2{a: tes}2G{ghe D, soxlp e 4 O

1.6. Corollary. Let (X,: a <k) be a x-sequence of topological spaces with D a
A-good ultrafilter on . Then [1p X, is weakly A-saturated. [

2. The Baire category theorem

A central lemma of {3, 4, 5] will be often quoted in the sequel, so we state and
prove it here.

2.1. Proposition. Let (X.: @ <k) be a k-sequence of topological spaces with D a
A-regular wimrafilter on x. Then T1p X. is ™ -additive.

Proof. Let E be aregularizingsubset of D, say E ={/;: £ <A). Itsufficesto show that
if 0 ={{1p Une: £<A)isatfamily of A open ultraboxes and if [x 1o € I then there is
an open ultrabox [], U, with [xlpbellp U= (I. For each £<A let J;=
{a <x:xg€ U,ele D and for a <« define sa ={{<A:a € I, N J¢}. Then each s, is
finite so define U, ={ \¢c,, Vet

Now [1, U. is an open ultrabox and {a@ <«: x. € U =xeDsol[xlpellp U.. And
it £<A then {a<w:U,cU.gd2{a<k:fes}=INJeD. Thus MpUacs

. O

We can now prove our first theorem.

2.2. Theorem. Let (X, a <) be a «-sequence of topological spaces with D a A-good
ultrafilter on k. Then []p X, is A-Baire.

Proof. By Proposition 1.2, Corollary 1.6 and Proposition 2.1 we have that [[ X, is
p*-additive for all u <A (hence A -additive), and weakly A -saturated. We show this
to be sufficient for [, X, to be A -Baire. Thus we prove that for any space X ifXis
A-saturated and g -additive for all g <A, then X is A -Baire.

First pick an open basis & for X which is (A, w)-compact, pick u <A, and let
H=(U,: £ <) be dense open sets with B € % nonempty. We show B =@ by
transfinite induction. Proceeding as in the usual proofs of the Baire Property, let
Boe B be such that @ # Bo< B N Us. This is possible since Uy is dense open. Now for
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0<é<pu,ifd8=¢+1thenlet B; < B N\ M. If & is a limit ordinal we wish to define B;
in terms of M, and the decreasing chain (B,: £ < 8). This can be done if MecsBe
M; is nonempty and open; for we can just let B, # @} be an element of & contained
in (,.;BeNM;. Since M, is dense open it suffices to show (MezsB: to be
nonempty open. But this is true since |8|<u; and X is - additive as well as
weakly A-saturated. We now have a decreasing chain (B;: & <u) of nonempty basic
open sets so again use weak A-saturicity to conclude M t<p Be # ). But this set
is contained in BNMIl. O

Noting that the collection of dense open subsets of any topological space
has the finite intersection property (it is indeed a filterbase), we have the following
corollary.

2.3. Corollary. Ler (X,: a <«) be a sequence of spaces with D a good (=« " -good)
ultrafilter on «. Then the filterbase of dense open subsets of Tl p Xo is k" -complete (i.e.
closed under <« intersections). [

Remarks. (i) By Proposition 1.1 and Theorem 2.2 every countably incomplete
ultraproduct is Baire (=w;-Baire) regardless of the topologies on the factor
spaces X,. They are also P-spaces (i.e. w;-additive) which means that, unless
they are discrete, they cannot be complete metric or compact Hausdorff, the
usual antecedents for Baire-ness. In fact it is a fairly simple exercise to show
that non-discrete P-spaces can never be Cech complete (We haven't checked out
whether they can be co-compact in the sense of [1], but it seems doubtful that
they are).

(i) Comfort and Negrepontis have some results in (12] (vide Theorems 6.15,
15.8) about the «-Baire property. Their proofs do not differ in spirit from ours (or
indeed from the classical proofs).

(iii} The class of Baire spaces is closed under the taking of ultraproducts; for
countably complete ultraproducts clearly preserve this property and countably
incomplete ultraproducts create the Baire property for free {thus the class of
non-Baire spaces is not closed under ultraproducts). ‘

{iv) Since x-good ultrafilters exist for any prescribed x, we have that any space X
has ultrapowers which are -Baire for arbitrary «.

(v) The converse of Proposition 2.1 is also true. That is the ultrafilter-theoretic

property of A-regularity of D is characterized by the fact that topological D-
ultraproducts are A -additive (see [4]). Keisler originally proved (see [11, Problem
4.3.32]) that D is A-regular iff D-ultraproducts of relational structures are
A "-universal (where the associated language has <A symbols).
A similar problem exists for characterizing A-goodness of uitrafilters by what
topological properties they confer on topological ultraproducts (for the model-
theoretic analogue see [11, problem 6.1.17]). In particular is there an ultrafilter D
which is not A -good such that [],, X, is always A -Baire?
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3. Uniform boundedness

In this and in the next two sections we explore some of the consequences of the
«-Baire property, in ultraproducts and for general spaces as well.

Assume that X is a compact Hausdorff space and that D is an ultrafilter. Then (see
[4] for details) there is a map limp Mo (X)X, the D-limit map, which is a left
inverse for the diagonal map 4p:X - [[p (X) taking x € X to the D-equivalence
class of the constant map at x. Now although Ap is rarely continuous, limp always is;
so we make the following definition: Let f: X » Y be a continuous map with Y
Hausdorft. f is compact if f{X](={f(x): x € X}) has compact closurein Y.If Fisa
family of continuous maps from X to Y, we say F is compact at xe X if F{x}=
{f(x): f € F} has compact closure in Y. Similarly define “F is compacton A< X™.
Now if I? is an ultrafilter on « and f: X - Y is compact we define 2 [1p(X)> Y by
the composition

o 11, FIX D —2» FIX1c Y.

11, (XD

Clearly f° is a compact continuous map. If F is a family of compact continuous maps
we define FZ in the obvious way.

3.1. Theorem. Suppose F is a family of compact continuous maps from X to the

. Hausdorff space Y such that there is a nonempty open U = X for which F is compact at

each point of U. Then there is an ultrafilter D and a nonempty open V <15 (X) such
that F® is compact on V.

Proof. Let x be the cardinality of the set ky of compact subsets of Y (the cofinality
of ky as a directed set will do), and let D be a good ultrafilter on x. Then [, (X) is
«*-Baire. By hypothesis F is compact at each pointof U < X, Thus F” is compact at
each point of [[p (U)<T15{(X), a nonempty open set. For each K eky let Vg =
{Ix]p: FP(x]p)2 K}. Then Vk is open in [I5(X). If all the Vk’s were dense it
would follow that [ {Vk: K € ky} is also dense. But then F P would not be compact
at some point of [, (), a contradiction. So let V be a nonempty open set missing
some V. O

Remark. The above theorem is a topological ultraproduct analogue of the classical

Banach—Steinhaus theorem. Its proof doesn’t differ greatly in spirit from the classical
one. :

4. The regular open algebra of a «-Baire space

Here we relate the «-Baire property to a property of Boolean algebras. We were
led to our result after reading Lemma C of Mansfield [18] which states essentially
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that if a P-space X has an open basis such that every countable decreasing sequence
of nonempty basic sets is nonempty then the algebra of regular open sets of X is
(w1, 20)-distributive. We improve on this result (which is only stated in [18]) in the
present section, after first establishing some notation.

If X is a space and A < X then the closure of A, previously denoted A, will also be
denoted A™. The interior of A will be denoted A° An open U < X is regular open if
U=U, The set #X of regular open sets can be made into a compiete Boolean
algebra by defining Vier U=, I U) P andU'= (X — U)°. Two well-known facts
about #X are:

(i) thatif X isregular then RX forms an open basis for X (“‘semiregularity’); and

(ii) thatforany U, Ve RX, UV =UNV (indeed, if U1y, ..., U, are open then
N NUY° =U’N-- NU.

A complete Boolean algebra B is {a, B)-distributive, where <a, B=00 are
cardinals, if for any x <@, A <8 and any « X A-indexed sequence {a;,: £ <x, n<A)
of elements of B,

AV aGn=V A At aie)

£k <A oeA® i

We remark that our definition differs inessentially from that given in Sikorski [22];
and that the above equation holds in B iff its dual holds as well, since B is complete.

4.1. Theorem. Let X be a regular x-additive space, where k =w is a cardinal. The
following are equivalent:
(i) For any A <« and any sequence (U;: £ <A) of open sets, (MNeca U=
mg<,\ UEO
(i1) X is x-Baire.
(i) RX is (x, co)-distributive.

Proof. (i)=>(ii). Let (I;: £<A) be a sequence of dense open sets, A <. Then
U:° =X for each ¢ By (i), (Mees Ue is dense.

(Y= (iii). Let(U,;: £<A,icI)bea doubly indexed sequence of regular open sets.
By (i)

-0, -0 -0

Avve=(Q(Uu) ) =n(Uuw)
B (£<A iel Uﬁ'i) —0= (crg‘\ Q\ Ue'a(f)) )
~(W(Qvee) )

= V. A U

ol g<i
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(i) =>(i). Let (Ug: £<A) be given. Now [\, Ug s U, for each n<A so
(Mger U ’cMeaa U ;° always. For the reverse inclusion, assume first that the
Uy’s are regular open. By k-additivity [e<x Uz® =M Ue is open, hence it is
contained in () £<a UE)_O. Back to the general case, we have that X is regular. Thus
we can write U, =|_J,.; Ug where Uy, is regular open. Now

-0, =0

(o) (o) -0 ) ({0 )

£<A £<icl ael* g<i oel* \E<A

since each Uy, is regular open. This last expression is

VA Vo= A V Ui

oel® <A E<A il
by (iii). This is now

0, —

) *-(Q o) = e

£<ZA £<A

(Qlu)

E<a Mel

since, by «-additivity, the intersection is open. The desired equality thus holds.

({@=0). To show (MNecx Ud 2N Us® we just show (Mo, Us) 2
M e U EO. This will do since [,y U 20 is open. To obtain a contradiction, suppose
xel Ve U z° —(Me<x Ue)” =V, an open neighborhood, of x by «-additivity. Then
for each n <A, veU,” so VeU,; whence V™ cU,. Also we have Vn
{(Mger Ue)”=0. Now when, M, N are disjoint open sets then (M NN =
MO AN =M AN)?=0, so M N is closed nowhere dense {c.n.d.). Thus
VoA ({(gey Ue) iscnd. Butalsoeach V' - U, < U, — U, is c.n.d. By (ii),

U v -vp=v (N Uy

£<A £<A
is also c.n.d.; whence
a=(vin(n v )e(v-(Q )
E<CA £
is e.n.d. But x € V < A, a contradiction. [J
Remark. If we drop the regularity hypothesis (we actually use only semiregularity)
in Theorem 4.1 all we lose is the (iii)=> (i)-direction. In particular it is always true that

(i) (ii), and either implies (iii).

4.2. Corollary. Let D be a A-good ultrafilter on k with {X.: a <«x)a family of spaces.
Then [1p X. is (A, co)-distributive. [}
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5. Resolvability

Following the terminology of Hewitt [13], we say a space X is resolvable if there
are two disjoint subsets of X which are each dense in X Int {13]various conditions are
found which ensure resolvability or unresolvability; and we show in the present
section that topological ultraproducts tend to be resolvable in a very strong sense.

Let A be a cardinal number (possibly finite). X is A -resolvable if there are A
disjoint subsets of X which are each dense in X Clearly A-resolvability gets
increasingly restrictive as A increases and in particular 2-resolvable implies perfect
{=no isolated points). Hewitt [13] describes a machine for producing perfect
Hausdorft spaces which are unresolvable (the “submaximal” spaces (Bourbaki
terminology [10]) where every dense set is open). We go in the other direction and
produce spaces which can support as many pairwise disjoint subsets as there are
points in the space.

We strengthen A -resolvability in the following way: A space X is strongly
A-resolvable if there is a family # of pairwise disjoint subsets of X such that each
M e 4 is closed discrete, of power A, such that each nonempty open I/ < X contains
a member of 4. Clearly if X is strongly A -resolvable then X is A -resolvable, even if
we omit the requirement that each M be closed discrete. Again, strong A -resol-
vability is a chain of properties; increasing in strength as A increases.

The first theorem in this section is about how (strongly) resolvable topological
ultraproducts can be. We first quote a time-honored combinatorial lemma {the
original discoverer of which is unknown to us).

5.1. Lemmb, Let « be an infinite cardinal and let (M,: a <«) be a collection of
subsets of M, each of power «. Then for each a < x there is a set N, € M, such that the
N.’s are pairwise disjoint and each N, has power «.

Proof. First well order « x « in type « as the sequence (o, Be): £ <) insuch a way
that if 8, =8, =8, then

Mapsy =M, 6, = Ms.

Use induction. Suppose for each n < ¢ we’ve chosen a poInt x¢. gy €M, p), all
distinct. Then choose a new x,, g, €M s, since [£]<«. For all B <, [{¢: B:=
B}[ =x. So let NB = {x<rxe,ﬂe>: ﬁf = B}' D

We define a m-basis for a space X to be a collection 11 of nonempty open subsets of
X such that every nonempty open set contains a2 member of 1I. The -weight,
denoted (X)), is the least cardinal of a #-basis for X Plainly #(X) =< w(X), the
weight of X.

5.2. Theorem. Let (X, : a <«) be a sequence of perfect Ty spaces such that for a < k,
7(X.) <exp(«); and let D be an ultrafilter on «. '
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(i) If D is regular, then [1p X. is strongly x-resolvable and exp(x)-resolvable.
(i) If D is good and if exp(x)=«", then [ p X. is strongly exp{«)-resolvable.

Proof. (i) For each a <« let Il, be a w-basis for X, of power <exp(x). Then
. ={n U.: U, ell, for alla<x}
D D

is a sr-basis for [[, X, of power <|exp(x)“|= exp(x). Moreover since each X, is
perfect, each U, is then infinite; so by Proposition 1.3 each [[, U. has power
=exp{x).

Well order [[p 1. ={IIp Uae: £ <exp(x)). By Lemma 5.1 we can shrink each
Tp U.e to a set Ny where N, N, =0 for §<n <exp(x) and each N; has power
exp(«). This shows that [J, X. is exp(x)-resolvable. To see that Ilp X, is also
strongly  -resolvable, note that ultraproducts preserve the T, axiom and «-regular
ultraproducts are « " -additive. Thus all sets of power <« are closed discrete. So let
M; = N; have power x for each £ <explx).

(ii) Let D be x*-good and assume «* = exp(x). Now each X, is perfect T}, so if
U, < X, is nonempty open there are closed discrete subsets of U, of arbitrary finite
cardinality. Fix nonempty U, < X, open, a <k, and let (#,: a < «) be a sequence of
natural numbers such that for each I € D, sup{n,: « € I} = w (if such a sequence did
not exist then every member of w" would be D-bounded, hence D-constant. Thus
[1p(e@) would be countable, contradicting the first clause in Proposition 1.4), and let
F, < U, be finite of power n,. Then [],F, c[lp U. is closed discrete of power
exp(x), by Proposition 1.4,

Let [IpU. now be the m-basis from (i), Mo U, ={lp Ve £<expix)); and
assume as an induction hypothesis that for fixed £ <exp(«), there is a closed discrete
M, <[lp Usm each n <¢, such that the M,’s are all pairwise digjoint, of power
exp(x). Since [1p X. is perfect, each M, is c.n.d. Also since 15 X, is «*-Baire and
«* = exp(x), we have ), ..M, is nowhere dense. Thus there is an open ultrabox
M U =1 Une which misses |, ., M,. Let M, =[]y, F. as described above. O

In the rest of this section we explore a little more deeply the relationships among
the various resolvability notions which we’ve introduced. Our main theme is that the
only implications among these properties are the obvious ones. Since many impli-
cations fail trivially when we allow indiscrete counterexamples, we make some
minimal separation assumptions, such as the 7; axiom. The three obvious impli-
cations are:

(i) If X is strongly « -resolvable, then X is k-resolvable; _

(i) If X is x-resolvable and A < «, then X is A-resolvable; and

(iii} If X is strongly x-resolvable and A <, then X is strongly A -resolvable.

We first show how badly the converse of (i) can fail. It is easy to find counter
examples for « infinite and more difficutt for « finite.
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5.3. Proposition. No locally compact space is strongly w-resolvable.

Proof. Let X belocally compact. Then no relatively compact open set can contain an
infinite closed discrete subset. []

5.4. Proposition. Let X be infinite discrete of power k. Then X* = BX — X (where BX
is the Stone-Cech compactification of X) is exp(exp(«))-resolvable but not strongly
w-resolvable. X* is, however, strongly n-resolvable forevery n <.

Proof. (see [26] for details). X* has an open basis 9 of power exp(exp(x)) and each
nonempty open set has power exp(exp(x)). By Lemma 5.1. X* is explexp(x))-
resolvable as well as strongly n-resolvable for each n <@, X* is not strongly
w-resolvable by Proposition 5.3. [

Before we state the next result, we define two cardinal invariants on aspace X: the
dispersion character, 8(X), is the least cardinal of a nonempty open set in X; the
character, x(X), is the least cardinal y such that every point of X has a local basis of
power .

5.5. Theorem. LetX be perfect. If X is first countable Ty, then X is w-resolvable. If X is
locally compact Hausdorff, then X is explw)-resolvable. In either case, X is strongly
n-resolvable for each n < w.

Proof. We draw heavily from Hewitt's paper [13].

Lemma a. Let X be an infinite T, space where w(X )=<8(X). Then X is 6(X)-
resolvable, as well as strongly n-resolvable for each n < w.

Proof. Use Lemma 5.1.

Lemmab. X is k-resolvable iff every nonempty open subset of X contains a nonempty
set which is x-resolvable in its relative topology.

Proof. Just mimic the proof of Theorem 20 of [13], which is stated for « = 2.
Lemma ¢. Let X be a perfect T, space such that every nonempty open U < X contains
anopen V #@ such that foreachx € V, y(X, x) < | V| (where x (X, x} = the least y such
 that x has a local basis of power x). Then X is 6(X )-resolvable.

Proof. Use Lemmas a and b together as in the proof of Theorem 46 of [13].

Now to prove Theorem 5.5, first let X be perfect Ty, and first countable. Use
Lemma c directly to get the conclusion. If X is locally compact Hausdorff then, by a

<

*u
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well-known theorem of Aleksandrov and Urysohn (see [46)), x(X)=8(X), so by
Lemma ¢, X is 8(X)-resolvable. But §(X)=exp(w), since X is locally compact
Hausdorff and perfect.

The strong n-resolvability (n <) in each of the above cases is immediate from the
construction. [}

Thus any perfect locally compact Hausdorft space witnesses the fact that even
exp(w)-resolvability needn’t imply strong w -resolvability; and moreover that strong
n-resolvability for each n < w needn’t imply strong w-resolvability (whether or not
n -resolvability for each n <@ implies w-resolvability is still an open question),

1t is clear that one can get the converses of (i)(iii) above to fail decisively when the
cardinals «, A are infinite. We confine ourselves in the rest of this section to the case
where «, A are finite.

5.7. Theorem. For every positive natural number n there is a {countable) T, space
which is n-resolvable but not (n +1)-resolvable (nor even strongly n-resolvable, when
n=2). :

Proof. The case n = 1 has been explored in [13]. In this case the space may be taken
to be Hausdorff. _

We prove the case n =2, The higher cases are treated similarly (the added
complexity being insubstantial).

Our space Z is defined as follows: the points of £ are taken from two disjoint
countable sets X, Y; the nonempty open sets are of the form A B where AeD,
B c E, and D, E are nonisomorphic free ultrafilters on X, Y respectively.

It is easy to see that Z is a resolvable T space, since both X, Y are densein Z. Z is
not 3-resolvable, for suppose U; u V; (1= i=3) are pairwise disjoint. Then for some
1<i=<3 UgD and V;gE. Thus U;u V; cannot be dense. Z is not strongly
2_resolvable either. To see this, suppose 4 = Mx U My U N is a collection of pairs
from Z, where elements of A'x are subsets of X, elements of 4y are subsets of Y, and
elements of & have one point taken from each of X, Y. Since the collection of
nonempty open subsets of Z forms a filter, we need only find nonempty open sets
Ax uBx, Ay U By, AU B such that no member of #x lies in Ax L Bx, etc. We can
then take the set (Ax n Ay nA)u(Bx "By nB). Let

Mx = {{Xo, Yo}, {xl, )’1}’ . }

If UMxeD, set Ax=X—-\Mlx, Bx=Y. If UMxeD, assume, say, that
{x0, X1, .. .}&€ D. Then {yo, y1, .. .}€ D. Let Ax ={xg, X1,.- -}, Bx =Y. We treat My
similarly. So suppose & = {{xc, Yo}, {x1, y1}, . . .}, and let f: X > ¥ be a bijection with
yn = f(Xx), X <w. Since D, E are nonisomorphic thereisaset] e Dsuchthatf{I]eE.
If either {xo, x1,...}€ D or {yo, ¥1,....}£E we can easily find a nonempty open
A URB containing none of the pairs {x., y.}. If {xo, x1,...}e D and {yo, y1,.. }€E
then set A =TI A {xo, X1, .. .}, B ={vo, ¥1, .. }=fTAL O3
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Remarks. (i) The space in Theorem 5.7 is connected T but not Hausdorft. It would
be nice to have a Hausdorff counterexample,

(ii) Inthe space Z of Theorem 5.7, assume that D and E are isomorphic,
say via the bijection f:X > Y. Then the collection {{x, fx)}:x e X} shows
that this new space is a strongly 2-resolvable T, space which isn’t 3-resolvable,
let alone strongly 3-resolvable. Again, it would be nice to have a Hausdorft
counterexample.

6. Topological ultrapowers of the rational line

In this section we prove that, under the GCH, a large number of topological
ultraproducts look alike. We first repeat the main result of [5].

6.1. Theorem. Letk be an infinite cardinal, Then exp(x) =« ifffor every K-Sequence
(X.: a <) of regular spaces of weight <exp(x), and every regular ultrafilter D on «,
15 X. is paracompact, 0

We prove here a similarly phrased theorem about good ultraproducts. The
conclusion will of course be quite a bit stronger, but the Theorem will not be as sharp
since we will be unable to deduce the negation of the conclusion merely by assuming
k" <exp(x). Rather it will be apparently necessary to use the equiconsistent
“exp{x)=exp(x ).

6.2. Theorem. Let k be an infinite cardinal.

() Ifexpix)=«", then forevery k-sequence (X, a < «) of regular perfect spaces of
cardinality + weight <exp(x), and every good ultrafilter D on «, 15X, =[1,(Q)
(where Q denotes the space of rational numbers, and “=" denotes homeomorphism).

(i) If exp(x)=exp{x*™), then there is a perfect compact Hausdorff space X of
cardinality + weight < exp(«) such that for any regular ultrafilter D on «, 1, (X) fails
to be normal, so in particular T],, (X)# 1 (Q).

Before proving Theorem 6.2, a few comments are in order. F irst, in order to avoid
a lot of repetition, we assume familiarity with [4, 5], only stating the results we use.
Second, so that the proof of (i) be more intelligible, we treat spaces as relational
structures as outlined in the Introduction. In particular we define a basoid to be a
structure of the form (X U #; X, 8, € ) where % is a basis for a topologyon X (#B*is
the associated topology). Two basoids %, B are isomorphic if they are isomorphic in
the model-theoretic sense and we write =B, If Y*=B* (i.e. the generated
topological structures are isomorphic) then 2 and B are homeomorphic, and we
write % =B,

e
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Proof of Theorem 6.2(i). Let(X,: a <«)beregular perfect and of power +weight <
exp(x), with D a k" -good ultrafilter on «. Then the basoid

HDXa =(HDXa UHDTa;HDXa;HDTw %)

is x *-saturated as a relational structure (see[8, 11}for details). Foreacha <« let Y,
be an elementary substructure of X, of countable cardinality. Then Y, is a basoid
which has countably many points, countably many basic sets; and Y is perfect
regular (the details can be found in [4]). Now all perfect regular countable and second
countable spaces are homeomorphic to Q,soletf,: Y, » Qbeahomeomorphism for
each a <« Then[[pfa:[Ip Ya21lp (@) isalsoa homeomorphism. Now [[5 X, is
«* -saturated of power exp(k) =« . So also is [, Y. In addition Mo X. and [15 Yo
are elementarily equivalent relational structures. Thus Tlp Xa=1lp Ya (see[8, 11]).
Consequently [Tp X =[], (@). O

Remarks. (i) [, (Q) as a topological space is perfect, linearly orderable (the
ultraproduct of the natural ordering on Q will do), and A-metrizable for some
k™ <A <exp(x) {where a space X is A-metrizable (see [19, 20, 23]} if X has a
uniformity which, as a filter of binary relations on X, has a basis linearly ordered by
inclusion in confinality A ). Consequently [[, (@) is hereditarily paracompact regard-
less of the combinatorial nature of D.

(ii) In Theorem 6.1 we could replace the statement, “Tlp X. is paracompact” with
the stronger assertion, “[1p X, is exp(x)-metrizable” (this is not done in [5)). One
simply uses the fact that [, X, is regular, «"-additive (x* =exp(x)), and of weight
=<exp(x). Then, in a manner analogous to the way in which one embeds
regular second countable zero-dimensional spaces in the Cantor discontinuum 2%,
we embed [, X. within the space (2("‘*))K+ (where (X), is the expansion of
rx formed by closing rx under intersections of length< k. These spaces are
studied in various places (see [4, 5, 12, 19, 20, 23, 25]). For A a regular cardinal,
the space (2%), is a A-additive analogue to the Cantor discontinuum and is
A-metrizable [23].

Proof of Theorem 6.2(ii). We use the same counterexample we used in [5], namely -
X =2%*"_ In that proof we showed that

(a) (X).+ is not normal; and

{b) (X).-embeds as a retract of [ ; (X) for any regular D (on k), whence [T, (X)
is not normal.

So if, in the proof of Theorem 6.1, we assume exp{x) = x*" then X is a regular
space of weight < exp(x) such that no regular ultrapower [1p (X) is normal, let alone
paracompact.

In the present proof we must also force exp(« ") to be small; and it is consistent to
have exp(k**)=exp(x). Under that assumption X is a regular perfect space of
power +weight < exp(x) such that no regular ultrapower ] {(X) is normal (so
o X)=IIp@). O
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7. Appendix: On a problem in model theory

The following is a purely model-theoretic application of the techniques of
Section 6.

7.1. Conjecture (Chang and Keisler [11], p. 514]). Let L be a first order language
of power <« with ¥, B elementarily equivalent L-structures of power < x. Then
[Ip (M) =T}, (B) for any regular ultrafilter D on K.

We show that a related conjecture, one which Keisler has shown to be true
assuming segments of the GCH (see [117]), is independent of ZFC. In particular we
show that the statement, “Let L be a first order language of power < « with 9, %8
elementarily equivalent L-structures of power < exp(«). Then [, (%) =[], (B) for
any good ultrafilter D on «.”, a consequence of exp(x)=«", is false if we work in the
relatively consistent set theory, ZFC+ (exp(«) = exp(x *")). As our counterexample
we choose L to be the language of basoids, and assume exp(x}=exp(x ™). Pick

A= 20 o €),

where 1 is the Tichonov topology on the set of maps from «** to 2. Let B be any
countable structure which is elementarily equivalent to 9. It is easy to check that 9B is
a basoid and that B* is a countable second countable regular perfect topological
space. Thus the space @ of rationals has an open basis & such that

B=(QuUBQ, B ¢)

If D is any regular ultrafilter on « and if [], (W) =[]p (B) then in particular the
spaces ([[, (UAP*, ([T, (BYH* are homeomorphic. But we saw earlier (proved in [5])
that ([T, (%))* is not normal. However (1o (B)* is an ultrapower of the rationals
and is quite normal. [J

Noting that x*-good ultraproducts are -saturated, we have also proved the
independence from ZFC of the statement, “Let L be a first order language of power
<k, with %, B « "-saturated elementarily equivalent L-structures of power exp(i).
Then =B,

We mention in parting that Shelah [21] has proved in ZFC that a weak version of
Conjecture 7.1 holds with the new conclusion, “Then ], (A) =] o (1) for some
good ultrafilter D on exp{x).”. His proof constructs D using induction with an
“independent sets” argument (a ia Hausdorff).
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