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Abstract 

We study links between faithful group actions on a set and topologies on that set. In one 
direction, a group action has its invariant topologies (so we may regard members of the action 
to be homeomorphisms relative to those topologies); in the other direction, a topology has its 
preserving group actions (i.e., the subgroups of the homeomorphism group of the topology). 
This two-way passage allows us to discuss topological features of group actions as well as 
symmetry features of topologies. 

0. Introduction 

In this paper we consider group actions (permutation groups) and the topologies 

they leave invariant. One could think of this enterprise as a study of topological spaces 

from the perspective of symmetry; also as an investigation of topological features of 

group actions. For example, the usual topologies on the rational and real lines are 

“maximally symmetric” in a certain sense (see Theorems 4.3 and 5.5); also one can link 

transitivity/primitivity properties of a group action with the lower-level separation 

axioms satisfied by its invariant topologies (see Theorem 1.7). A principal device we 

employ is the passage from topology to group action via the homeomorphism group, 

as well as the return passage via the support topology (subbasically generated by 

supports of permutations). This topology is of key importance in our study because it 

is contained in every Hausdorff invariant topology, and provides the main vehicle for 

describing topologically how groups act on sets. 

A large part of mathematics involves the study of symmetry and the ways in which 

one may describe symmetry precisely, in absolute as well as in relative terms. 

A “structured” set whose automorphism group is the full symmetric group on the set 

is symmetric in the extreme, while one with a “small” group of automorphisms has 

very little symmetry. Thus a good deal of effort has been spent developing vocabulary 

for describing the relative size of subgroups of permutation groups. (One way is via 

cardinality, another via index, a third via notions of transitivity/primitivity, while 
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a fourth is via the imposition of certain maximality conditions.) We make use of much 

of this important vocabulary in the sequel. 

The overall layout of the paper is as follows: The first section introduces the support 

topology and other basic notions; the next section brings in the idea of when a group 

action preserves a smallest topology that satisfies specific conditions. For example, in 

Theorem 2.14, we characterize exactly when certain group actions, defined in terms of 

stabilizing a finite set, preserve a smallest Hausdorff topology. In the last three 

sections, we focus on groups acting on a field-ordered set. In this setting, the usual 

order topology serves as the support topology for most group actions of interest. This 

feature is exploited most fully in the last two sections, where group actions on the 

rational and real fields are investigated. 

1. The support topology 

The general setting is the following. Suppose 3 is a group acting faithfully on a set X. 

(We always assume X to be infinite, although several of our arguments do not require this 

assumption.) The cardinulity of the action is just the usual cardinality 127 1 of 3; 1 X 1 is called 

the degree of the action. Since the action is faithful (i.e., only the identity element of 99 fixes 

each element of X), we may, for concreteness, regard 9 as a subgroup of Sym(X), the full 

symmetric group on X. We adopt the convention that function application is made from 

the left. If .F is a topology on X, we let H(9) be the group of Y-homeomorphisms on X. 

We say .Y is ~-invariant (or 9 is .F-computible) if 3 5 H(Y). (There are other phrases in 

common usage, and synonymous with the above; e.g., “9 preserves (or stabilizes) 9.“) 

Define the sets Invar(B):= {r: Y is Y-invariant) and Cornpat(Y 19: 9 is .Y-com- 

patible}. Then of course Invar(9) is a meet-complete lattice under intersection, and 

Compat(5) is the subgroup lattice of H(F). 

As the operator H( ) is a means of proceeding from a topology to a group action, 

we introduce now a reverse operation, which we call the “support topology”. Let 9 be 

a group action on a set X. For each g E 3, the support supp(y) is the set of points 

moved by y, namely {x E X: g(x) # x}; dually we define fix(g):= X\supp(g). We set 

Supp(9) := jsupp(g): y E s}. Obviously, we have the relations supp(g- ‘) = supp(y) 

and supp(y) n fix(k) E supp(gk) c supp(g) u supp(k) (so, in particular, the elements of 

9 whose supports are members of any given ideal of subsets of X, say the finite 

subsets, form a subgroup), but in general Supp(3) is not very well mannered. How- 

ever, it does form a subbasis for a topology S(3), the support topology of ‘9. 

Proposition 1.1. Let X be u set, 9 a topology on X, and 99 u group uction on X. Then 

H(F) E Cornpat and S(Y) E Invar(3). 

Proof. The first statement is immediate from the definition; the second follows from 

the observation that if g, k E Sym(X), then g(supp(k)) = supp(gky - ‘). Thus, Supp(9) 

itself is g-invariant. 0 
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So H( ) and S( ) are operators connecting the topologies on a set X and the 

subgroups of Sym(X). As maps between lattices, clearly S( ) is order preserving; H( ) 

is not. (Neither preserves the lattice operations.) By Proposition 1.1, we always have 

9 5 HS(Y), but there is generally no relationship between J and SH(Y). (If .Y is 

trivial, SH(.P) is discrete; on the other hand, there exist topologies .Y that are rigid, 

i.e., their homeomorphism groups are trivial, in which case SH(.?) is the trivial 

topology.) Call a group 9 (resp. a topology <Y-) HS$xed (resp. SHYfixed) if HS(te) = 99 

(resp. SH(.?) = 5). The top elements of each of our lattices are “fixed” in their 

respective senses; the bottom elements are not. Quite straightforwardly, if Y is 

HS-fixed, then S(9) is SH-fixed; and if 5 is SH-fixed, then H(Y) is HS-fixed. The 

converses are easily seen to be false. 

Before proceeding, we establish some (mostly) standard notions from the theory of 

group actions. Let B be a group action on a set X, with A c X. A is called cofinite if 

X\A is finite; A is a moiety if IAl = iX\Al. We denote by 9), (resp. ?&)) the setwise 

(resp. pointwise) stabilizer of A, namely (9 E 9: g(A) = A) (resp. (g E 9: g(u) = a for all 

II E A j ). For a E X, we define !$ := 9iU;. 

Let n be a natural number. (The set of natural numbers is denoted o; this symbol 

also denotes the first infinite cardinal.) 59 is n-trunsitiue if any bijection between 

n-element subsets of X can be extended to a member of 9. 9 is n-homogeneous if 

whenever A and B are an n-element subsets of X, there is a member of 9 taking A to B. 

When n = 1, we drop the numerical prefix and just write “transitive”. A paraphrase of 

n-transitivity (resp. n-homogeneity) is that there is exactly one orbit on n-tuples of 

distinct points (resp. n-element sets). A group action is said to be high/y transitive (resp. 

highly homogeneous) if it is n-transitive (resp. n-homogeneous) for all n < w. n-transi- 

tivity clearly becomes stronger with increasing n; the same is true for n-homogeneity, 

but much less trivial to show (see [7]). (Examples of highly transitive group actions 

include the full symmetric group, as well as the homeomorphism groups of the usual 

topologies on the rational line and euclidean n-spaces for n 2 2. In the case n = 1, the 

homeomorphism group is 2-transitive and highly homogeneous, but not 3-transitive.) 

If each pair of elements of X can be interchanged by a member of 9, this is a weak 

form of 2-transitivity, and we say 9 isjipping. More strongly, if %& is a flipping on 

X\ iu) for each ~1 E X, then we say, after P. Neumann, that 9 is generous/y 2-trunsitive. 

3-transitivity implies generous 2-transitivity, which in turn implies 2-transitivity; the 

homeomorphism group of the real line with its usual topology is a 2-transitive action 

that is not generously 2-transitive. 

Along with transitivity notions, there are related notions of “primitivity”. Let T be 

a first-order theory in the sense of [S]. A model of T with underlying set X is 

obligatory if Sym(X) is the automorphism group of that model. Define a group action 

9 on X to be T-primitive if 99 fails to preserve the nonobligatory models of T with 

underlying set X. In the standard terminology [7], $9 is primitive if it is T-primitive, 

where T is the theory of equivalence (i.e., reflexive, symmetric, transitive binary) 

relations. (The obligatory equivalence relations are just the trivial one and the discrete 

one.) Also, when T is the theory of preorders (i.e., reflexive, transitive binary relations), 
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T-primitivity has been dubbed strong primitiviry by H. Wielandt. There is, of course, 

an unlimited store of such first-order primitivity notions; some of which coincide with 

transitivity notions already defined. For example, when T is the theory of irreflexive 

binary relations, T-primitivity is 2-transitivity. (To see this, suppose 9 is 2-transitive 

on X, and let R be a nonobligatory irreflexive binary relation on X. Then there are 

u # b and c # d such that (a, h) E R but (c, d)$R. Since some element of Y takes 

(a, b) to (c, d), 3 fails to preserve R. Conversely, suppose 99 is not 2-transitive, and 

a # b and c # dare such that no element of 3 takes (u, b) to (c, d). Let R be the orbit 

of (a, b) under 9. Then R is nonobligatory irreflexive binary relation that is 9-invari- 

ant.) If T is the theory of graphs (i.e., irreflexive, symmetric binary relations), then 

T-primitivity is 2-homogeneity. A much-cited fact is that a transitive group action is 

primitive if and only if its point stabilizes are all maximal proper subgroups (see [7]); 

a primitive flipping action is strongly primitive. Finally, being T-primitive for every 

first-order theory T is equivalent to being highly transitive. (Indeed, if 9 is not 

n-transitive on X (n 2 l), let the theory T say of n-tuples that there are no repetitions. 

We can then argue that $9 is not T-primitive as we did above in the case II = 2. 

Conversely, if 9 is highly transitive and T is any first-order theory, let R be an n-ary 

relation on X witnessing a nonobligatory model of T with underlying set X. Then 

there is an n-tuple (a,, . . ,a,) E R and a permutation x H X such that 

(G, . . . - ,u,)$R. Since some member of 9 takes (ai, ,u,) to (K, . . . ,u,,), we see 

that 9 is T-primitive.) 

We next establish some topological notions. To begin with, our set-theoretic founda- 

tion is ZermeloFraenkel set theory with the Axiom of Choice. Infinite ordinal and 

cardinal numbers are denoted using lower-case Greek letters; the notation rci. can mean 

both the set of functions from A to K as well as the cardinality of that set. In particular, 2” is 

the cardinality of the continuum, commonly denoted c. The M,+t of a topology Y, 

denoted w(Y)), is the smallest cardinality of a possible open basis for Y, and is in many 

ways the most useful cardinal invariant in topology. The usual separation axioms are 

denoted T,, where n is an integer between 0 and 4. Recall that TO (resp. T,) says that, 

given two points, there is a neighborhood of one (resp. each) missing the other; T2 says 

that each two points can be separated by disjoint neighborhoods; and T3 (resp. T4) is the 

conjunction of T, and the condition that a closed set and a point not contained in the set 

(resp. two disjoint closed sets) can be separated by disjoint neighborhoods. The adjectives 

Hausdorff, regular, and normal are often used in place of T2, T3, and T4, respectively (see 

[27]). If K is any infinite cardinal, then +&::= {A C_ X: (X\,AI < K) u {@}. VK is a topology 

which is discrete if K > 1x1. Otherwise, gK is perfict (i.e., all nonempty open sets are 

infinite), T1, and a jilterbase topology (i.e., one in which two nonempty open sets always 

intersect). (%& is also referred to as the cofinite topology). 

The following assertion is easy to prove, and is well known in somewhat different 

contexts (see [15]). 

Proposition 1.2. The topologies gK are precisely those topologies on X that are 9-in- 

vuriunt,for every group action 9 on X. 
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Remark 1.3. Proposition 1.2 is interesting because it suggests a new notion of primi- 

tivity. Call a group action 9 on X topologically primitiue if the only g-invariant 

topologies are the obligatory ones, namely the topologies VK. Then Sym(X) 

is topologically primitive. P. Cameron, J. McDermott, and others have studied this 

property, but the work so far has not been published. McDermott has found examples 

of topologically primitive group actions of countable degree (e.g., actions that are 

transitive on moieties), and it follows from sophisticated work of Macpherson and 

Praeger [18] that all such actions are highly transitive. In addition Cameron has 

developed a simple proof of the result that a primitive group action of countable 

degree preserves a nonobligatory topology if and only if it preserves a nonobligatory 

filter (a result which also follows from the methods in [lS]). 

Given a topological property rr, define 9 to be support-7r if S(9) has property 7~. 

Remark 1.4. Checking directly to see whether the support topology has a particular 

property can often be cumbersome, since Supp(9) is generally not a topological basis. 

In important special cases, however, it is indeed a basis, as we see in Section 3. Under 

such circumstances, our task is made considerably easier. 

We first consider the situation when 7c is the property “trivial”. Define a group 

action 9 on X to be sharp if whenever x, y E X are in the same 9-orbit, then there is 

a unique g E 9 taking x to y. An action is sharply transitive [7] if it is both sharp and 

transitive; thus a sharp group action is sharply transitive on each of its orbits. If 

Y g X is a g-orbit, then there is a bijection between 9 and Y, namely fix y, E Y, and 

assign g(y,,) in Y to each g in 9. So in an obvious way one may regard a sharp group 

action as an abstract group $9 acting on Y x I, where I is an arbitrary nonempty set, 

via left (or right) multiplication on the first coordinate (i.e., g(h, i) = (gh, i)). (A 

subgroup of a group, acting on the larger group via left (or right) multiplication, is 

a case in point; the orbits are just the left (or right) cosets of the subgroup.) The 

following characterization of support-triviality is an easy consequence of the defini- 

tion and the remarks above. 

Proposition 1.5. Let 64 be u group action on X. Then 9 is support-trivial !f und only if 

‘9 is sharp. In particular, if 9 is support-trivial, then 1%) 5 1 X 1, und 9 is neither HSjixed 

nor primitive. 

Proof. We show that a primitive group action cannot be sharp. Indeed, let 9 be 

primitive. Then the point stabilizes are maximal proper subgroups. If 9 were also 

sharp, hence sharply transitive, then $9 would be infinite with trivial point stabilizers. 

This would say that 9 had no proper nontrivial subgroups. But the only groups with 

this property are cyclic of finite (prime) cardinality. 0 

One conclusion of Proposition 1.5 concerns the cardinality/degree relationship in 

a group action. Clearly all actions satisfy 191 I 21xI, and this gives us one notion of 



how large C!? is in Sym(X). Proposition 1.5 then says that support-trivial group actions 

are not “large” in this sense. The following gives us more information in this vein. 

Proposition 1.6. Suppose 9 is (I group uction on II set X. 

(i) If % is support-T, then 1x1 I 2”“‘. (One cun obtain N support-metrizable action 

,jbr which equulity holds). 

(ii) If Y is either transitive or support-discrete, then IX/ 5 1!91. (One can obtain 

u support-discrete highly transitive uction,fi?r which equulity holds.) 

(iii) !f’Y IIUS at most 1x1 orbits on moieties, then IY/ = 2”‘. 

Proof. (i) Assume ?? is support-T,,, and let J be any open basis for S(Y). For each 

.Y E X, let .8(x) be all members of .8 containing .Y. If x # y in X, then .8(.x) # <a!(y). This 

tells us that /XI I 2”‘@(“‘). Thus S(!??), hence Y, is infinite; so w(S(Y)) 5 /!gl. 

To prove the parenthetical assertion, let X be the real line, and let C!? be all those 

increasing bijections on X whose graphs are broken lines satisfying: (1) the number of 

breaks is finite; and (2) the coordinates of each break are rational. Then the desired 

equality holds; also every bounded open interval with rational endpoints is the 

support of some member of ?? (see Proposition 3.3). This says that S(Y) contains the 

usual real topology +Y. But /I/ is clearly Y-invariant, so the two topologies are equal 

(see Proposition 2.1). In particular, B is support-metrizable. 

(ii) Suppose first 9 is transitive, and let a E X be fixed. Define F: 9 4 X by 

F(g) = g(u). Then F is surjective. 

Next assume S(Y) is discrete. Then its weight is at least 1x1 and at most I%l. 

To prove the parenthetical assertion, assign to each n < w and to each bijection 

,f between two n-element subsets of X. a permutation yf on X extending ,f: Let C” be 

the subgroup of Sym(X) generated by the permutations cjf, plus all the transpositions 

(i.e., permutations with doubleton support). Then I!91 = 1x1; moreover C” is sup- 

port-discrete and highly transitive. 

(iii) If ‘9 has I 1x1 orbits on moieties, an easy application of the Jourdain-KGnig 

inequality (that for every infinite cardinal x, x < z”(‘), see A.29 in [S]) ensures that 

some orbit N on moieties has cardinality 2 Ix1 Then we quickly obtain a surjection 

from !e to IN, as in (ii) above. 0 

Primitivity properties of a group action affect its invariant topologies vis Li vis 

connectedness and the lower-level separtion axioms (i.e., T,, n I 2). We first define 

a topology to be complete/y Huusdocfl(resp. ultru-Hausdocjf ) if each pair of points can be 

separated by a continuous real-valued function (resp. a clopen set). (NB: The ultra- 

Hausdorff condition should not be confused with the strictly weaker condition of being 

totally disconnected. The latter merely says that no two points lie in a connected subset.) 

Theorem 1.7. Suppose Y is u group action on u set X. 

(i) C’ is primitive if und only lf every Y-invuriunt nontrivial topolog)! on X is To, if 

and only ifevery C9-invariant nonconnected topology on X is ultra-HuusdoQf (In 

particular, a primitive group action on an infinite set is support-T,.) 



P. Bankston!Journal of‘ Pure and Applied Algebra 97 (1994) 221~-245 227 

(ii) [f 9’ is primitive of degree < c, then every completely Huusdorjj” CY-mvuriant 

topology on X is ultra-HausdorJiY 

(iii) 9 is strongly primitive if and only if every C9-invuriunt nontrivial topology on X is 

T,. (In particular, a strongly primitive group uction on an infinite set is sup- 

port-T, .) 

(iv) [f 9 is 2-homogeneous, then every !9-invariant nonfilterhase topology on X is Tz. 

(In particular, u 2-homoyenrous group uction is support-Hausdorff it contains 

,finitely muny nonidentity elements whose supports have empty! intersection.) As 

u weak converse: jf every Y-invariant nonfilterhasr topology on X is Tz, then !q is 

primitive. 

Proof. (i), (iii) Given a topology .? on a set X, define the binary relations L, C, and 

Q on X as follows: .xLy (i.e., (x, y) E L) if x lies in the ,Y-closure of y; .xCy if .uLy and 

j!L.u; and xQy if there is no .Y-clopen separation of x and y (i.e., Y and y lie in the same 

.Y-quasicomponent). Then L is a preorder, and both C and Q are equivalence 

relations on X. .Y is trivial if and only if L is trivial, if and only if C is trivial; .F is 

connected (resp. T,, T1, ultra-Hausdorff) if and only if Q is trivial (resp. C is discrete, 

L is discrete, Q is discrete). If 9 is a group acting on X and 3 is Y-invariant, then so 

are these relations. So if 3 is nontrivial and fails to be T,, then C witnesses the 

imprimitivity of 9. The other analogous assertions follow as easily, establishing the 

left-to-right direction of both (i) and (iii). 

Conversely, given a preorder L on X, define the topology 3 using the sets 

[.Y] := [y E X: .xLy), .Y E X, for an open subbasis. Clearly L is trivial (resp. discrete) if 

and only if J is trivial (resp. discrete). Moreover, if L is nondiscrete, then there exist 

distinct x, y E X with y E [xl. If x E U = [xl] n ‘.. n [.u,], then, by transitivity of L, 

we have y E U also, hence .Y is not T,. If L is now an equivalence relation, then the 

sets [.Y] (the L-equivalence classes) constitute a clopen basis for .Y. Thus if L is 

nontrivial and nondiscrete, then .Y is nonconnected and not TO. Finally, if L is 

Y-invariant, so is .7. This establishes the other direction of (i) and (iii). 

The parenthetical statements follow immediately from Proposition 1 S. 

(ii) This follows immediately from (i), plus the observation that a connected com- 

pletely Hausdorff space with more than one point surjects continuously onto a non- 

degenerate real interval, and must therefore have cardinality 2 c. 

(iv) Assume 9 is 2-homogeneous, and let .Y be a Y-invariant topology on X. Define 

the binary relation E on X by saying -YE)! if .Y # J’ and every Y-neighborhood of 

I intersects every .9-neighborhood of y. Then E is the adjacency relation for a Y-in- 

variant graph on X, and .F is a filterbase (resp. Hausdorff) topology if and only if E is 

complete (resp. discrete). Since 9 is 2-homogeneous, these are the only choices for E. 

The parenthetical assertion then follows from Proposition 1.1; as for the weak 

converse, the same argument used in the converse of(i) will do. 0 

Remark 1.8. McDermott has also independently observed the connection 

between primitivity (resp. strong primitivity) and the TO (resp. T,) axiom in 
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Theorem 1.7(i), (iii). As for Theorem 1.7(iv), the original hypothesis was for 9 to be 

generously 2-transitive. This assumption is certainly too strong, as is shown in 

Theorem 3.10. We do not know whether the weaker hypothesis of 2-homogeneity is 

necessary; it is definitely the case that the approach used in parts (i) and (ii) does not 

work: One can easily devise nonobligatory adjacency relations that do not give rise to 

nonfilterbase non-Hausdorff topologies (e.g., the “random graph” of Erdos-Rado, 

which gives rise, according to our recipe, to a filterbase topology). 

2. T,-complete group actions 

We begin with an easy, but important, observation. 

Proposition 2.1. If F is Hausdorfland 9-invuriant, then S(Y) c 9 

Proof. This is a special case of the well-known fact that iffand y are two continuous 

functions with the same domain and the same Hausdorff range, then the set 

{x:f(x) # y(x)) is an open set in the domain. 0 

Proposition 2.2. (i) If .Y is u Hausdorfltopology on X, then SH(.F) c F. (In particu- 

lar, if 9 is Hausdoyfand H(F) = Sym(X), then 3 is discrete.) 

(ii) If‘?? is u support-Huusdorff group uction, then S(9) is SHyfixed; the converse is 

false. 

Proof. (i) This is an immediate restatement of Proposition 2.1; the parenthetical 

assertion easily follows. 

(ii) We have in general that 9 I HS(9). Since S( ) is order-preserving, we then get 

S(9) c SH(S(9)). Now assume S(9) is Hausdorff. Then, by (i), we have 

SH(S(9)) E S(9), hence S(Y) is SH-fixed. 

For the failure of the converse, let u be a fixed element of X, an infinite set, and let 

99 = Sym(X),. Then points x E X\{Q} are S(9)-isolated, since every doubleton set in 

X\{u} is the support of some member of 9. But the only S(9)-neighborhood of a is X, 

so S(Y) is To but not Tr. Clearly, however, H(S(9)) = Y, so S(Y) is SH-fixed. 0 

The support topology is of use in the study of various minimal members of 

Invar(%). Let II be an arbitrary topological property. An action Y on X is z-complete if 

there is a smallest Y-invariant topology on X having property 7~. Denote this 

topology, when it exists, by min(9, rr). Of course 9 is always T,-complete, and 

min(9, T,) is just the cofinite topology %<,,. 

Example 2.3. The trivial action on an infinite set is not T,-complete for any n # 1. To 

see this, let a E X be given; define the topology &a by declaring all points .x # u to be 

isolated, and by having X as the only neighborhood of u. (As we saw in the proof of 
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Proposition 2.2(ii), ~8~ = S(Sym(X),).) If A G X is proper nonempty and a E A, then 

&a is a trivial-invariant To topology for which A is not an open set. This says that the 

intersection of all To trivial-invariant topologies on X is the trivial topology. Now for 

(8 E X define the topology .z%~ as above, except that open neighborhoods of a are sets of 

the form X\F, where F is a finite subset of X\{ui. (go is the classic one-point 

compactification of the discrete space X\{u), with a as point-at-infinity.) This topol- 

ogy is compact Hausdorff, hence T, for all n. If A c X is nonempty and not cofinite, 

and a E A, then A is not .‘;2,-open. This implies that the intersection of all T, 

trivial-invariant topologies on X, n 2 1, is the cofinite topology. 

Proposition 2.4. For n 2 1? every support-T, group action is T,-complete; in .fuct, ,for 

n 2 2, min(Y, T,) = S(3). 

Proof. This is immediate from Proposition 2.1, plus the fact that every group action is 

T, -complete. q 

Example 2.5. For YZ 2 1, T,,-complete group actions need not be support-T,. A sup- 

port-trivial action will do for the case n = 1; for the other cases, suppose a E X are 

given, and let 9 = Sym(X),. As we saw in the proof of Proposition 2.2(ii), S(9) = gU,, 

a To topology that is not T I. On the other hand, %a is %-invariant, as well as T, for all 

n. If Y is any Y-invariant Hausdorff topology, then cY~ c Y, hence pQ c Y. Thus, for 

n 2. 2, min(9, T,) = 9,. 

In Example 2.5, min(9, T,) is compact Hausdorff, hence normal. A necessary 

condition for T,-completeness, n 2 2, can be phrased in terms of compactness because 

compact Hausdorff topologies are minimal Hausdorff. 

Proposition 2.6. Suppose n 2 2 and 9? is a T,-complete group clefion on X. If3 preserues 

a compact Hausilot$” topology 9, then min(%‘, T,) = .Y. In particular, 9 cannot 

preserve two compacf Hausdorfl topologies. 

Example 2.7. Let Y be the group H(%) of homeomorphisms of the usual topology 

1 on the closed unit interval X = [0, 1] in the real line R. Then there are two 

%-invariant compact metrizable topologies on X, and 59 is therefore not T,-complete 

for n 2 2, by Proposition 2.6. Moreover, 9 is not support-To. To see this, note first 

that, because of the intermediate value theorem of elementary calculus, 9 consists of 

all the bijections on X that are either increasing or decreasing. Thus every member of 

Y either fixes the endpoints or interchanges them. Since each decreasing g E 59 has 

exactly one fixed point, the S(9)-neighborhoods of the endpoints are of the form X\F, 

where F is a finite subset of the open interval (0, I). Thus S(B) is not T,,. On the other 

hand, each open subinterval of (0,l) is the support of an increasing member of 9. Thus 

the topology on (0, 1) inherited from S(9) is the usual one. (See the proof of Proposi- 

tion 3.3 for a more detailed explanation.) Define the topology Y on X as follows: Basic 

neighborhoods of points in (0, 1) are open subintervals as usual; basic neighborhoods 



of 0 (resp. 1) are of the form {O} u(r, 1) (resp. (0, t)u [ I)), t E (0, 1). Then it is easy to 

show that Y is a Y-invariant compact metrizable topology that is distinct from G. 

Example 2.8. Let 9 be the group H(@) of homeomorphisms of the usual topology 

,‘I/ on the standard unit circle X = S’ in the Euclidean plane R x R. Then there is 

exactly one g-invariant compact Hausdorff topology on X, namely ti itself. More- 

over, Jc? = S(9). To see this, let U be a typical basic ?/-open set, i.e., a proper open 

subarc of the circle, and fix p E X\U. We identify X\(p) in a standard way with the 

usual real line; hence there is a I#-homeomorphism whose support is U. This tells us 

that %I = S(!“) (again see the proof of Proposition 3.3) and implies that ?/ is the only 

Y-invariant compact Hausdorff topology on X. 

A point II E X is a,fixed point of 9 if y(u) = u for all y E Y; i.e., if 9 I Sym(X),. 

The compact Hausdorff topologies 9,, defined in Example 2.3, can help us elabor- 

ate on Proposition 2.6. 

Proposition 2.9. Suppose 9 is N group uction on u set X. 

(i) If’?? is T,-complete, n 2 2, und a E X is ~l,fi.xed point of’??, then min(Y, T,,) = //,,. 

(ii) If n 2 2, 93 bus a fixed point, und preserves u T, topology with more than one 

nonisolated point, then 3 is not T,-complete,for 2 I k I n. 

(iii) If 9 has two,fi.ued points, then 9 is not T,,-conzplrtr,fi)r uny n > 2. 

Proof. (i) If u is a fixed point of 9, then clearly CY~ is a Y-invariant topology that is 

compact Hausdorff. By Proposition 2.6, min(Y, T,,) = go. 

(ii) Let n 2 2. If 2 I k I n and Y is T,-complete, then, by (i), every Y-invariant T, 

topology must contain G&for some u E X, and hence can have at most one nonisolated 

point. 

(iii) If 9 has two fixed points a and b, then 9” and %,, are two distinct Y-invariant 

compact Hausdorff topologies; hence 9 is not T,-complete for any n 2 2, by Proposi- 

tion 2.6. 0 

Proposition 2.10. If 9 preserves u compuct Hausdoyf topology, then 9 is support- 

compact; the converse fuils. Indeed, if 1 X 1 < c, and $59 is transitive, then no Y-invuriunt 

topology is compuct Huusdo$ 

Proof. The first assertion follows from Proposition 2.1, plus the fact that any topology 

coarser than a compact topology is also compact. For the failure of the converse, 

suppose 9 acts on the infinite set X, and let .Y be any compact Hausdorff topology on 

X. If .Y is a perfect topology (which means having no isolated points, in the presence 

of the T, axiom), then, by a binary tree argument, it is possible to construct c infinite 

descending chains of nonempty .B-closed sets such that any two of these chains 

eventually give rise to disjoint sets. By compactness, each chain has nonempty 

intersection; hence 1x1 2 c. (See, e.g., 1271. This is the standard way one shows that 
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any compact Hausdorff space with < c points is scattered.) So if 1x1 < c, then there 

must be (infinitely many) F-isolated points. But there must also be .F-nonisolated 

points. So if 3 is transitive as well, then Y cannot be Y-invariant. To get an example 

of the failure of the converse, then, let 9 be a sharply transitive action on an infinite set 

X, where 1 X 1 < c. Then Y is support-trivial (hence support-compact) by Proposition 

1.5; however, no Y-invariant topology is compact Hausdorff. 0 

Example 2.11. A group action may preserve exactly one compact Hausdorff topol- 

ogy, and still fail to be T,-complete for any n 2 2. Let ~2/ be the usual topology on Q, 

u E Q, and C!? = H(%),. Then G3,, is a g-invariant compact Hausdorff topology. Be- 

cause 4? is a normal perfect g-invariant topology, Proposition 2.9(ii) says that 3 fails 

to be T,-complete for any n 2 2. If .F is any Y-invariant compact Hausdorff topology, 

then there must be F-nonisolated points as well as infinitely many F-isolated points, 

by the proof of Proposition 2.10. But F3 is transitive on Q\{u}, hence all points x # a 

are F-isolated. This forces C@a C_ F, hence g0 = .?. 

Example 2.5 suggests a line of questioning that concerns certain “large” subgroups 

of particularly rich groups. Let 9 act on an infinite set X. Define a subgroup &? I C!? 

to bejfinitely restricted if there is a finite A _C X such that ?YCA, I Y I CC?~. It is easy to 

show that the index of any finitely restricted subgroup of a group acting on X is at 

most 1x1, so such a subgroup can be said to be relatively large under many circum- 

stances of interest; e.g., when the big group is the full symmetric group. Define 

a subgroup of a group 3 to have smull index in 9 if the index of the subgroup is less 

than 191. Thus every finitely restricted subgroup of Sym(X) has small index, and 

a remarkable result of Dixon-Neumann-Thomas [l l] shows the converse in the 

countable degree case. 

Theorem 2.12 (Theorem 1 in [ll]). Let X be a countably injnite set. Then every small 

index subgroup of Sym(X) is finitely restricted. q 

Remark 2.13. Theorem 2.12 is interesting partly because it equates a condition on 

subgroup actions with a condition on abstract subgroups. Any group action on 

a countable set is said [7] to satisfy the strong small index property if it can be 

substituted for Sym(X) in Theorem 2.12. We return to this theme in the next section. 

The following result specifies when a finitely restricted subgroup of Sym(X) is 

T,-complete. 

Theorem 2.14. Let X be an injinite set, n 2 2, and suppose .F is a jinitely restricted 

subgroup of Sym(X). Then SF is T,-complete if and only if .2 has at most one ,$xed 

point. If 2 has nojixed points, then min(Z, T,) is the discrete topology on X; if .Y has 

exactly one$xed point a E X, then min(x, T,) = 90. 
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Proof. If .%’ is T,-complete, the conclusion follows from Proposition 2.9(iii), so we 

show the converse. 

Let A be a finite subset of X such that Sym(X)(A, I .#’ 5 Sym(X),. .iy then moves 

all elements of X\A, so any fixed point of .# must lie in A. IX\A 1 > 2, and any two 

points of X \A constitute the support of some element of Y , so all points of X\ A are 

S(Y)-isolated. Let .Y be a given N-invariant T, topology. Then every point of X\A is 

.J7-isolated, by Proposition 2.1. Suppose u E A is not fixed by M’, say u E supp(g) for 

some y E ,J?. Since CJ( A) = A, we may define h E Sym(X) to be the identity on A and to 

be the inverse of 9 on X\A. Then h E .H’, and a E supp(yh) G A. This says that II is 

contained in a finite S(.X)-open set, so must be .F-isolated (again by Proposition 2.1). 

Thus, if -6’ has no fixed points, then min(,Y, T,,) exists and is discrete. If .F has just 

one fixed point u, then the only S(,X)-neighborhood of u is X, and all other points are 

S(.#)-isolated. This forces 5 to contain ri,; whence min(.K, T,) = ‘r,. 0 

3. Group actions on field-ordered sets 

We now turn our attention to groups acting on linearly ordered sets X in which the 

ordering is compatible with a field structure on X. The most well-known examples are 

the real field R and the rational field Q, but there are many others. What is important 

to us is the order structure and that there is some field (one of many) for which that 

order is compatible. However, we will usually treat X as an ordered field, rather than 

as a field-ordered set, bearing in mind that the field structure is in some sense 

secondary to the order structure. (See 113, 141 for background on ordered fields.) 

We denote the extra structure of an ordered field X generically, writing just X when we 

mean (X, + , - , . ,O, 1, < ). As an ordering, X is dense without endpoints. As a field, X is 

of characteristic 0, and its minimal subfield is isomorphic to Q. The usual order topology 

on X, basically generated by bounded open (i.e., endpoint-free) intervals of X, is generi- 

cally denoted ‘II. This topology is well known to be normal. When /I/ is understood as the 

topology under consideration, we often write H(X) instead of H(#). 

Because X has such rich structure, it has a vast assortment of naturally definable 

group actions. The ones of most relevance to us are: 

(i) M(X), the monotone (increasing or decreasing) bijections; 

(ii) Z(X) I M(X), the increasing bijections; 

(iii) PLM(X) I n/l(X), the piecewise linear monotone bijections definable in finite- 

ly many pieces; 

(iv) PM(X):= PLM(X)nl(X); 

(v) LM(X), the linear bijections; and 

(vi) M(X) := LM(X)n I(X). 

Remark 3.1. It is easy to verify that all the inclusions above are proper, with the 

possible exception of M(X) I H(X). Because of the intermediate value theorem 

equality holds when X = R. (This situation is unique, however; see Theorem 3.2.) We 
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reiterate that it is the ordering on X that is the most relevant for our purposes. Thus, 

of the several group actions defined above, the ones defined in terms of linearity have 

a secondary (though important) status. All group actions M(X) I 9 I I(X) are 

2-homogeneous without being strongly primitive (viz. the field ordering on X); all 

actions containing LM(X) are 2-transitive. If 9 contains PM(X), then 9 is highly 

homogeneous. M(X) is never 3-transitive (or even generously 2-transitive); H(X) is 

highly transitive when X is not the real field (again, refer to Theorem 3.2). 

The special position of R among ordered fields is indicated in the following (mostly) 

well-known result. Since we know of no single source where a proof is presented, we 

outline one here. (Recall that a space is zero-dimensionul if it has a basis of clopen sets; 

clearly zero-dimensional To spaces are ultra-Hausdorff.) 

Theorem 3.2. Let X he an ordered jield. The following ure equivalent: 

(a) X is order isomorphic to the real ,jeld. 

(b) X is u (Dedekind-)complete ordering. 

(c) ‘1. is connected. 

(d) & is not zero-dimensionul. 

(e) H(X) = M(X). 

(f) H(X) is not generously 2-transitive. 

(g) H(X) is not 3-transitive. 

(h) H(X) is not highly trunsitiue. 

Proof. ((a) iff (b)) R is well known to be complete as an ordered set; so let X be an 

ordered field whose ordering is complete. Then X is easily seen to be archimedean, 

and hence is order isomorphic to a subfield of R (see, e.g., [14]). By completeness, this 

subfield must be all of R. 

((b) iff (c)) A complete ordering gives rise to a connected order topology; the proof 

is much the same as for R itself (see e.g., [27]). Conversely, a Dedekind cut in X that is 

not an interval is a proper nonempty J?/-clopen set. 

((c) iff (d)) Only one direction is nontrivial, so assume X is an ordered field whose 

usual topology is nonconnected. By the above, we then have clopen cuts, which we can 

shift using the field structure of X. The result is that, given any two points of X, there is 

a clopen cut containing one and missing the other. Now a cut that is unbounded to the 

left is the complement of a cut that is unbounded on the right. Thus, by intersecting 

clopen cuts of “opposite parity”, we can quickly establish zero-dimensionality. 

((d) iff (e)) If +Y is not zero-dimensional, then X is order isomorphic to the real field, 

hence H(X) = M(X) as indicated in Remark 3.1. If+ is zero-dimensional, then we can 

easily find a proper nonempty &-clopen set U that is “symmetric about the origin”, 

i.e., .Y E lJ if and only if - x E U. We then define y E H(X)\M(X) fixing .Y E I/ and 

taing x to ~ .x otherwise. 

((e) only if (f)) M(X) is never generously 2-transitive. 

((f) only if (g)) Trivial. 

((g) only if(h)) Trivial. 
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((h) only if (e)) Assume H(X) # M(X). Then % is zero-dimensional. Suppose 

A c X is finite, with s E Sym(A). Finite symmetric groups are well known to be 

generated by transpositions, so we may assume s interchanges a, b E A, fixing every- 

thing else. Let I, and Zh be disjoint bounded open intervals containing a and b, 

respectively; using zero-dimensionality, let U be a ‘2/-clopen neighborhood of a con- 

tained in I,. Let h E PM(X) take I, onto lb so that h(a) = b. Then y E Sym(X), defined 

by taking .Y E U to h(x), x E h(U) to k l(x), and fixing x otherwise, is a d%-homeomor- 

phism extending s. 

Now supposef: B + A is a bijection between finite subsets of X. Thenf= st, where 

t: B + A preserves the order inherited from X, and s~Sym(A). We are done since 

1 extends to a member of PM(X), and s extends to a member of H(X) as shown 

above. 0 

Proposition 3.3. Let PLZ(X) I 9 I H(X). Then S(Y) = +Y; consequently +Y is SH- 

fixed (hence H(X) is HS-jxed). 

Proof. Let Z be any bounded open interval in X, say I = (a, b). We set c = (u + b)/2 

and d = (c + b)/2, and define g : X + X to be the identity on X\Z, to take x E (a, c] to 

u + (d - u)(x - u)/(c - a), and to take x E (c, b] to d + (b - d)(x - c)/(b - c). Then 

9 E PLZ(X) and supp(g) = I, so % G S(PLZ(X)) G S(9) c S(H(X)). Since %Y is Y-in- 

variant and Hausdorff, equality holds by Proposition 2.1. (In fact, Supp(PLZ(X)) 

basically generates %.) The rest of the statement of the proposition follows easily. 0 

Remark 3.4. If PLZ(X) I 9 I Sym(X), then J& c S(Y) by the argument above, hence 

3 is support-Hausdorff. On the other hand, if Y is either LM(X) or LZ(X), then S(g) is 

the cofinite topology on X. Thus, if LZ(X) I 9 5 Sym(X), then VU G S(Y), so 9 is 

support-T,. (Note that Theorem 1.7 guarantees only that LZ(X) is support-T,). 

An easy consequence of Proposition 3.3 and Remark 3.4 is the following. 

Corollary 3.5. Every PLZ(X)-invariant HuusdocfStopology on X is an enrichment of %. 

Example 3.6. Let X = R, and let f be the density topology (see [9,17,24]). 

(A Lebesgue-measurable set E, of measure m(E), is Y-open just in case 

m((x - E, x + &)n E)/~E tends to 1 as positive F tends to 0, for each x E E.) F is an 

enrichment of J% that is completely regular (i.e., a point and a nonempty closed set not 

containing the point can be separated by a continuous real-valued function); more- 

over, the Y-connected subsets of X are precisely the intervals. This latter feature 

ensures that H(F) I H(X) (the intermediate value theorem again). Equality does not 

hold; H(F) does not even contain Z(X). (To see this, there are two classic results [21]: 

one that says every set of first category ( = meager) can be mapped, via a member of 

Z(X), to a nullset ( = set of measure 0); the other that says every subset of X is the 

union of a set of first category and a nullset. Now nullsets are Y-closed; hence, if 
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Y were I(X)-invariant, it would be discrete.) However, PLM(X) I H(Y), so 

% = S(H(Y)), by Proposition 3.3. 

We wish to investigate the behavior of g-invariant topologies, where 9 is a group 

acting on an ordered field X, and 9 arises naturally from the structure on X. As an 

illustration of what we mean, we first define a topology to have maximal dispersion 

character if all nonempty open sets are equinumerous. 

Proposition 3.7. Every nondiscrete LI(X)-invariant topology has maximal dispersion 

character. 

Proof. Suppose Y is a LI(X)-invariant topology, with U E .Y nonempty of cardinal- 

ity < 1x1. Because LI(X) is transitive, we may assume, for convenience, that 0 E U. 

For each positive b E X, define gb E LI(X) by gb(x) = bx, and define Gb E X x X to be 

the graph of gb. Then for b > c > 0, Ghn G, = { (O,O)}. Since there are 1x1 pairwise 

disjoint sets G,\{ (O,O)}, b > 0, and since IU x Ul < 1X/, we infer that there is some 

b > 0 such that G,n(U x U) = {(O,O)}. This says that Ung,(U) = {0}, so 0 is 

Y-isolated. By transitivity of LZ(X), 9 is discrete. 0 

Let Y and Y be two topologies on a set X (forgetting any added structure on X for 

the moment). .Y is an H-enrichment of Y if Y E Y and F is H(Y)-invariant. 

H-enrichments were introduced in [6], and studied further in [3,4], with special 

emphasis on H-enrichments of the usual topologies on the rational line and on the 

euclidean spaces. We continue that study here, focusing on H-enrichments of the usual 

topology % on a field-ordered set X. For simplicity, we use the term “H-enrichment,” 

unmodified, to mean “H-enrichment of the usual topology” in the context of ordered 

fields. H-enrichments are obviously Hausdorff, and are, unless discrete, of maximal 

dispersion character by Proposition 3.7. 

Remark 3.8. In [6] a version of Proposition 3.7 is proved for H-enrichments of 

euclidean topologies (Theorem 2.21); the proof idea if similar to the above. Another 

property of proper H-enrichments of euclidean topologies, as well as of the usual 

rational topology, is that the only convergent sequences are those that are eventually 

constant (Theorem 2.19 in [IS]). (A topological space with this property is often called 

contrasequential.) One of many consequences of this is that the usual topology, in the 

euclidean and rational cases, admits a unique smallest proper H-enrichment (Proposi- 

tion 3.7 in [4]). 

Remark 3.9. The density topology on R (see Example 3.6) is not an H-enrich- 

ment; in fact the only H-enrichment that contains the density topology is dis- 

crete. This topology does, however, share some of the properties of proper 

nondiscrete H-enrichments, including being contrasequential and of maximal dis- 

persion character. 
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Theorem 3.10. Any PLM(X)-invariant nontrivial topology on X is either a T, ,filter- 

base topology, a connected enrichment aff’li (a possibility just in case X is the real,field), 

or an ultra-Hausdorflenrichment of ‘I/. 

Proof. Suppose .Y is a PLI(X)-invariant nontrivial topology. Because PLM(X) is 

2-transitive, we may invoke Theorem 1.7 directly to infer that 5 is: either T, filterbase 

or T1 nonfilterbase; if T, nonfilterbase, then either T2 connected or T2 non-connec- 

ted; if T2 nonconnected, then ultra-Hausdorff. If .Y is Hausdorff, then it is an 

enrichment of Jti by Corollary 3.5. The fact that Y can be a connected enrichment of 

&just in case X is the real field follows from Theorem 3.2. 0 

Define an H(X)-invariant topology to be shurply H(X)-invariant if its homeomor- 

phism group is precisely H(X). Sharply H(X)-invariant topologies are nonobligatory 

since H(X) # Sym(X) (Proposition 1.2). They are therefore T, (Theorem 3.10), and of 

maximal dispersion character (Proposition 3.7). By Theorem 3.10, such topologies are 

either filterbase, connected Hausdorff, or ultra-Hausdorff (enriching ‘/// in the last two 

cases). Here the situation splits. We do not know anything further in general when 

X is incomplete, except that the second case is vacuous. When X = R, we have the 

following result from 131. 

Lemma 3.11. (Theorem 0.7 and Proposition 4.2 in [3]). An H-enrichment .F of R is 

shurpy H(R)-invariant ifand only {fit is connected, [f and only if the .Y-connected subsets 

of R are precisely the intervals. 

From Theorem 3.10 and Lemma 3.11, we immediately infer the following. 

Theorem 3.12. Any sharply H(R)-’ mvariant topology is either u T1 ,filterhase topology 

or a connected H-enrichment. 

The question naturally arises as to what filterbase topologies can be sharply 

H(X)-invariant. To begin to answer this, let .Y be a topology on X, and let 

DO(.F) := {@} u {U E 5: U is <Y-dense). Then DO(Y) is a filterbase topology, which 

is T1 just in case .Y is T1 and perfect. In general H(9) I H(DO(3)); the reverse 

inequality need not hold. (An easy example: Let X be infinite, a E X: .F = 

(8,X>{a)>X\{a)).) We do not know whether equality holds for the usual topology in 

an arbitrary ordered field, but it does hold when the usual topology is metrizable (e.g., 

in the real and rational cases). In a slightly more general setting, we have the following. 

Lemma 3.13. Let Y he a perfect metrizahle topology on a set X. Then H(F) = 

H(DO(9-)). 

Proof. Suppose 9 E H(DO(.Y))\H(Y). Then we may assume that g is not .F-continu- 

ous at some c E X. This says that there is a sequence (cn) of distinct points of X such 
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that (c,) converges to c, but (g(c,,)) fails to converge to y(c). We can arrange for c to be 

distinct from all the points c,, so that the set C = (c} u {cI,c2, . . . ) has c as its only 

limit point. Then C, as well as each C\{c,,}, is closed nowhere dense, but C\{cj is 

nowhere dense without being closed. (Nonempty interiors would give rise to isolated 

points.) Since g E H(DO(Y)), the same can be said, respectively, for g(C), each 

g(C)\[g(cn)}, and g(C)\{g(c)). Thus g(c) is the only limit point of g(C). This implies 

that the sequence (g(c,)), which does not converge to g(c), has the property that any 

convergent subsequence must converge to g(c); moreover there is a neighborhood of 

y(c) that fails to contain infinitely many points of g(C)\{g(c)}. From this we infer that 

there is a subsequence (g(c,J) which itself has no convergent subsequence; hence the 

set {g(c,,),g(c,,), . } is closed nowhere dense. But then so is the set (c,,,, cnl, >, 

contradicting the fact that (c,) converge to c. 0 

The following result is then an immediate consequence. 

Theorem 3.14. Let X be an orderedjield whose usual topology is metrizable (e.g., ifX is 

archimedean, or, more generally, if X has a countable order-dense subset). Then there 

exists a sharply H(X)-invariant jilterbase topology, namely DO(@). 0 

We next look at the issue of detecting T,-completeness in certain subgroups of 

H(X), in analogy with Theorem 2.14. First we mention an analogue of Theorem 2.12, 

due to Truss 1271. 

Theorem 3.15 (Theorems 2.12 and 3.5 in [27]). Both I(Q) and H(Q) have the strong 

small index property. 

Remark 3.16. We note in passing that the proof Truss gives for establishing the strong 

small index property in H(Q) relies on the much earlier result of Anderson [ 11, saying 

that H(Q) is a simple group. 

While the strong small index property is of great interest in itself, our results actually 

pertain to subgroups that stabilize a finite set (e.g., finitely restricted subgroups), rather 

than subgroups of small index. One analogue of Theorem 2.14 is the following. 

Theorem 3.17. Let 9 be either I(X) or M(X), n 2 2, with -Z I 99 a subgroup that 

stabilizes a jinite set. The .following are equivalent: 

(a) 2 = 9. 

(b) S(p) = c&. 

(c) R is support-T,. 

(d) .R is T,-complete. 

Proof. The implications (a) only if(b) only if(c) only if (d) follow immediately from 

Proposition 3.3, properties of the usual topology, and Proposition 2.4, respectively. 
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((d) only if (a)) Let .& I 3 stabilize a finite set, say A G X is finite and &‘ I Y.+i. In 

the case ‘?? = I(X), it is clear that Z I ?&,. If (a) does not hold, then A # 8; hence, 

.&? has a fixed point and preserves a T, topology with more than one nonisolated 

point (i.e., @). By Proposition 2.9(ii), 3 is not T,-complete. 

So assume now that Y = M(X), and that (a) fails. Then A is nonempty. If -8 has 

a fixed point, we are done; so we may assume otherwise (hence IAl 2 2). Let 

fl/ A := {h 1 A: h E sV} be the restriction of 2 to A. Then Y6’I A has two elements. If 

s E Sym(X) is the permutation that reverses the order of the elements of A and fixes 

everything else, then s 1 A is the nonidentity element of R ( A. Let .Y = s(‘z/). Then 

s : (X, ‘8) + (X, S) is a homeomorphism, hence Y is a normal topology. It remains 

to show that Y is .%-invariant and that .Yi-n~& is non-Hausdorff. Let h E .x. Then 

hlAE {SIA,id,} and sl(X\A) = idX,5A, hence hs = sh. Thus h = shs~’ E H(Y)), so 

J is indeed Y-invariant. Finally let a and b be, respectively, the least and greatest 

elements of A in the field ordering on X, and let U and T/ be (Y-n@)-neighborhoods 

of a and b, respectively. By hypothesis, a # b, and s interchanges a and b. Since U is 

a %-neighborhood of a, there is a bounded open interval I containing a and missing 

A\{a}, such that I s U. Since V is a Y-neighborhood of b, there is a bounded open 

interval J containing a and missing A\{a}, such that s(J) G V. But s(J) = 

{b) u(J\{u}). Thus 8 # Ins(J) c Un V, hence Yn ‘c? is non-Hausdorff. 0 

At present we do not know of a complete analogue of Theorems 2.14 and 3.17 

involving H(X) (different from M(X) exactly when X is not the real field, by Theorem 

3.2). As a partial analogue, we have the following. 

Theorem 3.18. Let 9 be H(X), H(X) # M(X), n 2 2, with fl I Y,finitely restricted. 
(i) Zf 2 lies in the centralizer of u nonidentity permutation on X, then there is 

u normal Z-invariant topology whose intersection with J# is non-Hausdor$ 
hence, R is not T,-complete. 

(ii) Zf 2 is support-T,, then S(#) = @; hence, .fl is T,-complete. 

Proof. Since Z is finitely restricted in % = H(X), we find a finite A G X such that 

Ytca, I Z < YA. As in the proof of Theorem 3.17, ,YY I A I Sym(A) is the restriction of 

~6 to A. Observe that .&‘ I A “determines” G+? in the sense that if q(A) 5 H’ I ??A and 

~lA=~‘IA,then~==‘.(Indeed,ify~,~,thenyIA=hIAforsomeh~~‘,so 

(gh- ‘) I A = idA. Thus gh-’ E P’, hence g E YC’.) This tells us that if y E Y,, and 

g I A E .%f I A, then g E .8. 

(i) Let s E Sym(X) be a nonidentity permutation that commutes with every element 

of :#. Then we claim supp(s) c A. For let b E supp(s)\A. If s(b) E A, we can find 

g E YCAj that moves b; if s(b)$A, we can find g E YtAj that fixes b and moves s(b). In 

either case, ys and sy disagree at b. This contradiction proves the claim. 

As in the proof of Theorem 3.17, let 9 = s(J#). Then we know s : (X, ‘I/) + (X, 3) 

is a homeomorphism, so ,? is a normal topology. It remains to show that Y is 
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x-invariant and that .Fn%! is non-Hausdorff. Let h E .Yf. Then hs = sh by hypothe- 

sis, hence &?-invariance is assured. To see that 9 n% is non-Hausdorff, we recall that 

supp(s) c A. If a E supp(s) and b = s(u), then a and b are distinct points of A, and we 

may argue exactly as in the proof of Theorem 3.17. 

(ii) Now assume Z is support-T,, and let I G X be a bounded open interval, with 

~EI. It suffices to find yi, . . . ,gk E * such that X E Sllpp(g,)fT ... nSUpp(CJ,) C 1. 

For then we have ‘%! E S(Z); hence, ?? = S(p) by Proposition 2.1 (since ~2 is 

Hausdorff and Z-invariant). If our finite set A is empty, Proposition 3.3 applies. If 

I A 1 E ( 1,2}, then Y? is not support- TO; so we assume 1 A / 2 3. 

If x$A, then pick a bounded open interval J missing A such that x E J E I. By 

Proposition 3.3, there is some g E 9 such that supp(g) = J. Since g E YCca,, g is also in 

2”. 

If x E A, we use the assumption that 9 # M(X). By Theorem 3.2, “2 has a clopen 

basis consisting of bounded convex sets. So pick a I&!-clopen convex set J containing 

x such that: (1) J G I; (2) J is “symmetric about x” (i.e., u E J if and only if 2x - u E J 

for all u E X); and (3) the translates Ja:= {U + u - x: u E J} (also $/-clopen and 

convex) are pairwise disjoint for u E A. For any s E ~6 1 A containing x in its support, 

we define gs: X + X to be the function taking u E JO to u + s(a) - a, for a E supp(s), 

and fixing u otherwise. Then clearly gs E %A extends s; therefore, gs E .#‘. Moreover, 

supp(gJ = u {Jo: a 6 supp(s)}. 
By assumption, 1 Al 2 3. In addition J? I A is support-T,, hence support-discrete, so 

there exist s,, . . . ,sk E .# I A such that ix) = supp(s,)n ... nsupp(s,). Thus 

J = wp(gs,)n ... n supp(g.,x) E I, as desired. 0 

An easy corollary of the proof of Theorem 3.18 is the following. 

Corollary 3.19. Let A G X bejnite, H(X) # M(X), n 2 2. Then S(H(X),) = ‘1/ ifund 

only {f H(X), is T,-complete, ifund on/y {f ) Al${ 1,2}. 

Proof. Let ~6 = H(X),. If S(Z) = %, then 2 is T,-complete, by Proposition 2.4. If 

I Al E { 1,2}, then 2 I A is abelian; so we may apply the proof of Theorem 3.18(i). If A is 

empty, then 2 = H(X), and we may invoke Proposition 3.3. If IAl 2 3, then 

.%I A = Sym(A) is support-T,, and we may use the proof of Theorem 3.18(ii). 0 

4. Group actions on the rational line 

The usual topological space of rational numbers is characterized, thanks to a cel- 

ebrated theorem of Sierpinski [23], by the conjunction of properties: countable, 

second countable (i.e., having a countable open basis), regular, and perfect. In the 

parlance of model theory (see, e.g., [8]), this is a weak sort of o-categoricity, when one 

chooses one’s language appropriately, and has proved itself very useful in recent times 
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(see, e.g., 12,201). In a more familiar context, the linearly ordered set of rational 

numbers is characterized, by Hausdorff, who pioneered the so-called “back-and- 

forth” method, by saying that the ordering is dense without endpoints. This translates 

into model-theoretic terms as the statement that the first-order theory of dense linear 

orderings without endpoints is w-categorical, and has seen much application recently. 

In particular, the following result from [6] appeals strongly to this result. 

Lemma 4.1 (Theorem 2.12 in 161). The usual topology and the discrete topology~ are 

the only regular H-enrichments oj’Q. 

When one combines Lemma 4.1 with Corollary 3.5 and Proposition 2.2(i), the 

following characterization obtains. 

Theorem 4.2. The only regular H(Q)-’ mnuriunt topologies ure the usual topology and 

the discrete topology; the only regular shurply H(Q)-’ mvariunt topology is the usual 

topology. 

The next result can best be stated if we introduce a new notion. If 71 is a topological 

property, define a topology F on a set X to be symmetry-maximal (7~) if whenever .Y is 

any topology on X such that .Y satisfies n and H(F) is a proper subgroup of H(Y), 

then H(Y) = Sym(X). 

Theorem 4.3. The usual topology on the ratio& line is symmetry-maximul (nonfilter- 

base), but not symmetry-maximal (T, Jilterbase). (In fact, if (X, ?T) is any perfect T, 

space possessing a nondiscrete closed nowhere dense subset of cardinality 1 X 1, then F is 

not symmetry-muximal (T 1 filterbase).) 

Proof. Let F be an H(Q)-invariant nonfilterbase topology. By Theorem 3.10,9 is an 

H-enrichment. Assume .F is a proper H-enrichment. If H(F) = Sym(Q), we are done; 

otherwise 9 is nondiscrete, hence nonregular by Lemma 4.1. Suppose A G Q is not 

,J&-clopen, and define Y to be the smallest H-enrichment containing both A and Q\A. 

Then an open basis for 9 consists of sets of the form U n B, where U is I/;/-clopen, and 

B is an intersection of finitely many H(%)-homeomorphs of A and of Q\A. Since B is 

.Y-clopen, Y is zero-dimensional. Since Y’ is a proper H-enrichment, we infer that 

Y is the discrete topology, again by Lemma 4.1. 

Thus F and ;i?l share the same clopen sets. So if Q E H(F), then g preserves 

F-clopen sets; hence g preserves %-clopen sets. Since %/ is zero-dimensional, we 

conclude that y E H(q). Thus @ is symmetry-maximal (nonfilterbase). 

To show 08 is not symmetry-maximal (T, filterbase), we prove the decidedly 

stronger assertion in parentheses. Let (X,9) satisfy the hypotheses, with C 5 X 

a nondiscrete closed nowhere dense set of cardinality 1x1. Let 3 be the T1 filterbase 

topology obtained by adding in all supersets of nonempty members of DO(F). Since 

C if .F-closed and of cardinality 1x1, we know 9 is not an obligatory topology; hence 
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H(F) # Sym(X). Clearly H(Y) I H(9), so it remains to show the inequality is 

proper. Indeed, pick a E X\C (possible because C is nowhere dense), pick c E C a limit 

point of C (possible because C is nondiscrete and closed), and let t E Sym(X) transpose 

a and c. If A G X is nowhere dense, then so is t(A), since singletons are closed but not 

open, hence nowhere dense. Thus t E H(F). On the other hand, C is closed but 

t(C) = (Cu {a})\{~} is not. Thus t$H(Y). 0 

Remark 4.4. With regard to Lemma 4.1, there are plenty of H-enrichments of Q (see 

[4]). With regard to Theorem 4.3, interesting (nonobligatory) symmetry-maximal 

topologies seem to be rare; one source of examples comes from the result of Richman 

[22] that the stabilizer of an ultrafilter on an infinite set is a maximal proper subgroup 

of the full symmetric group. This clearly implies that if X is an infinite set, with B an 

ultrafilter on X, then the (filterbase) topology Fu (8) is symmetry-maximal (i.e., 

symmetry-maximal (n), where 71 is the class of all spaces). We also have the compact 

Hausdorff topologies B0 (see Example 2.3). They are always symmetry-maximal since 

Sym(X) is primitive and H(LSa) = Sym(X),. With regard to spaces satisfying the 

hypothesis of the parenthetical assertion of Theorem 4.3, one may take countable 

perfect Hausdorff spaces where some point has a countable neighborhood basis 

(nowhere dense copies of the ordinal space w + 1 exist); also one may take perfect 

completely metrizable spaces of cardinality c (nowhere dense Cantor sets exist). 

A recurrent theme in the present paper is the issue of what kinds of topologies are 

invariant under a given group action. Trivial actions and topologically primitive 

actions (see Remark 1.3) sit at opposite extremes in this connection, and results like 

Proposition 2.10 and Theorem 3.10 give a small indication of what can happen in the 

middle. A natural question one can ask of a group action is whether it preserves, say, 

a perfect Hausdorff topology. There are many results (see [7]) that place certain 

transitivity/homogeneity assumptions on the group and imply the existence of invari- 

ant relational structures on the set. Often these structures give rise to interesting 

invariant topologies. For example, a result of McDermott ((3.11) in [7]) says that 

a 3-homogeneous but not 2-transitive group on a countable set preserves a linear 

ordering that is isomorphic to (Q, < ). The main part of the proof, which is not 

difficult, actually applies to arbitrary infinite sets, and asserts the existence of an 

invariant linear ordering that is dense without endpoints. Since such order topologies 

are perfect and Hausdorff (indeed hereditarily normal), we have an affirmative answer 

to our question in the case of 3-homogeneous but not 2-transitive group actions. 

By Proposition 2.1, 3 preserves a perfect Hausdorff topology only if 3 is sup- 

port-perfect; i.e., finite intersections of supports are either empty or infinite. 

Mekler [19] defines ?Y to satisfy the mimicking property if whenever x E X and 

$71, ... ,g,,, E 3, there are infinitely many y E X such that for each 1 I i,j I m, if 

yi(y) = gj(y), then g,(x) = gj(x). It is quite straightforward to show that satisfying the 

mimicking property is equivalent to being support-perfect (a fact first noted by 

Neumann [25]), and a natural question is: when does being support-perfect imply 
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preserving a perfect Hausdorff topology. We do not know the answer in general, but 

Mekler has given us a good partial solution. The main result of [ 191 (Theorem 1 S) is 

that a countable group of countable degree embeds, as a group action, in H(Q), if and 

only if that group action satisfies the mimicking property. Thanks to Sierpinski’s 

theorem [23], Mekler’s theorem translates into the statement that every countable 

support-perfect group of countable degree preserves a perfect metrizable topology. 

Results that show when group actions preserve perfect T, topologies can be useful 

in detecting the lack of T,-completeness because of the following. 

Theorem 4.5. Let the group 59 presertle u perfect T, topology on X, n 2 2. J~‘.YY 5 !qA 

ji)r some nonemptyjnite A G X, and if.8 1 A is ahelian, then .F is not T,,-complete. 

Proof. Let ,F be a perfect T, g-invariant topology, and let A be a nonempty finite 

subset of X such that .%‘ I qA and ,?F 1 A is abelian. If .F has a fixed point, we can 

appeal to Proposition 2.9(ii). So assume .Z has no fixed points, hence IAl 2 2. Let 

s E Sym(X) satisfy 8 # supp(s) G A, and s 1 A E .% I A. Then, arguing as in Theorems 

3.17 and 3.18(i), we show that s(.F) is a perfect T, -R-invariant topology such that 

Fns(3) is non-Hausdorff. (Invariance comes from the fact that .N I A is abelian; 

non-Hausdorffness comes from the facts that 2 I I Al < CO, and .F is a perfect T, 

topology.) q 

5. Group actions on the real line 

The ordered field R of real numbers is unique, by Theorem 3.2, in having a complete 

ordering, a connected usual topology, and a homeomorphism group that does not 

extend past the group of monotonic bijections. This makes the theory of H(R)- 

invariant topologies dramatically different from that of any other field-ordered set. 

Let .y be a topology on R. We say .F is a Durhoux topology if the rF-connected 

subsets of R are precisely the intervals of R. 

Remark 5.1. The density topology (see Example 3.6) is a Darboux topology, as are all 

sharply H-invariant Hausdorff topologies (see Theorem 3.12). In the theory of real 

functions,f: R + R satisfies the Durhoux property if it satisfies the conclusion of the 

intermediate value theorem (see [16]). This property does not imply usual continuity; 

the function that fixes 0 and takes x # 0 to sin(l/x) is a well-known counterexample. 

Also, if ,Y and 9 are any two Darboux topologies, then any (.Y,.F)-continuous 

function (i.e., one that pulls .F-open sets back to .‘Y’-open sets) satisfies the Darboux 

property. 

Lemma 5.2. Suppose X is a set, and .V and .F ure two topologies on X such that the 

.‘Y-connected subsets of’X ure precisely the .8-connected subsets. lf .v’ is regular. then 

eoery .Y-connected Y-closed set is ulso .F-closed. 
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Proof. Let C G X be Y-connected and Y-closed, and let L) be the F-closure of C. If 

B c: X lies between C and D, then B must be F-connected. Suppose .u$C. By 

regularity of ,Y’, C u 1.x) is not Y-connected, and hence not F-connected. This implies 

that C = D, so C is F-closed. 0 

Theorem 5.3. Let F he crn~j topoiog!, on R. Each of the,~ollow~ng statements implies the 

next: 

(a) .F is a ~o~~lterbase topofogy und PLI(R) 2 H(,Y) I H(R). 
(b) & G .T and 9’ is connected. 

(c) .F is a Darboux topology. 

(d) @ c .T and II I H(R). 

Proof. ((a) only if(b)) Suppose F satisfies (a). By Theorem 1.7(iv) and Corollary 3.5, 

%/ E ,Y, so it remains to show that F is connected. Suppose otherwise, and U is 

a proper nonempty .F-clopen set. Because LZ(R) 5 H(F), Proposition 3.7 tells us 

that I?_1 = IR\,Ul; moreover, we may assume O$U. Let V = Uu_i - x: x E U). Then 

I/ is I-clopen, 04 V, and 1 V / = IR\, V /, so the map that fixes s in V and takes x to - x 

otherwise is a ~~-homeomorphism that is not in H(R). Thus we conclude that .F is 

connected. 

((b) only if(c)) Assume F is a connected enrichment of ,‘I/, with [~1,6] any closed 

bounded interval of R. Then [a, b] is F-closed. If (U, V ) is a Y-disconnection of 

[a,b], then both U and V are F-closed sets. Suppose a E U and b E I/. Then 

(( - s, a] u U, Vu [b, x )I is a .~-disconnection of R, a contradiction. If both a and 

h are in, say, U, then {( - x , a] u [b, m )u U, V 1 is a F-disconnection of R, another 

contradiction. Thus all closed bounded intervals of R are F-connected. Since every 

interval of R is a chain union of closed bounded intervals, we conclude that F is 

a Darboux topology. 

((c) only if (d)) Assume F is a Darboux topology. By Lemma 5.2, every closed 

interval is a F-closed set. Consequently, all the usual basic open sets are F-open; 

hence +Y c .F. Then H(Y) < H(R) by the intermediate value theorem. 0 

Remark 5.4. The density topology and analogous topologies designed around Baire 

category instead of Lebesgue measure (see [9]) are intriguing examples of Darboux 

topologies that share many of the features of connected ~-enrichments without being 

H-enrichments themselves. Of these features, the most notable is contrasequentiality, 

which implies, among other things, failing to be metrizable or locally compact. (The 

density topology is contrasequential because countable sets are density-closed; proper 

H-enrichments are contrasequentiai even when countable sets are not closed.) Signifi- 

cantly, most of the density-type topologies are regular; indeed, completely regular, 

even realcompact. (See [IZ, Theorem 3.61; realcompactness becomes an issue when 

studying rings of continuous functions (see also [S, 10,13,28]).) We have been able to 

construct vast numbers of proper nondiscrete completely regular W-enrichments (see 

[6,3,4]), but at the expense of connectedness. At every turn, the price of regularity has 



been zero-dimensionality; so the question of the consistency of connectedness and 

regularity in H-enrichments of R has gained in stature over time. We would very much 

like to see an analogue of Theorem 4.2 for R. We know that the only metrizable 

(locally compact Hausdorff) sharply H(R)-invariant topology is the usual one, and 

wonder whether regularity is enough to characterize /I/ in these terms. 

An easy consequence of Theorem 5.3 and Remark 5.4 is the following analogue of 

Theorem 4.3. 

Theorem 5.5. The USUL~ ~opcrlo~~~~ OH the real line is .s~~~~mrt~~-muuirnLll (lonnecte(l 

nogfiltrrhase), hut not ,s~r?lmetr~-tna.uimal (completely regular) (or eren s~t~lt7letr~-ttzu.ui- 

mu/ (zero-dit?lrnsiona/)). 
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