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Abstract. Let X be a topological graph; i.e., a union of finitely many

points and arcs, with arcs joined only at end points. If Y is any locally

connected metrizable compactum that is co-elementarily equivalent to X,

then Y is homeomorphic to X. In particular, X and Y are homeomorphic if

some lattice base for one is elementarily equivalent to some lattice base for

the other.

1. introduction

This paper is about the model-theoretic topology of compact Hausdorff spaces—

also referred to as compacta—and our aim is to show that any topological graph

is categorical, relative to the class of compacta that are locally connected and

metrizable.

As the term categorical has a range of interpretations, we begin with a general

description of how it is used here. Suppose K is a class of objects, together

with two reflexive symmetric relations, one finer than the other. To keep things

straight, call the finer relation indistinguishability (always an equivalence relation)

and the coarser one similarity (usually an equivalence relation). An object X ∈ K

is defined to be categorical, relative to K, if any member of K that is similar to X

is actually indistinguishable from X.
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In practice indistinguishability is isomorphism in some appropriate category;

and, in the case of model theory, similarity is elementary equivalence, the sharing

of the same first-order properties [6]. Here are some classical examples.

Examples 1.1. We consider K to be a class of linear orderings.

(i) If K is the class of all linear orderings, then only the finite linear orderings

are categorical. Any infinite linear ordering is elementarily equivalent

to a linear ordering of a different cardinality, by the Löwenheim-Skolem

theorem.

(ii) If K is the class of countable linear orderings, then the rational ordering

Q is categorical. By Hausdorff’s “back-and-forth” method for construct-

ing order isomorphisms, any countable dense linear ordering without end

points is isomorphic to Q.

(iii) If K is the class of well orderings, then the ordered set N of natural num-

bers is categorical. Any well ordering in which every element has an im-

mediate successor and only the first element has no immediate predecessor

is isomorphic to N. Note that N is not categorical relative to the class

of countable linear orderings because there are countable linear orderings

that are elementarily equivalent to N, but which are not well ordered.

So categoricity is not an intrinsic property of an object; rather it is an expression

of how “distinguished” that object is within a class of its peers. Categoricity be-

comes increasingly rare as the peer class is broadened or as the similarity relation

is coarsened. In the setting of the present paper, the ambient class consists of lo-

cally connected metrizable compacta, indistinguishability is homeomorphism, and

similarity is co-elementarily equivalence, a topological dualization of elementary

equivalence (see below, and, in more detail, in [4]). In this context, topological

graphs will be shown to be categorical.

2. preliminaries

We first explain co-elementary equivalence, first introduced in [1]. Briefly, two

compacta X and Y are co-elementarily equivalent if they have homeomorphic

ultracopowers, a relationship expressed in the following diagram.

XD
h−→ YE

pX,D ↓ ↓ pY,E
X Y
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The horizontal mapping is a homeomorphism, the vertical mappings are canonical

ultracopower projections. D and E are ultrafilters on sets I and J , respectively,

and the ultracopower XD is the subspace of the Stone-Čech compactification

β(X × I) (I is a discrete topological space) consisting of points that are sent

to D ∈ β(I) under the Stone-Čech lift qβ of the standard coordinate projection

q : X × I → I. With p : X × I → X denoting the other coordinate projection, we

have the following diagram.

XD
⊆−→ β(X × I)

qβ−→ β(I)

↘ pX,D ↓ pβ
X

The mapping pX,D, the restriction of pβ to XD ⊆ β(X × I), is easily shown to be

surjective, and is the prototypical co-elementary map [1]. It is not immediately

obvious that co-elementary equivalence is indeed a transitive relation, but this

fact is established in [1].

As mentioned above, the topological ultracopower is a dualization of the model-

theoretic notion of ultrapower; and to do this claim justice, we need to discuss

closed-set lattices of compacta.

For a topological space X, we denote by F (X) the collection of closed subsets

of X, viewed as a bounded lattice under the usual Boolean operations. More

precisely, F (X) is the L-structure 〈F (X);∪,∩, ∅, X〉, where L := {t,u,⊥,>,=}
is the standard first-order alphabet, with equality, for bounded lattices. By a

lattice base for X, we mean a bounded sublattice of F (X) that is also a closed

set base. Stemming from the work of H. Wallman [11] (see also [4, 7]), there is

a particularly useful model-theoretic result regarding compacta and their lattice

bases.

Theorem 2.1 (Representation). There is a sentence ρ in the first-order language

over alphabet L such that an L-structure satisfies ρ if and only if that structure is

isomorphic to a lattice base for a unique compactum.

While the specific formulation of the sentence ρ above is not of primary impor-

tance here, it simply says that the structure is a bounded distributive lattice for

which two more properties hold: it is normal, in the obvious sense of topological

normality phrased purely in terms of closed sets; and it is disjunctive, in the sense

that for any two elements, one of them dominates a non-bottom element disjoint

from the other. We call an L-structure satisfying ρ a normal disjunctive lattice.
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If A is a normal disjunctive lattice, let w(A)—the Wallman space of A—be the

compactum promised in Theorem 2.1. The elements of w(A) are maximal filters

of A, and a lattice base for w(A) consists of sets a] := {x ∈ w(A) : a ∈ x}. The

assignment a 7→ a] is a lattice isomorphism, and this gives us the representation.

The assignment A 7→ w(A) is Stone duality when restricted to the Boolean

lattices, those normal disjunctive lattices that are complemented. In general,

however, it is easy to find examples where the assignment is not “one-one;” indeed,

F (X) is always atomic, but may contain atomless lattice bases of strictly smaller

cardinality. Thus A and B having homeomorphic Wallman spaces does not ensure

that A and B are either elementarily equivalent or equinumerous.

By Theorem 2.1 and standard model theory, an ultrapower AD of a lattice

base for compactum X is again a lattice base for some compactum. Indeed, it is

a fundamental result of [1] that w(AD) is canonically homeomorphic to XD. The

ultrapower of the lattice base A gives rise to a lattice base for w(AD), consisting of

internal ultracoproducts
∑
D Ai :=

⋃
i∈I(Ai × {i}) ∩XD of I-indexed collections

from A, where overline indicates closure in β(X × I). Since elements of AD may

be viewed as ultraproducts
∏
D Ai of such collections, the internal ultracoproduct∑

D Ai is just (
∏
D Ai)

].

Thus, if A and B are elementarily equivalent lattice bases for compacta X and

Y , respectively, then we may find, by the Keisler-Shelah ultrapower theorem [6],

isomorphic ultrapowers AD and BE . Any such isomorphism directly gives rise

to a homeomorphism between XD and YE ; hence X and Y are co-elementarily

equivalent. In the zero-dimensional case, Stone duality then tells us that two

Boolean spaces are co-elementarily equivalent if and only if their lattices of clopen

sets are elementarily equivalent. This adds further credibility to the assertion that

co-elementary equivalence is the “right” analogue of elementary equivalence in the

compact Hausdorff context.

The least infinite cardinal κ such that a space X has a lattice base of cardinality

≤ κ is known as the weight of X, and when we are dealing with compacta,

having countable weight is tantamount to being metrizable. Our main objects

of study in the sequel are the metrizable compacta that are locally connected,

and one of the most important of these is the arc. This space is defined to

be any homeomorphic copy of the usual closed unit interval in the real line,

but is topologically characterized (Theorem 6.17 in [10]) as being the unique

metrizable continuum—i.e., connected compactum—that has precisely two points

with connected complement. These points are the ones that are not cut points,

and every nondegenerate metrizable continuum has at least two non-cut points

(Theorem 6.6 in [10]).
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The simplest spaces using arcs and isolated points as building blocks are the

topological graphs, those compacta that may be decomposed into a finite union of

points and arcs, no two arcs of which intersect in a cut point of either. Topological

graphs are clearly locally connected and metrizable, so the main result of this

paper is the following.

Theorem 2.2 (Graph categoricity). Every topological graph is categorical, rela-

tive to the class of locally connected metrizable compacta.

Remarks 2.3. (i) The first result along the lines of categoricity in the topo-

logical setting is in [9], where the arc was shown to be categorical, rela-

tive to the class of all metrizable spaces, when the similarity relation is

taken to be elementary equivalence of full closed-set lattices. The ques-

tion was then posed in [1] whether categoricity of the arc still holds when

the similarity relation is coarsened to co-elementary equivalence, and—

in the interests of having the question make sense—the ambient class is

narrowed to the metrizable compacta. R. Gurevič provided a negative an-

swer [7] by showing the arc is co-elementarily equivalent to a metrizable

continuum that is not locally connected. This prompted the result in [2]

that arcs and simple closed curves are categorical in the locally connected

compact metrizable environment. (And in [5] this result was extended to

topological graphs that are n-ods.)

(ii) The Cantor space, the unique zero-dimensional compact metrizable space

without isolated points, is categorical relative to the class of metrizable

compacta; but K. P. Hart [8] has shown that no nondegenerate metrizable

continuum is so categorical. It is still an open question whether there are

any metrizable compacta of positive dimension that are categorical in this

wide sense.

(iii) The class of locally connected compacta is quite restrictive, and it is

natural to ask whether metrizability must be considered when using co-

elementary equivalence to compare such spaces. The answer is yes be-

cause (Proposition 2.4 in [3]) any two generalized arcs (i.e., linearly or-

dered continua) are co-elementarily equivalent. Since such spaces are

locally connected, this tells us that the arc is co-elementarily equivalent

to locally connected compacta of any given weight.
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3. proof of graph categoricity

The proof of Theorem 2.2 is divided into three independent steps. The first is an

immediate corollary of Theorem 2.11 in [5], and provides a major simplification

of the task at hand.

Lemma 3.1. If two metrizable locally connected compacta are co-elementarily

equivalent and one of them is a topological graph, then so is the other.

So, in view of Lemma 3.1, all we need show is that two co-elementarily equivalent

topological graphs are homeomorphic.

In the second step we introduce an equivalence relation between compacta,

called G-equivalence, and show that this relation is a consequence of co-elementary

equivalence. Then, in the third step, we show that two G-equivalent topological

graphs are homeomorphic.

To start the second step, define a finite cover K of a compactum X to be a

G-cover if the following three conditions hold.

(1) Each member of K has nonempty interior, and is a subcontinuum, i.e., a

closed connected subset, of X.

(2) K is a minimal cover; i.e., for each K ∈ K, K \ {K} is not a cover of X.

(3) No point of X lies in more than two members of K.

Given a G-cover K, we denote by N(K) the nerve of K; i.e., the abstract (finite

simple) graph whose vertices are the sets K ∈ K, and whose adjacency relation

consists of all pairs of distinct vertices with nonempty intersection.

Given two G-covers K and L of X, we say that L is a perfect refinement of

K, and that the pair 〈K,L〉 is a perfect pair for X, if we have the following two

conditions.

(4) Each member of L is contained in a unique member of K.

(5) Each member of K is a union of members of L.

When 〈K,L〉 is a perfect pair and K ∈ K, we denote by LK the set of members of

L contained in K. Then LK is a minimal cover of K. Furthermore {LK : K ∈ K}
forms a partition of L.

Given two compacta X and Y , we say Y G-dominates X to mean the following.

(6) For any perfect pair 〈K,L〉 for X, there exist:

• a perfect pair 〈K′,L′〉 for Y ; and

• abstract graph isomorphisms f : N(K) → N(K′) and g : N(L) →
N(L′) such that for each K ∈ K, f(K) =

⋃
{g(L) : L ∈ LK}.

(Equivalently, L′f(K) = {g(L) : L ∈ LK}.)
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If f and g are as in (6) above, we call 〈f, g〉 an isomorphism of perfect pairs, and

write 〈f, g〉 : 〈K,L〉 → 〈K′,L′〉. Two compacta are called G-equivalent if each

G-dominates the other.

The remainder of the second step of the proof of graph categoricity is to show

co-elementary equivalence implies G-equivalence. As preparation for this, we first

recall that a component of a topological space is a maximally-connected subset

of the space; we then define a lattice base A for compactum X to satisfy the

component property if whenever A ∈ A and U ⊆ A is a nonempty open subset of

X, there is a component C of A such that C ∈ A and C ∩ U 6= ∅. (In particular,

F (X) always satisfies the component property.)

Lemma 3.2. There is a sentence γ in the first-order language over alphabet L

such that an L-structure satisfies γ if and only if that structure is isomorphic to

a lattice base with the component property, for some (unique) compactum.

Proof. We use the well-known result that, in a compactum, the component

containing a given point is the intersection of all the clopen neighborhoods of the

point. We also use the easy fact that if A is a member of a lattice base A for a

compactum X, and if A is disconnected, then A has a disconnection consisting

of members of A. Thus, in addition to saying that an L-structure is a normal

disjunctive lattice, γ says the following of a lattice base A for compactum X:

Given A and B in A such that A ∪ B = X and B 6= X, there is a C ∈ A such

that:

• C ⊆ A and C 6⊆ B;

• C is connected; and

• for each D ∈ A such that D ⊆ A and D ∩ C = ∅, there exist U, V ∈ A
such that C ⊆ U , D ⊆ V , U ∪ V = A, and U ∩ V = ∅.

It is easy to check that this gives an L-sentence that captures the component

property for lattice bases of compacta. �

Before we can use Lemma 3.2, we need to connect the component property with

G-covers.

Lemma 3.3. Let A be a lattice base for compactum X, and suppose A satisfies

the component property. If 〈K,L〉 is a perfect pair for X, then there exists a

perfect pair 〈K′,L′〉 for X, satisfying:

(i) each set K ∈ K (resp., L ∈ L) is contained in a unique K ′ ∈ K′ (resp.,

L′ ∈ L′);

(ii) the sets in K′ and L′ are members of A; and
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(iii) the maps K 7→ K ′ and L 7→ L′ define an isomorphism 〈f, g〉 : 〈K,L〉 →
〈K′,L′〉 of perfect pairs.

Proof. We use the fact that A is a lattice base for a compactum, plus induction

on the size of finite covers, to define L∗ := {L∗ : L ∈ L} as follows. For each

L ∈ L, L∗ is chosen from A so that:

(a) for any L1, L2 ∈ L, L1 ⊆ L∗2 if and only if L1 = L2, and L∗1 ∩ L∗2 = ∅ if

and only if L1 ∩ L2 = ∅;
(b) L∗1 ∩ L∗2 ∩ L∗3 = ∅ for each three distinct L1, L2, L3 ∈ L; and

(c) L∗ is a minimal cover of X.

Next, by the definition of perfect pair, each K ∈ K is minimally covered by LK .

Thus there is no ambiguity when we define K∗ ∈ A to be
⋃
{L∗ : L ∈ LK}.

We now use the component property to find, for each L ∈ L, a component L′

of L∗ such that L′ ∈ A and L′ intersects the interior of L. Then, because L is a

connected subset of L∗, L′ is a maximally connected subset of L∗, and L∩L′ 6= ∅,
we have L ⊆ L′ ⊆ L∗ for each L ∈ L.

Since no subset of L besides LK is a cover of K for any K ∈ K, we may define

K ′ ∈ A unambiguously to be
⋃
{L′ : L ∈ LK}.

This gives us our pair 〈K′L′〉, and we need to check that this choice does as

claimed.

First note that L′ covers X because L does; every member of L′ is, by construc-

tion, a subcontinuum of X with nonempty interior; and for each three distinct

sets L1, L2, L3 ∈ L, L′1 ∩ L′2 ∩ L′3 ⊆ L∗1 ∩ L∗2 ∩ L∗3 = ∅. So conditions (1) and (3)

hold for L′. Finally, for any L ∈ L, we know from (c) above that L∗ \ {L∗} is not

a cover of X; hence neither is L′ \ {L′}. We therefore know that (2) also holds,

and thus that L′ is a G-cover of X.

Next we verify that K′, clearly a cover of X, is also a G-cover. Note that, for

each K ∈ K and each L ∈ LK , L′ is connected and intersects the connected set

K. Hence K ′ =
⋃
{L′ : L ∈ LK} is a connected superset of K, and so condition

(1) holds for K′. Suppose x ∈ K∗1 ∩K∗2 ∩K∗3 , where K1,K2,K3 ∈ K are distinct.

Then, by (5) and (a) above, there are L1, L2, L3 ∈ L such that Li ⊆ Ki, i = 1, 2, 3,

and x ∈ L∗1 ∩ L∗2 ∩ L∗3. Since L is a perfect refinement of K, it follows, by (3)

and (4), that the sets L1, L2, L3 are distinct and must have empty intersection.

But then, by (b), the sets L∗1, L
∗
2, L
∗
3 also have empty intersection, giving us a

contradiction. Thus K ′1∩K ′2∩K ′3 ⊆ K∗1 ∩K∗2 ∩K∗3 = ∅ whenever K1,K2,K3 ∈ K
are distinct, and so (3) holds for K′. Finally, for each K ∈ K, K′ \ {K ′} is not a

cover of X because its union is contained in the union of L′ \ {L′} for any L ∈ L
contained in K. Since (2) holds for L′, it therefore holds for K′.
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To check that L′ is a perfect refinement of K′, we first note that condition (5)

holds by how we constructed the sets K ′ for K ∈ K. As for condition (4), pick

L ∈ L. If L ⊆ K, where K ∈ K, then L′ ⊆ K ′ by definition of K ′. If L 6⊆ K,

then, by (c) above, L 6⊆
⋃
{L∗ : L ∈ LK}. Hence L 6⊆

⋃
{L′ : L ∈ LK}, and hence

L′ 6⊆ K ′. So if L′ is contained in both K ′1 and K ′2, then L is contained in both

K1 and K2. Since (4) holds for the pair 〈K,L〉, we have K ′1 = K ′2.

We need to verify conditions (i)-(iii) above; (ii) is already taken care of. If

L ∈ L, then, by (a), L cannot lie in L′1 for any L1 6= L. Thus (i) holds for L.

If K1 6= K2 and L1 ⊆ K1, then, as in the last paragraph, L1 6⊆ K∗2 ; and so

K1 6⊆ K ′2. The verification of condition (iii) is now quite easy: the maps K 7→ K ′

and L 7→ L′ are one-to-one because of (ii); the adjacency/nonadjacency relations

are easily checked, using condition (a) above. �

The next lemma completes the second step.

Lemma 3.4. If two compacta are co-elementarily equivalent, then they are G-

equivalent.

Proof. From the assumption that compacta X and Y are co-elementarily equiv-

alent, we fix ultrafilters D on I and E on J , and a homeomorphism h : XD → YE .

By symmetry it is enough to show that Y G-dominates X; so let the perfect pair

〈K,L〉 be given for X. For each A ∈ F (X), we denote the internal ultracoprod-

uct
∑
D Ai, where each Ai equals A, by AD = A× I ∩XD (closure with respect

to β(X × I)). Then the assignment A 7→ AD is a lattice embedding of F (X)

into F (XD) [1]; hence 〈{KD : K ∈ K}, {LD : L ∈ L}〉 is a perfect pair for XD,

witnessing the fact that XD G-dominates X. And, since h is a homeomorphism,

we have the perfect pair 〈{h[KD] : K ∈ K}, {h[LD] : L ∈ L}〉 to witness that YE
G-dominates X as well.

Now F (Y ) is a lattice base that trivially satisfies the component property.

Therefore, by Lemma 3.2 and the  Loś ultraproduct theorem [6], so does the

ultrapower lattice F (Y )E . This lattice is naturally isomorphic to the lattice base

for YE consisting of internal ultracoproducts of J-indexed collections from F (Y ),

so we may now apply Lemma 3.3 to obtain a perfect pair 〈K′,L′〉 for YE such

that:

(i)’ for each K ∈ K (resp., L ∈ L) h[KD] (resp., h[LD]) is contained in a

unique K ′ ∈ K′ (resp., L′ ∈ L′);
(ii)’ the sets in K′ and L′ are internal ultracoproducts; and

(iii)’ 〈K,L and 〈K′,L′〉 are isomorphic perfect pairs.
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For each K ∈ K (resp., L ∈ L), we may write K ′ =
∑
E AK,j (resp., L′ =∑

E BL,j). Since K and L are finite, and since the property of being a perfect pair

that is isomorphic to 〈K,L〉 is expressible as a first-order sentence over the lattice

alphabet, we use the  Loś theorem once again to infer that the set of j ∈ J such

that 〈{AK,j : K ∈ K}, {BL,j : L ∈ L}〉 is a perfect pair for Y that is isomorphic

to 〈K,L〉 is a set in E , and hence nonempty. Thus Y G-dominates X. �

This brings us to the third and final step in the proof of graph categoricity; it

remains to show that two topological graphs are homeomorphic if they are G-

equivalent.

If G is an abstract graph (i.e., finitely many vertices, no loops or multiple

edges), we define the topological realization of G to be the topological graph T (G)

that has one isolated point for each isolated vertex of G; and otherwise is the

union of arcs Au,v, one for each doubleton set {u, v} of adjacent vertices, where

each arc Au,v has end points u and v, and no two such arcs intersect in any points

other than end points. Clearly isomorphic graphs have homeomorphic topological

realizations.

We say a G-cover K of a topological graph X is sufficiently fine if X is home-

omorphic to T (N(K)). It thus suffices to show that if X and Y are topological

graphs that are G-equivalent, then X and Y respectively have sufficiently fine

G-covers whose nerves are isomorphic.

Given a Hausdorff space X and a point a ∈ X, we define the order of a in X,

to be the least cardinal number α such that a has a neighborhood base of open

sets with boundaries of cardinality at most α. All points in totally disconnected

compacta have order 0; in locally connected compacta the points of order 0 are

the isolated points. A point of order 1 (resp., of finite order ≥ 3) in X is called

an end point (resp., a branch point) of X.

Clearly, if X is a topological graph, then all its points have finite order, and

only finitely many of them have order different from 2. And if v is a vertex in

an abstract graph G, then the degree of v in G—i.e., the number of vertices of G

adjacent to v—is the same as the order of v when considered as a point in T (G).

For n any positive integer, an n-od is the union of n arcs, all intersecting at one

common end point, called the center of the n-od. An n-od may also be described

as the cone over a discrete set of cardinality n; a 3-od is commonly called a triod.

A topological graph is called a star if it is an n-od for some n ≥ 3. Note that

the center of a star is topologically unique, as the only point of order ≥ 3. The

following definition is inspired by the old Tinker Toy sets of childhood. A G-cover

K of a topological graph X is called proper if the following six conditions hold.
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(7) K consists of singletons, arcs, and stars.

(8) The branch points of X are the centers of the stars in K.

(9) Any two stars are disjoint, as are any two arcs intersecting the same star.

(10) Every end point of X is contained in a unique arc in K, called an end ; no

end in K contains more than one end point of X.

(11) The arcs in K that contain no end points of X are called connectors;

every connector in K intersects exactly two other members of K.

(12) Every end in K intersects exactly one other member of K, but not another

end.

Lemma 3.5. Every topological graph has a proper G-cover; every proper G-cover

for a topological graph is sufficiently fine.

Proof. If the topological graph X has isolated points, place a singleton in K for

each of these. If A is a constituent arc of X (à la the definition of topological

graph), we decompose A into KA∪MA∪LA, a union of three arcs, joined end-to-

end, where one end point of A is contained in KA, the other in LA. The “middle”

arcs MA are connectors in K; an “outer” arc KA becomes an end in K just in case

the end point kA of A, contained in KA, is an end point of X. If kA is a point of

order n ≥ 2 in X, B1, . . . , Bn−1 are the other constituent arcs of X sharing kA as

an end point, and kA = kBi , 1 ≤ i ≤ n−1, then we take the n-od KA∪
⋃n−1
i=1 KBi

to be a set in K. (If n = 2 we get a new connector; if n ≥ 3 we get a star.) Clearly

K is a proper G-cover of X.

For the second part of the proof, we use induction based on the number b(X)

of branch points of X. If b(X) = 0, then X is a finite disjoint union of singletons,

arcs, and simple closed curves. Let K be a proper G-cover for X; and, for each

component C of X, let KC be {K ∈ K : K ⊆ C}. Then KC = {K ∈ K : K ∩C 6=
∅}, and hence KC is a proper G-cover of C. We therefore lose no generality in

assuming that X is connected and nondegenerate, hence either an arc or a simple

closed curve. By (7), K consists only of arcs. If X itself is an arc, (10) tells us that

K contains exactly two ends; so by (12), K consists of two disjoint ends and at

least one connector. Thus N(K) is a connected graph with at least three vertices,

each vertex has degree either 1 or 2, and precisely two vertices have degree 1.

T (N(K)) must therefore be an arc. If X is a simple closed curve, then X has

no end points, and (11) tells us that K consists of at least three connectors. So

N(K) is a connected graph where each vertex has degree 2. T (N(K)) is therefore

a simple closed curve..

Note that in the two cases above, it is easy to arrange the homeomorphism

h : T (N(K))→ X in such a way that the image under h of the vertex K ∈ N(K)
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is a member of the set K (i.e., h(K) ∈ K) for each K ∈ K. So, for our induction

step, assume k ≥ 0 is fixed, and that the following induction hypothesis holds:

If Y is a topological graph with b(Y ) ≤ k, and M is a proper

G-cover of Y , then there is a homeomorphism h : T (N(M))→ Y

such that h(M) ∈M for each M ∈M.

Now let X be a topological graph with b(X) = k+1, and suppose K is a proper G-

cover of X. Fix H ∈ K, where H is an n-od for some n ≥ 3. Then—by (8,9,10)—

{K ∈ K : H ∩ K 6= ∅} consists of precisely n pairwise disjoint arcs A1, . . . , An.

For 1 ≤ i ≤ n, let Ai = Bi ∪ Ci, where Bi and Ci are subarcs intersecting

in a single point and Ci is disjoint from H. Let K′ = (K \ {A1, . . . , An}) ∪
{B1, . . . , Bn, C1, . . . , Cn}. Then N(K′) is a graph-theoretic subdivision of N(K),

and hence T (N(K′)) and T (N(K)) are homeomorphic. Let M = K′ \ {H}, with

Y =
⋃
M. Then Y is a topological graph, b(Y ) = k, and M is a proper G-cover

of Y . [This claim would be false if M were the result of taking H away from K,

and some Ai happened to be an end of K.] By our induction hypothesis, we may

pick a homeomorphism h : T (N(M))→ Y in such a way that h(M) ∈M for each

M ∈ M. In particular, because the vertex Bi ∈ N(M) is an end point of the

space T (N(M)), h(Bi) is the unique end point ei of Bi that is a member of H,

as well as an end point of Y , 1 ≤ i ≤ n. Let c ∈ H be the center of H. We may

extend h : T (N(M)) → Y to h : T (N(K′)) → X by setting h(H) = c, and by

mapping the open arc in T (N(K)) joining (the points) H to Bi homeomorphically

onto the open arc in X that joins c to ei. This completes the induction, and the

proof of the lemma. �

The next lemma is all that is left to establish graph categoricity.

Lemma 3.6. Suppose X and Y are G-equivalent topological graphs. Then X and

Y respectively have proper G-covers whose nerves are isomorphic.

Proof. We begin by defining an n-wheel in a space Z to be a collection

{H,S1, . . . , Sn} of subcontinua of Z, all with nonempty interior, such that each

spoke Si intersects—but is not contained in—the hub H, and no two spokes in-

tersect each other.

Let K be a proper G-cover of X, constructed as in the proof of Lemma 3.5,

and let L be a perfect refinement of K, obtained as follows:

• If K ∈ K is a singleton, then LK = {K}.
• If K is an arc, then LK is a 2-wheel consisting of three arcs, joined end-

to-end, and whose hub is disjoint from
⋃

(K \ {K}).
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• If K is an n-od, n ≥ 3, then LK is an n-wheel whose hub is an n-od that

is disjoint from
⋃

(K \ {K}), and whose spokes each intersect the hub in

a single point.

Since Y G-dominates X, there is a perfect pair 〈K′,L′〉 for Y and a perfect pair

isomorphism 〈f, g〉 : 〈K,L〉 → 〈K′,L′〉. We are done once we show that K′ is a

proper G-cover of Y .

Let us first address the issue of singleton sets. Note that x is an isolated point

of X if and only if {x} is a member of any G-cover of X. So if K ∈ K is not a

singleton, then, because |LK | > 1, f(K) is not a singleton either. Thus, if Y has

exactly m isolated points (and K′ has exactly m singletons), then there must be

at least m singletons in K. But it is also the case that X G-dominates Y , enabling

a reversal of the argument. Thus there must be exactly m isolated points in X,

and m singletons in K. From this it follows that f(K) is a singleton in K′ if and

only if K is a singleton in K.

We next deal with branch points. We know the branch points of X are the

centers of the stars in K, so let H ∈ K be a star, say an n-od for n ≥ 3. Let LH
be the n-wheel {M,S1, . . . , Sn}, as specified above. We first show g(M) contains

a branch point of Y . Note that {g(M), g(S1), . . . , g(Sn)} is an n-wheel whose

union is f(H). g(M) may contain a branch point b of its own, in which case

b is a branch point of Y . If g(M) has no branch point itself, then—because

subcontinua of topological graphs are also topological graphs [10]—it is either an

arc or a simple closed curve. Since n ≥ 3, there must be some 1 ≤ i ≤ n such that

g(Si)∩ g(M) consists only of points of order 2 in g(M). Let A be an arc in g(M)

which contains g(Si)∩g(M) in its (relative) interior. Since g(Si) is not contained

in g(M), there must be an arc B ⊆ g(Si)∪g(M) with one end point in A and the

other not in A. Thus the connected topological graph A ∪ B has at least three

end points, and must therefore have a branch point of its own somewhere in A.

Thus g(M) still contains a branch point of Y .

So if H is any star in K and MH is the hub of LH , then there is a point

bH ∈ g(MH) that is a branch point of Y . Moreover, if H1 and H2 are any two

stars in K, then they are disjoint, so bH1
6= bH2

. Thus there are at least as

many branch points in Y as there are in X; and, since X also G-dominates Y ,

we conclude that the numbers of branch points in X and in Y are equal. In

particular, bH is the only branch point of Y that is contained in f(H), and all

the branch points of Y are of the form bH for some star H ∈ K.

Now suppose A ∈ K is an arc. A contains no branch point of X, by (8); so,

as above, neither does f(A), which is therefore either an arc or a simple closed
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curve. But f(A) is also decomposable as the 2-wheel {g(M), g(S1), g(S2)}, where

LA = {M,S1, S2}, and this forces f(A) to be an arc. If A ∈ K contains an end

point e of X, suppose e ∈ S1. Then M is the only set in L intersecting S1;

hence g(M) is the only set in L′ intersecting g(S1). Since f(A) is an arc, so are

its nondegenerate subcontinua; hence g(S1) contains an end point of Y . Then,

because X also G-dominates Y , we infer that K ∈ K is an end in K if and only if

f(K) ∈ K′ is an arc in K′ that contains a unique end point of Y . This argument

also tells us that if A is a connector in K, then f(A) is an arc in K′ that has

degree 2 in N(K′) and contains no end (or branch) point of Y .

What is left to prove is that f(H) is a star in K′ whenever H is a star in K.

What we already know is that f(H) is a topological graph with a unique branch

point, so suppose H is an n-od, n ≥ 3. Let A1, . . . , An be the n pairwise disjoint

arcs in K that intersect H. Let LH = {M,S1, . . . , Sn}; and for 1 ≤ i ≤ n, Let

LAi = {Mi, Si1, Si2}. Assume that Si1 is the subarc of Ai that shares an end

point with Si 1 ≤ i ≤ n. Since each f(Ai) is an arc, so too are the members

of the 2-wheels {g(Mi), g(Si1), g(Si2)}. As discussed above, g(Si) must contain

an end point of g(Si1), otherwise we introduce a second branch point in f(H).

Similarly, g(Mi), disjoint from g(Si), must contain the other end point of g(Si1).

In particular, exactly one end point of the arc g(Si1) is contained in f(H), and

f(H) ∪
⋃n
i=1 g(Si1) is a topological graph with at least n end points and exactly

one branch point bH . We claim that the order of bH is ≥ n, and we argue this

combinatorially.

Sublemma. Suppose G is a connected abstract graph with n end

vertices (i.e., of degree 1) and exactly one vertex of degree m ≥ 3.

Then m ≥ n. And if m = n, then the graph is a tree.

Proof of sublemma. Let v be the unique vertex in G with

degree d(v) = m ≥ 3, and let {v1, . . . , vm} be the set of vertices

adjacent to v. Our proof is by induction on the number k of

additional edges in G. If k = 0, then clearly m = n; so suppose G

has k+1 additional edges. Let E be any one of these, represented

by its doubleton set {u,w} of terminal vertices. If E is part of

a cycle in G, let G′ result by removing E from G. (Vertices

remain; we just declare u and w to be nonadjacent.) Then G′

is connected and has k additional edges and n + 2 end vertices.

By our induction hypothesis, we have m ≥ n + 2 > n. If E is

not part of a cycle, then removal of E decomposes G into two

connected parts G′ and G′′, say with G′ containing the vertex v.
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(G′′ may be empty if E is an end arc.) Since G′′ is connected

with no branch vertices, the number of end vertices in G′ is n.

Since we have lowered the number of extra edges by at least 1,

our induction hypothesis still tells us that.

So if G is a connected abstract graph with exactly one vertex of

degree n ≥ 3, with the number of end vertices being n as well, and

if there is a cycle in G, then the removal of one edge—as described

above—increases the number of end vertices without destroying

connectedness. This contradiction ensures that G must be a tree.

�

We have established that if H ∈ K is an n-od, then f(H) is a topological graph

that contains exactly one branch point bH , and that point has order m ≥ n. By

the second clause of the sublemma; if we can show m = n, then we may infer that

f(H) is an n-od

First note that if y is any point of order k ≥ 3 in Y , then, because X G-

dominates Y , there must be a point y∗ of order ≥ k in X; moreover, this as-

signment y 7→ y∗ is a one-to-one function between finite sets, and is therefore a

bijection. There is nothing to prove if there are no branch points in X; so suppose

n1 is the maximal order of a point in X, say H ∈ K is an n1-od, n1 ≥ 3. If the

order of bH is m > n1, then the point b∗H has order > n1 in X, a contradiction.

Thus m = n1 in this case. The converse also holds, so we know that bH has order

n1 in Y if and only if H is an n1-od in K, n1 ≥ 3.

If there are no branch points other than those of maximal order n1, we are

done. Otherwise, suppose 3 ≤ n2 < n1, where there are branch points in X of

order n2, but none of any order n2 < k < n1. Let H ∈ K now be an n2-od. Then

the order of bH in Y is some m, n2 ≤ m < n1. But then the order of b∗H in X

is some k, n2 ≤ m ≤ k < n1; hence k = m = n2. We thus come to the same

conclusion as we did in the last paragraph: bH has order n2 in Y if and only if H

is an n2-od in K, n2 ≥ 3.

This procedure may be continued for as long as necessary, treating ever smaller

orders of branch points until they run out. We therefore conclude that the order of

bH in Y equals the order of the center of H for every star H ∈ K. This shows that

f(H) is an n-od, and completes the proof of the graph categoricity theorem. �
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