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ABSTRACT. By a generalized arc we mean a continuum with exactly two
non-separating points; an arc is a metrizable generalized arc. It is well known
that any two arcs are homeomorphic (to the real closed unit interval); we
show that any two generalized arcs are co-elementarily equivalent, and that
co-elementary images of generalized arcs are generalized arcs. We also show
that if f: X — Y is a function between compacta and if X is an arc, then f is
a co-elementary map if and only if Y is an arc and f is a monotone continuous
surjection.

1. INTRODUCTION AND OUTLINE OF RESULTS

All topological spaces under consideration are Hausdorff; a compactum is a
Hausdorff space that is compact. A generalized arc is a continuum (i.e., a con-
nected compactum) that has exactly two non-separating points; an arc is a metriz-
able generalized arc. The class of generalized arcs is precisely the class of linearly
orderable continua, each generalized arc admitting exactly two compatible linear
orders. The class of (continuous images of) generalized arcs has been extensively
studied over the years (see [10], [11], [14]), the most well-known results in this area
being that any two arcs are homeomorphic (to the standard closed unit interval
on the real line), and (Hahn-Mazurkiewicz) that a Hausdorff space is a continuous
image of an arc if and only if that space is a locally connected metrizable contin-
uum. In this paper, a continuation of [3], we study the model-theoretic topology of
generalized arcs, in particular, the “dualized model theory” of these spaces.

Many notions from classical first-order model theory, principally elementary
equivalence and elementary embedding, may be phrased in terms of mapping con-
ditions involving the ultraproduct construction. Because of the (Keisler-Shelah)
ultrapower theorem (see, e.g., [7]), two relational structures are elementarily equiv-
alent if and only if some ultrapower of one is isomorphic to some ultrapower of the
other; a function from one relational structure to another is an elementary embed-
ding if and only if there is an ultrapower isomorphism so that the obvious square
mapping diagram commutes (see, e.g., [2], [5], [8]). The ultrapower construction in
turn is a direct limit of direct products, and is hence capable of being transferred
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into a purely category-theoretic setting. In this paper we focus on the category
CH of compacta and continuous maps, but perform the transfer into the opposite
category (thus justifying the phrase “dualized model theory” above).

In CH one then constructs ultracoproducts, and talks of co-elementary equiva-
lence and co-elementary maps. Co-elementary equivalence is known [2], [5], [9] to
preserve important properties of topological spaces, such as being infinite, being
connected, being Boolean (i.e., totally disconnected), having (Lebesgue) covering
dimension n, and being a decomposable continuum. If f : X — Y is a co-elementary
map in CH, then of course X and Y are co-elementarily equivalent (in symbols
X =Y). Moreover, since f is a continuous surjection (see [2]), additional infor-
mation about X is transferred to Y. For instance, continuous surjections in CH
cannot raise weight (i.e., the smallest cardinality of a possible topological base,
and for many reasons the right cardinal invariant to replace cardinality in the du-
alized model-theoretic setting), so metrizability (i.e., being of countable weight in
the compact Hausdorff context) is preserved. Also local connectedness is preserved,
since continuous surjections in CH are quotient maps. Neither of these properties
is an invariant of co-elementary equivalence alone.

When attention is restricted to the full subcategory of Boolean spaces, the du-
alized model theory matches perfectly with the model theory of Boolean algebras
because of Stone duality. In the larger category there is no such match [1], [12],
however, and one is forced to look for other (less direct) model-theoretic aids. Fortu-
nately there is a finitely axiomatizable Horn class of bounded lattices, the so-called
normal disjunctive lattices [6] (also called Wallman lattices in [5]), comprising pre-
cisely the (isomorphic copies of) lattices that serve as bases for the closed sets of
compacta. We go from lattices to spaces, as in the case of Stone duality, via the
maximal spectrum S( ), pioneered by H. Wallman [13]. S(A) is the space of
maximal proper filters of A; a typical basic closed set in S(A) is the set of ele-
ments of S(A) containing a given element of A. S( ) is contravariantly functorial;
if f: A— B is a homomorphism of normal disjunctive lattices and M € S(B),
then f9(M) is the unique maximal filter in A containing the pre-image of M under
f- Tt is a fairly straightforward task to show, then, that S( ) converts ultraprod-
ucts to ultracoproducts, elementarily equivalent lattices to co-elementarily equiv-
alent compacta, and elementary embeddings to co-elementary maps (see [2], [4],
[5], [6], [9]). An important consequence of this is a Léwenheim-Skolem theorem
for co-elementary maps: every compactum maps co-elementarily onto a metrizable
compactum. (This result is used in 2.4 and 2.6 below.)

In [3] we showed that any locally connected metrizable space co-elementarily
equivalent to an arc is already an arc; here we present the following results. (i) if f :
X — Y is a co-elementary map in CH, and if Y is locally connected (in particular,
a generalized arc), then f is a monotone continuous surjection; (ii) co-elementary
images of (generalized) arcs are (generalized) arcs; (iii) any two generalized arcs
are co-elementarily equivalent; (iv) if X is a generalized arc and f : X — Y is an
irreducible co-elementary map in CH, then f is a homeomorphism; (v) if every
locally connected co-elementary pre-image of an arc is a generalized arc, then every
locally connected compactum co-elementarily equivalent to a generalized arc is also
a generalized arc; and (vi) if X is an arc and f is a function from X to a compactum
Y, then f is a co-elementary map if and only if Y is an arc and f is a monotone
continuous surjection.
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Local connectedness is necessarily a part of (v) above. We do not know at present
whether the hypothesis in (v) is true, nor do we know whether monotone surjections
between generalized arcs are always co-elementary maps.

Remark 1.1. By way of contrast, there is a Boolean analogue to some of the results
above. Define a generalized Cantor set to be any non-empty Boolean space with
no isolated points, and a Cantor set to be a metrizable generalized Cantor set. It
is well known that any two Cantor sets are homeomorphic (to the standard Cantor
middle thirds set in the real line), and that the generalized Cantor sets are precisely
the Stone duals of the atomless Boolean algebras, constituting an elementary class
whose first-order theory is Wg-categorical, complete, and model complete. In (ii)
and (iii), one may replace “arc” with “Cantor set” uniformly; a straightforward
application of Ng-categoricity. The analog of (iv) is false (see Example 3.3.4(iv) in
[2]); the projective cover map to a generalized Cantor set is always an irreducible
co-elementary map between (seldom-homeomorphic) generalized Cantor sets. As
for (v), it follows from the results on dimension in [2] that any compactum co-
elementarily equivalent to a generalized Cantor set is itself a generalized Cantor
set. Finally, regarding (vi), all continuous surjections between generalized Cantor
sets are co-elementary maps. This is a direct consequence of the model completeness
of the theory of atomless Boolean algebras.

2. METHODS AND PROOFS

We begin with a proof of (i) above. Recall that a map f: X — Y is monotone
if the inverse image of a point of Y is connected in X . It is easy to check that inverse
images of closed connected sets under monotone quotient maps are connected. (If
A; U Ay is a disconnection of the inverse image f~![K], then both A; and A
are closed in X; also they are f-saturated because of monotonicity. Thus A; =
FYHfIA]], i = 1,2. Because f is a quotient map, f[A;] U f[A2] is a disconnection
of K.) Since continuous maps between compacta are closed, monotone continuous
surjections pull subcontinua back to subcontinua.

Proposition 2.1. Let f: X — Y be a co-elementary map in CH, with Y locally
connected. Then f is a monotone continuous surjection.

Proof. Assume f : X — Y is co-elementary, Y is locally connected, and f is not
monotone. Then there is a point y € Y such that the fiber A := f~1[{y}] is
disconnected, say, into two disjoint nonempty closed sets A; and Ay. For i = 1,2,
let U; be an open neighborhood of A;, with Uy NUy = (). If C is a subcontinuum of
X containing A, then we can pick some x¢ € C\ (U3 UUs). Let B be the closure of
the set of all such points z¢, as C ranges over all subcontinua containing A. Since
no point z¢ lies in U; UUs, B is disjoint from A, but intersects every subcontinuum
of X that contains A.

Now f[B] is closed in Y and does not contain y. Let V' be an open neighborhood
of y whose closure K misses f[B]. Because Y is locally connected, we may take V/
to be connected; hence K is a subcontinuum of Y containing y in its interior. We
need a fact proved elsewhere.

Lemma (Lemma 2.8 in [5]). Let f: X — Y be a co-elementary map in CH, with
K CY a subcontinuum. Then there is a subcontinuum C C X such that K = f[C],
and whenever V. .C K is open in Y, f~V] C C.
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Using the lemma, there exists a subcontinuum C' C X such that f[C] = K and
f7lV] € C. Let z € A. Then there is a neighborhood U of z with f[U] C V.
Thus * € U C f~1[V] C O, hence we infer A C C. Every subcontinuum of X
containing A must intersect B, so 0 # f[BNC) C f[B] N f[C] = f[B]N K = 0.
This contradiction completes the proof. O

Remark 2.2. The lemma above provides only a weak consequence of co-elementarity.
Indeed, the usual projection map from the standard closed unit square in the plane
onto its first codrdinate is not co-elementary because it does not preserve topological
dimension. Nevertheless, it does satisfy the conclusion of the lemma.

Now we are in a position to prove (ii).

Proposition 2.3. Let f : X — Y be a co-elementary map in CH. If X is a
generalized arc, then so is Y.

Proof. Let f : X — Y be a co-elementary map in CH, with X a generalized
arc. Y is a locally connected continuum because X is locally connected and f is a
continuous surjection. By 2.1, f is monotone; it remains to show Y has precisely
two non-separating points.

Let a,b € X be the two non-separating points of X. Y is non-degenerate because
of co-elementarity; monotonicity then tells us that f(a) # f(b). If f(a) were to sep-
arate Y, we could also separate X \ K, where K := f~1[{f(a)}] is a subcontinuum
(i.e., closed subinterval) containing the endpoint a. This is easily seen to be im-
possible for generalized arcs. Now let y € Y \ {f(a), f(b)}, with K := f=1[{f(y)}].
Then K is a subcontinuum of X containing neither endpoint. Thus X \ K is dis-
connected; hence y separates Y. We therefore conclude that Y is a generalized
arc. O

We can very quickly settle (iii).
Proposition 2.4. Let X and Y be two generalized arcs. Then X =Y.

Proof. Let X and Y be generalized arcs. By the Léwenheim-Skolem theorem for
co-elementary maps, there exist co-elementary maps f: X — Xg and g : Y — Yj,
where X and Yy are compact metrizable. By 2.3, the images are generalized arcs;
hence they are arcs. Thus X and Y; are homeomorphic, and we conclude X =Y
because [2] co-elementary equivalence is an honest equivalence relation. O

To handle (iv), recall that a continuous surjection f : X — Y is irreducible if
Y is not the image under f of a proper closed subset of X.

Proposition 2.5. Let f: X — Y be an irreducible co-elementary map in CH. If
X is a generalized arc, then f is a homeomorphism.

Proof. Tt suffices to show f is one-one. Let y € Y, with K = f~![{y}], a sub-
continuum of X by 2.1. Since X is a generalized arc, K is either a singleton or a
closed subinterval with non-empty interior. The latter case easily contradicts the
irreducibility of f, however. O

In [9] it is shown that every infinite compactum is co-elementarily equivalent to
a compactum that is not locally connected. (See also [5] for refinements.) This
explains the necessity of the local connectedness hypothesis in (v).
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Proposition 2.6. Suppose every locally connected co-elementary pre-image of an
arc is a generalized arc. Then every locally connected compactum co-elementarily
equivalent to a generalized arc is itself a generalized arc.

Proof. Suppose X € CH is locally connected, X = Y, and Y is a generalized
arc. As in the proof of 2.4 above, we have co-elementary maps f : X — X, and
g Y — Yy, where Xg and Yy are metrizable. Furthermore, we know that Xj
is locally connected and that Y is an arc (2.1 again). By the transitivity of co-
elementary equivalence, we know Xy = Yj; by the main result of [3], we know X
is an arc. Our hypothesis then tells us that X is a generalized arc. O

We finish with a proof of (vi). If X is an arc and f: X — Y is a co-elementary
map in CH, then Y is an arc and f is a monotone continuous surjection by 2.1 and
2.2. So it suffices to prove the following.

Proposition 2.7. Every monotone continuous surjection from an arc to itself is a
co-elementary map.

Proof. Let us take our arc to be the standard closed unit interval I with its usual
order. f is either <-preserving or <-reversing, so we lose no generality in assuming
f to be the former.

For any topological space X, we denote the closed set lattice of X by F(X).
F( ) converts continuous maps contravariantly into lattice homomorphisms, and
serves as a right inverse for S(): S(F(X)) is naturally homeomorphic to X for any
compactum X.

Since f is a monotone continuous surjection, ff : F(I) — F(I) is a lattice
embedding that takes closed intervals (in this case the connected elements of the
lattice) to closed intervals. However, f will take atoms to non-atoms when f is not
injective. Thus f¥ is not an elementary embedding without being an isomorphism.
The idea is to restrict the domain and range of f¥' in such a way that the resulting
lattice embedding, call it g, is elementary, and ¢° = f.

Our plan is to create an elementary lattice embedding g : A — B, where A
and B are atomless lattice bases for I (i.e., both A and B are atomless, as well as
meet-dense in F(I)), and g agrees with the restriction of f to A.

Since S(A) and S(B) are naturally homeomorphic to I, and f is just g° conju-
gated with these homeomorphisms, f is a co-elementary map provided ¢° is.

For each y € I, let A(y) := inf(f~![{y}]) and p(y) := sup(f~'[{y}]). Then for
any closed interval [z,y] € F(I), fF([z,y]) = [\(z), p(y)]. Both A and p are right
inverses for f, and are hence strictly increasing (but not necessarily continuous).
Of course A\(0) = 0 and p(1) = 1.

Let L,R C I, with 0 € L and 1 € R. If Z(L, R) denotes the set of all finite
unions of intervals [z, y] with € L and y € R, then Z(L, R) is a sublattice of F(I),
which is atomless just in case LN R = (). If L and R are dense in I, then Z(L, R)
is a lattice base as well.

Now fix L, R C I to be disjoint countable dense subsets, with 0 € L and 1 € R,
and set A := Z(L,R). Then the image of A under f% is Z(A[L], p[R]). Clearly
AMLINp[R] =0, 0 € AL], and 1 € p[R]. Let L', R' C T be disjoint countable dense
subsets, with A\[L] C L', p[R] C R’, and set B :=Z(L',R’). Then B is a countable
atomless lattice base for F(I), and we denote by g : A — B the embedding f
with its domain and range so restricted. It remains to show that g is an elementary
embedding, and for this it suffices to show that for each finite set S in 4 and each
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b € B, there is an automorphism on B that fixes g[S] pointwise and takes b into
g[A].

Let z1, ..., x,, be a listing, in increasing order, of the endpoints of the component
intervals of g[S]U{b} (so each x; isin L' UR'), with X; := f~[{f(z:)}], 1 <i < n.
Each X; is either a singleton or a non-degenerate closed interval, and for 1 < i <
j < n, either X; = X; or each element of X is less than each element of X;. Let U;
be an open-interval neighborhood of X; such that U; N U; = () whenever X; # X;.
Since f is a <-preserving surjection and the sets L and R are dense in I, each U;
has infinite intersection with both A\[L] and p[R]. If z; € A\[L] U p[R], set x| := x;.
Otherwise we know x; is an endpoint of a component interval of b; and we choose
z; € U; in such a way that 2} € A[L] if and only if z; € L', and x} < 2, whenever
z; < xj and X; = X;. This procedure produces an increasing sequence z, ..., 2,
of elements of A[L] U p[R]; ; € A[L] if and only if z; € L'. For each a € ¢g[S]U {b},
let @’ be built up using the endpoints z in the same way as a is built up using
the endpoints x;. Then a’ = a for each a € g[S], and V' € g[A]. Now by a classic
(Cantor) back and forth argument, there is an order automorphism on L' U R’ that
fixes L' and R’ setwise and takes x; to «} for 1 < ¢ < n. This order automorphism
gives rise to the lattice automorphism on B that we require. O
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