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A betweenness structure on a set X is a ternary relation [·, ·, ·] ⊆ X3 that captures 
a rudimentary notion of one point of X lying between two others. The interval [a, b]
is the set of all points lying between a and b, and a subset C of X is convex if 
[a, b] ⊆ C whenever a, b ∈ C. The span of a set A is the union of all intervals 
[a, b], where a, b ∈ A; by iterating the span operator countably many times, we 
obtain the convex hull of A. The betweenness structure is topological if X carries a 
topology that satisfies certain compatibility conditions with respect to betweenness; 
in particular, intervals are closed subsets. We are guided by questions involving 
how the span and convex hull operators interact with the topological closure and 
interior operators, especially in the domains of metric spaces and of continua. With 
a metric space 〈X, �〉, [a, c, b] holds exactly when �(a, b) = �(a, c) + �(c, b); and 
one result about this betweenness structure is that the span of any compact subset 
is both closed and bounded. With a continuum X, [a, c, b] holds exactly when c
belongs to every subcontinuum of X that contains a and b; and one result about 
this betweenness structure is that when the continuum is either aposyndetic or 
hereditarily unicoherent, the closure of a convex subset is always convex.

© 2021 Elsevier B.V. All rights reserved.

1. Betweenness structures

A betweenness structure1 is a pair 〈X, [·, ·, ·]〉, where X is a set and [·, ·, ·] ⊆ X3 is a ternary relation on X, 
satisfying the following first-order axioms.
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1 Betweenness structures are also referred to as basic ternary structures in [3].
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(B1) Inclusivity: ∀xy ([x, y, y] ∧ [x, x, y])
(B2) Symmetry: ∀xzy ([x, z, y] → [y, z, x])
(B3) Uniqueness: ∀xz ([x, z, x] → x = z)

In keeping with the betweenness theme, we use interval notation, defining [a, b] to be {c ∈ X : [a, c, b]}. 
The points a, b are called bracket points of the interval.2 In interval terms, inclusivity says {a, b} ⊆ [a, b]
always holds; symmetry says [a, b] = [b, a]; and uniqueness says [a, a] = {a}. An interval−or any set−is
nondegenerate if it contains more than one point.

If 〈X, [·, ·, ·]〉 is a betweenness structure, a subset C ⊆ X is interval-convex if whenever a, b ∈ C, it follows 
that [a, b] ⊆ C. Since the default notion of convexity here is interval-convexity, we will drop the modifier 
and simply call a subset convex if it is interval-convex. Other kinds of convexity−e.g., linear convexity in 
vector spaces−will be clarified by context.

Clearly the family of all convex subsets of a betweenness structure 〈X, [·, ·, ·]〉 includes both ∅ and X, 
and is closed under arbitrary intersections and nested unions. This makes the family into a convexity, in 
the sense of [17]. Furthermore, by the uniqueness axiom (B3), all singletons are convex subsets.

1.1 Examples.

(i) Let X be a vector space (always assumed in this paper to have real scalars). The classical linear 
interpretation of betweenness is given by [a, c, b] just in case c = (1 − t)a + tb for some 0 ≤ t ≤ 1. The 
associated notions of interval and convexity are prefixed with the modifier linear in the sequel; we use 
the symbol �a, b� exclusively to denote the linear interval bracketed by a and b. What we call linear 
convexity is what is known simply as convexity in the functional analysis literature.

(ii) Each metric space 〈X, �〉 admits an interpretation of betweenness, where [a, c, b] means �(a, b) =
�(a, c) + �(c, b). We call this M-betweenness after K. Menger [12], who introduced the notion.3 In-
tervals and convexity in this interpretation are prefixed with the letter M; we follow a similar pattern 
when referring to other kinds of betweenness.

(iii) A combination of (i) and (ii) above has been studied by W. Takahashi [16]: A convex structure on a 
metric space 〈X, �〉 is a continuous map W : X2 × [0, 1] → X satisfying the condition that if c, a, b ∈ X

and 0 ≤ t ≤ 1, then �(c, W (a, b, t)) ≤ (1 − t)�(c, a) + t�(c, b). It is easy to show that W (a, b, t) always 
lies on the M-interval [a, b]�, W (a, b, 0) = a, W (a, b, 1) = b, and W (a, a, t) = a for all 0 ≤ t ≤ 1. One 
can check that W (a, b, ·) : [0, 1] → X is an embedding; so the set L(a, b) := {W (a, b, t) : 0 ≤ t ≤ 1} is an 
arc with end points a, b. It is not generally the case that L(a, b) = L(b, a), but defining [a, c, b] to mean 
that c ∈ L(a, b) ∪ L(b, a) results in an interpretation of betweenness, which we call T-betweenness.

(iv) For any partially ordered set 〈X, ≤〉 there is the order interpretation of betweenness, where [a, c, b]
means that either a ≤ c ≤ b or b ≤ c ≤ a.

(v) For any connected topological space X we can write [a, c, b] to mean that either c ∈ {a, b} or a and b
lie in different components of X \ {c}. Equivalently, each connected subset of X that contains {a, b}
also contains c. This is called C-betweenness.

(vi) In the previous example we can also define [a, c, b] to mean that each subset of X that is both connected 
and closed contains c if it contains {a, b}. This is called K-betweenness, and has been of particular 
interest in the study of continua (i.e., connected compact Hausdorff spaces) [2–6].

If [·, ·, ·]1 ⊆ [·, ·, ·]2 are two betweenness relations on X, the first is said to refine the second. (So [a, b]1
is always contained in [a, b]2. For example, T-betweenness refines M-betweenness in a Takahashi-convex 

2 An interval may have many sets of bracket points.
3 Menger excluded the bracket points from his intervals, but this is an inessential difference.
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metric space, and C-betweenness refines K-betweenness in a connected topological space.) A doubleton set 
{a, b} ⊆ X (i.e., a �= b) is called a gap if [a, b] = {a, b}. The betweenness relation is called discrete if each 
nondegenerate interval is a gap. The discrete betweenness relation on X is also called minimal in [6] because 
it refines all other betweenness relations on X.

If each nondegenerate interval contains at least three points, the betweenness relation is called gap-free. 
This condition is expressed as the following first-order axiom.

(B4) Gap-Freeness: ∀xy ∃z (x �= y → (x �= z ∧ z �= y ∧ [x, z, y]))

1.2 Remark. In the order interpretation of betweenness, being gap-free is synonymous with being a dense
ordering. In the metric interpretation, this feature is what Menger [12] calls a convex metric. Notice that if 
we have a metric space that admits a Takahashi-convex structure, then the metric is automatically convex in 
Menger’s sense. Even though Menger’s terminology is time honored (see also [8,14]), we feel that it does not 
capture what “convexity”−as the subset property of being closed under betweenness−traditionally means.

The span of C ⊆ X is defined to be [C] :=
⋃
{[a, b] : a, b ∈ C}. Owing to inclusivity (B1), every subset is 

contained in its span, and a set equals its span if and only if it is convex. We say that C spans X (or X is
irreducible about C) if [C] = X.

Spans of sets are not necessarily convex: even with the linear interpretation of betweenness in the Eu-
clidean plane, the span of a set of three noncollinear points consists of the three legs of the corresponding 
triangle, and is not linearly convex. This limitation suggests iterating the span process.

For any subset C of a betweenness structure and n ∈ ω := {0, 1, 2, . . . }, let [C]0 := C; for each n, let 
[C]n+1 := [[C]n]. Finally let [C]ω :=

⋃
{[C]n : n ∈ ω}.

1.3 Proposition. If C is a subset of a betweenness structure, then [C]ω is the smallest convex set containing C.

Proof. By inclusivity, we have [C]0 ⊆ [C]1 ⊆ · · · ⊆ [C]ω, so suppose a, b ∈ [C]ω. Then there is some n < ω

such that a, b ∈ [C]n. But then [a, b] ⊆ [C]n+1 ⊆ [C]ω, showing [C]ω to be convex. Since the collection 
of all convex sets is closed under intersections, and X itself is convex, there is a smallest convex set C ′

containing C. Then C ′ ⊆ [C]ω. But clearly, by an easy induction, each [C]n is contained in C ′, simply 
because C ′ is convex. Hence [C]ω ⊆ C ′ too, and we conclude that [C]ω = C ′. �
So, in the parlance of convexity theory, [C]ω is the convex hull of C (hull, for short). If it so happens that 
[C]n+1 = [C]n for some n ∈ ω, then we have [C]ω = [C]n, and we call C n-convex. (So 0-convex means 
convex.) In the context of linear convexity in Euclidean spaces, each n-point set, n ≥ 1, is (n − 1)-convex.4

We next introduce two axioms that are closely related to each other−with the second being formally 
stronger than the first−and which play an important role in our study.

(B5) Transitivity: ∀xwzy (([x, z, y] ∧ [x, w, z]) → [x, w, y])
(B6) Convexity: ∀xuzvy (([x, u, y] ∧ [x, v, y] ∧ [u, z, v]) → [x, z, y])

A betweenness structure is called transitive (resp., convex) if it satisfies axiom (B5) (resp., (B6)).5 In interval 
terms, transitivity says that [a, c] ⊆ [a, b] whenever c ∈ [a, b], while convexity is the stronger condition that 
[c, d] ⊆ [a, b] for all c, d ∈ [a, b]. Put another way: transitivity says that intervals are star-shaped (see [17]) 
about each of their bracket points; convexity says the intervals themselves are convex.

4 This is an easy induction using classical ideas (see [17], especially Theorem 4.11 and Proposition 4.14.1.)
5 Transitive (resp., convex) betweenness structures are also referred to as τ-basic (resp., κ-basic) in [3].



JID:TOPOL AID:107783 /FLA [m3L; v1.307] P.4 (1-20)
4 D. Anderson et al. / Topology and its Applications ••• (••••) ••••••
If we fix a point a in a betweenness structure 〈X, [·, ·, ·]〉 and rewrite [a, x, y] as x ≤a y, the conjunction 
of axioms (B1), (B3), and (B5) says that each binary relation ≤a is a pre-ordering with least element a. 
(The second clause of (B1) gives us reflexivity, the first clause of (B1) says that a is a minimal element, 
(B3) then says no other element is minimal, and (B5) ensures usual binary transitivity.) What makes the 
pre-order into a partial ordering is antisymmetry; and the ternary form of this axiom is the following.

(B7) Antisymmetry: ∀xyz (([x, z, y] ∧ [x, y, z]) → y = z)

1.4 Examples.

(i) Linear betweenness in a vector space is clearly convex, as well as antisymmetric.
(ii) It is shown in [12] that M-betweenness is transitive; and, by means of a finite example, that it is not 

necessarily convex. For a more geometric example of convexity’s failure, consider the space Θ = C ∪H, 
where C is the standard planar unit circle and H is the horizontal segment [−1, 1] ×{0}. The distance 
between any two points of Θ is given as the shortest length of an arc in Θ containing them. For 
a = 〈0, 1〉 and b = 〈0, −1〉, we have [a, b] = C, but [C] = Θ. Hence we have an interval which is not 
M-convex.
The M-interpretation of betweenness is easily shown to be antisymmetric. To see this, suppose [a, c, b]
and [a, b, c] hold; i.e., that �(a, c) + �(c, b) = �(a, b) and also �(a, b) + �(b, c) = �(a, c). Plug the second 
equation into the first, obtaining (�(a, b) +�(b, c)) +�(c, b) = �(a, b). Then we have �(b, c) = 0, and hence 
b = c. (Since the M-interpretation satisfies antisymmetry, and T-betweenness refines M-betweenness, 
the T-interpretation is antisymmetric too.)

(iii) If X is a metric vector space−i.e., a topological vector space with distinguished topology-inducing 
metric−then there are two obvious interpretations of betweenness: the linear kind and the metric 
kind. When the metric arises from a norm, each linear interval is contained within the corresponding 
M-interval, but there may be a wide discrepancy. For example, suppose X = 〈Rn, ‖ · ‖1〉, Euclidean 
n-space with ‖a‖1 :=

∑n
i=1 |a(i)|. Then the M-interval [a, b] is the Cartesian product 

∏n
i=1[a(i), b(i)]

of the individual closed intervals in R, substantially larger than �a, b� when n ≥ 2. The two notions 
of betweenness coincide when the norm is strictly convex.6 This says that the unit sphere contains no 
nondegenerate linear intervals, and is equivalent to saying that ‖a + b‖ = ‖a‖ + ‖b‖ implies a = tb for 
some t ≥ 0 (see [6, Proposition 4.1]).

(iv) Even normed vector spaces are not necessarily M-convex: in [6, Example 4.6] it is shown that 
〈R3, ‖ · ‖∞〉 fails in this regard. (Here ‖ · ‖∞ is the supremum norm, defined−in this case−by 
‖a‖∞ := max{|a(1)|, |a(2)|, |a(3)|}.) What is true about the convexity of M-intervals in normed vector 
spaces is that they are linearly convex [6, Proposition 4.3].

2. Related work

A betweenness structure 〈X, [·, ·, ·]〉 is topological if X carries a topology for which all intervals are closed. 
This of course implies that all singletons are closed, making the topology T1. In Section 4 we begin in 
earnest our study of topological betweenness structures and will then insist that the topologies be regular 
as well.

Our topological betweenness structures can be compared to the topological convexity structures of 
M. van de Vel [17, Chapter III]. While his notion of convex set is primitive, our corresponding notion−which 
meets his defining criteria−is derived from the primitive notion of interval. For us, intervals, and hence 
spans of finite sets, are required to be closed; with topological convexity structures, all hulls of finite sets 

6 This is also known as rotund.
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are closed and there is no separate notion of span. Intervals are not necessarily convex, despite being spans 
of singleton or doubleton sets; so except for singletons, the empty set, and the space itself, none of our 
convex sets are required to be closed. The present work also has a stronger focus on specific examples and 
counterexamples; especially we are interested in what topological/metric properties force the topological 
and convexity-theoretic aspects of a structure to interact more cohesively. While interval spaces, something 
closely akin to betweenness structures, are studied in [17, Chapter I, §4], it is from the geometric and 
lattice-theoretic perspectives, and not the topological.

As outlined in Example 1.1 (iii), there is a conceptually similar strand of work on notions of interval
and convexity due to W. Takahashi [16]. This approach achieves a significant generalization of the Banach 
space environment, especially in the study of convex functions and the fixed point theory of nonexpansive 
mappings.

Another approach to interval and convexity in metric spaces is via the notion of geodesic; see [9], for 
example. This was carried out to some extent in [6, Section 3].

3. Fréchet systems

In this section we induce betweenness structures on X via special families of subsets of X, called Fréchet 
systems. We characterize the betweenness structures so created in terms of the betweenness axioms already 
introduced.

If X is a set, denote its power set by ℘(X). Any family A ⊆ ℘(X) induces a ternary relation [·, ·, ·]A as 
follows: First, given a, b ∈ X, define A(a, b) := {A ∈ A : a, b ∈ A}. Next, define [a, c, b]A to hold just in 
case c ∈

⋂
A(a, b). When viewed in this way, the members of a family A are called roads. The point c lies 

between a and b precisely when every road containing a and b “passes through” c.

3.1 Example. The C- and K-betweenness structures on a connected topological space X (see Examples 1.1
(v,vi)) are induced by the families CX and KX of connected and connected closed subsets, respectively.

Clearly [·, ·, ·]A satisfies inclusivity (B1) and symmetry (B2). Convexity (B6) is also easily seen to hold: 
Indeed, let c, d ∈ [a, b]A, with x ∈ [c, d]A. To prove x ∈ [a, b]A, let A ∈ A(a, b) be arbitrary. Then c, d ∈ A, 
by definition, hence A ∈ A(c, d). This gives x ∈ A, and we have x ∈ [a, b]A, as desired.

Arbitrary families A ⊆ ℘(X) induce convex ternary relations that fall short of being betweenness re-
lations, in that the uniqueness axiom (B3) is generally violated. To remedy this, we define F ⊆ ℘(X) to 
satisfy the Fréchet condition−and the pair 〈X, F〉 to be a Fréchet system (F-system, for short)−if, for any 
two points of X, each is contained in a member of F that excludes the other.7

It is straightforward to see that the ternary relation induced by an F-system satisfies uniqueness; hence it 
is a convex betweenness structure. Call a ternary structure 〈X, [·, ·, ·]〉 a Fréchet structure (or F-structure) 
if there is a Fréchet system F ⊆ ℘(X) such that [·, ·, ·] = [·, ·, ·]F .

For a ternary structure 〈X, [·, ·, ·]〉, let IX be the family {[a, b] : a, b ∈ X} of intervals.

3.2 Proposition. Suppose 〈X, [·, ·, ·]〉 is a betweenness structure. Then IX is an F-system whose associated 
ternary relation is an F-structure refining [·, ·, ·].

Proof. By uniqueness (B3), I = IX contains the singletons and is hence Fréchet. Next, note that if [a, c, b]I
holds, then c is in every set in I that contains both a and b. This includes [a, b] itself, by inclusivity (B1). 
Hence [a, b]I ⊆ [a, b]. �
7 This is just M. Fréchet’s T1 axiom when F is a topology on X. In [3] we introduce road systems on X as subset families that 

include all singletons, as well as X itself. In light of Theorem 3.3, this is unnecessarily restrictive: indeed, given a Fréchet system 
F , it is easy to see that both F and the road system F ∪ {X} ∪ {{a} : a ∈ X} induce the same betweenness relation.
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3.3 Theorem. A ternary structure is an F-structure if and only if it satisfies inclusivity (B1), uniqueness 
(B3), and convexity (B6).

Proof. As discussed above, F-structures clearly satisfy the betweenness axioms, as well as convexity. As for 
the converse, suppose 〈X, [·, ·, ·]〉 satisfies the conditions of inclusivity, uniqueness, and convexity (B1, B3, 
B6). Then symmetry (B2) automatically follows, and we have a convex betweenness structure. Let I = IX . 
Then, by Proposition 3.2, I is an F-system and [·, ·, ·]I ⊆ [·, ·, ·]. It suffices to prove the reverse inclusion; 
so given a, b ∈ X, suppose A ∈ I(a, b). Then A = [u, v] for some u, v ∈ X. But then a, b ∈ [u, v], and−by 
convexity (B6)–[a, b] ⊆ A. This shows [a, b] ⊆ [a, b]I . �
3.4 Examples.

(i) In a metric space M-betweenness is not an F-structure in general, as convexity may fail. Nevertheless, 
it is both transitive and antisymmetric (see [12] and Example 1.4 (ii)).

(ii) In a vector space linear betweenness is an F-structure, as witnessed by the family of all linear intervals. 
As noted earlier, antisymmetry is easily seen to hold in this setting as well.

(iii) In a connected topological space X, C-betweenness is an F-structure induced by the F-system C = CX
of connected subsets (see Example 1.1 (v)). What is not completely obvious is that [·, ·, ·]C satisfies 
antisymmetry. To see this, suppose a, b, c ∈ X, with b �= c. Let C be the connected component of 
X \ {b} that contains c. If a ∈ C, then C is a road containing a and c, but not b; hence [a, b, c]C fails. 
On the other hand, if a /∈ C, then both a and b are in X \ C. By [11, Theorem §46.III.5], X \ C is 
connected; i.e., in C. Hence [a, c, b]C fails.

(iv) In a connected T1 space X, K-betweenness is an F-structure induced by the F-system K = KX of 
connected closed subsets (see Example 1.1 (vi)). Antisymmetry may fail, even when X is a metrizable 
continuum. For example, take X to be the sin 1

x -curve, defined to be the union (in R2) of the function 
graph G = {〈t, sin 1

t 〉 : 0 < t ≤ 1} and the arc I = {0} × [−1, 1]. If a ∈ G and b, c ∈ I are arbitrary, 
then it is easy to check that [a, b, c]K and [a, c, b]K both hold.

The following condition on a family of sets, introduced in [3], does for the antisymmetry axiom (B7) what 
the Fréchet condition does for the uniqueness axiom (B3) in a betweenness relation. Define S ⊆ ℘(X) to 
be separative (and 〈X, S〉 an S-system) if whenever a, b, c ∈ X are such that b �= c, then some member of 
S contains a and exactly one of b and c.

It is easy to see that every S-system is an F-system. Also, at the axiom level, inclusivity and antisymmetry 
together imply uniqueness. The following is an analogue of Theorem 3.3, and is proved in much the same 
way.

3.5 Theorem. A ternary structure is an S-structure if and only if it satisfies inclusivity (B1), antisymmetry 
(B7), and convexity (B6).

3.6 Remarks.

(i) From Example 3.4 (ii), the family of all linear intervals of a vector space is actually an S-system 
inducing linear betweenness.

(ii) From Examples 3.4 (iii,iv), we see that when X is a continuum, CX is separative, but KX need not be.
(iii) The class of continua X for which KX is separative has been referred to as the antisymmetric continua 

in [3–6]. (This is consistent with our terminology, in light of Theorem 3.5.) Antisymmetric metriz-
able continua were studied earlier by B. E. Wilder [18], who called them C-continua; more recently, 
K. Królicki and P. Krupski [10] have called them−metrizable or not−Wilder continua. While we appre-
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ciate this terminology, we prefer sticking with antisymmetric because of its close link with the theory 
of partial orderings.

A family A of subsets of X is additive if the union of two overlapping roads in A is also a road in A.
For example, if A is either the connected subsets or the connected closed subsets of a topological space, 

then A is additive. A straightforward betweenness consequence of additivity in an inducing F-system is the 
following.

(B8) Disjunctivity: ∀xuzy ([x, u, y] → ([x, u, z] ∨ [z, u, y]))

Disjunctivity says of a betweenness structure 〈X, [·, ·, ·]〉 that for any a, b, c ∈ X, [a, b] ⊆ [a, c] ∪ [c, b]. To see 
that additive families induce disjunctive betweenness structures, suppose A is an additive F-system on X. 
Given a, b, c ∈ X, choose d ∈ X such that [a, d, b]A holds. Assuming [a, d, c]A fails, we wish to show [c, d, b]A
holds. Fix A ∈ A(a, c) such that d /∈ A, and let B ∈ A(c, b) be arbitrary. Then, since c ∈ A ∩B, additivity 
tells us that A ∪ B ∈ A(a, b). But now d ∈ A ∪ B. Since d /∈ A, we have d ∈ B; hence [c, d, b]A holds, as 
desired.

3.7 Remark. In [3, Theorem 4.0.5] it is proved that an F-structure satisfies disjunctivity (B8) if and only if 
each of its inducing F-systems is contained within an inducing F-system that is additive.

We call a betweenness structure disjunctive if its betweenness relation satisfies the disjunctivity axiom. 
The next result shows that transitivity (B5) and disjunctivity (B8) imply something much stronger than 
convexity (B6): not only is the span of every doubleton subset convex, the span of every subset is convex.

3.8 Theorem. Let 〈X, [·, ·, ·]〉 be both transitive and disjunctive. Then every subset of X is 1-convex; i.e., the 
span of any subset coincides with its hull.

Proof. Let A ⊆ X, with a ∈ A fixed. Then [A]ω ⊇ [A] ⊇ A′ :=
⋃
{[a, b] : b ∈ A} ⊇ A. So, in light of 

Proposition 1.3, it suffices to show A′ is convex. Let u, v ∈ A′. Then there are b, c ∈ A such that u ∈ [a, b]
and v ∈ [a, c]. By transitivity, both [a, u] and [a, v] are subsets of A′. By disjunctivity, [u, v] ⊆ [a, u] ∪ [a, v]; 
hence [u, v] ⊆ A′. �
3.9 Corollary. Suppose X is a connected T1 space, and A is either CX or KX . Then, with respect to [·, ·, ·]A, 
the span of each subset of X is convex.

In the next section we properly begin our study of betweenness structures that have topological structure 
as well.

4. Local convexity

As stated in Section 2, our topological betweenness structures (TBS, for short) carry regular topologies 
for which all intervals−and hence singletons−are closed subsets. In the sequel we write A− and A◦ for the 
closure and interior, respectively, of a subset A of a topological space. If 〈X, �〉 is a metric space, c ∈ X, 
and r > 0, the open ball with center c and radius r is denoted B(c; r) := {x ∈ X : �(x, c) < r}. The family 
of open balls is the standard base for the induced metric topology.

4.1 Examples.
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(i) The K-interpretation of betweenness in a continuum X clearly gives rise to a TBS because continua 
have regular topologies, and intervals−being intersections of subcontinua−are closed.

(ii) The same cannot be said for the C-interpretation. For example, let X be the sin 1
x -curve from Exam-

ple 3.4 (iv). If a is the end point of the graph G and b is any point in the arc I, then [a, b]C = G ∪ {b}, 
which is not closed.

(iii) The M-betweenness structure of a metric space 〈X, �〉 gives rise to a TBS because metric topologies 
are regular, and each interval [a, b]� is the zero set corresponding to the continuous function x �→
�(a, x) + �(x, b) − �(a, b).
If the metric space is equipped with a Takahashi-convex structure, see Example 1.1 (iii)), then we have 
a TBS because each T-interval−being the union of two arcs joined at the end points−is a subcontinuum 
of the space.

(iv) For X a topological vector space, linear betweenness defines a TBS, provided the topology is T1. For 
then the topology is (completely) regular (see, for example, [13, Chapter 1]); and, given a, b ∈ X, �a, b�
is the image of the compact set [0, 1] ⊆ R under the continuous map t �→ (1 − t)a + tb. Since X is 
Hausdorff, �a, b� is closed in X (indeed, it is topologically an arc).

4.2 Remark. Referring to Example 4.1 (iii), M-intervals are not only closed in the metric space, they are 
bounded [6, Proposition 2.1]. (Indeed, the diameter of [a, b]� is �(a, b).) They are not necessarily compact, 
however (see Remark 4.17 below). A metric space for which all closed bounded subsets are compact is said 
to satisfy the Heine-Borel property.8

The K-interpretation of betweenness is “determined by topology,” in the sense that a homeomorphism 
of topological spaces is an isomorphism of the associated betweenness structures. The M-interpretation, 
however, is “determined by geometry,” not topology, as the following two examples illustrate.

4.3 Examples.

(i) Metrics with nondiscrete betweenness structures are commonplace; however, for any given metric, there 
is a topologically equivalent metric whose associated betweenness structure is discrete. To see this, 
let 〈X, �〉 be given, and define �′(a, b) :=

√
�(a, b). Then, because 

√· : [0, ∞) → [0, ∞) fixes zero, is 
strictly increasing, and is subadditive (i.e., 

√
x + y ≤ √

x + √
y), �′ is a metric on X. And because 

both 
√· and its inverse are continuous at zero, �′ generates the same topology as �. Finally, because 

of strict subadditivity (i.e., 
√
x + y <

√
x + √

y for any x, y > 0), it follows that if c /∈ {a, b}, then 
�′(a, c) + �′(c, b) >

√
�(a, c) + �(c, b) ≥

√
�(a, b) = �′(a, b). Hence c /∈ [a, b]�′ ; i.e., [a, b]�′ = {a, b}.

(ii) Define a metric to be Peano if its induced topology is that of a locally connected continuum. By 
independent results of Bing and Moise (see [12, Page 98], [8, Theorem 8], [14, Theorem 4]), each Peano 
metric generates the same topology as a metric whose associated betweenness structure is gap-free (B4). 
(Menger [12] had already proved that any gap-free metric on a continuum is Peano.)

Henceforth, when we refer to betweenness−and its attendant notions−in the metric (resp., continuum) 
context, we implicitly mean the M-interpretation (resp., K-interpretation). However, when more than one 
betweenness interpretation is under consideration, we retain disambiguating modifiers.

For n ∈ ω, a TBS 〈X, [·, ·, ·]〉 is called locally n-convex at a ∈ X if for any open neighborhood U of a, 
there is an n-convex set C, with a ∈ C◦ ⊆ C ⊆ U . Being locally n-convex means being locally n-convex at 
each point; the term locally convex is short for locally 0-convex.

8 Such metrics are also called proper, but that word is overused.
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4.4 Examples.

(i) In the topological vector space literature, being “locally convex” means what we refer to as being locally 
convex with respect to linear betweenness. If the topology on our space is induced by a norm, then open 
balls are easily seen to be linearly convex. And if the norm is strictly convex (see [6, Proposition 4.1]), 
then M-betweenness and linear betweenness coincide; hence strictly convex normed vector spaces are 
locally M-convex.

(ii) Here is an easy example of where open balls are not M-convex, but where local M-convexity still holds. 
Let X = 〈R2, ‖ ·‖∞〉. Then the open unit ball B = B(〈0, 0〉; 1) is the open square region (−1, 1) ×(−1, 1). 
If we let a = 〈−1

2 , 
1
2 〉 and b = 〈1

2 , 
1
2 〉, then the M-interval [a, b] is the closed square region with corner 

points a, b, 〈0, 0〉, and 〈0, 1〉. The bracket points are in B, but the corner point 〈0, 1〉 is not. Local 
convexity does hold nevertheless because this metric space has an open base consisting of open squares 
with sides of slope ±1. Such sets are clearly M-convex.

In Section 1 we pointed out the difference between the span and the hull for general betweenness structures. 
With this in mind one can ask about the difference between local convexity and local n-convexity for n > 0. 
In Corollary 4.6 (i) below we show the two notions to be equivalent for metric spaces. In order to prove 
this, as well as other results involving interactions between topology and convexity theory, we recall some 
terminology from [6].

A TBS 〈X, [·, ·, ·]〉 is defined to be upper semicontinuous (USC) (resp., lower semicontinuous (LSC)) 
at a pair 〈a, b〉 ∈ X2 if for each open set U ⊆ X containing (resp., intersecting) [a, b], there is an open 
neighborhood Va × Vb of 〈a, b〉 such that U contains (resp., intersects) [a′, b′] for all 〈a′, b′〉 ∈ Va × Vb. The 
relation is USC/LSC if it is USC/LSC at every pair; it is USC/LSC at a if it is USC/LSC at the pair 〈a, a〉. If 
the relation is USC/LSC at each point, we say it is USC/LSC at singletons. (While being USC at singletons 
is an important special case of upper semicontinuity, being LSC at singletons is a trivial consequence of the 
inclusivity (B1) and uniqueness (B3) axioms.)

4.5 Theorem. If a TBS is USC at a point and also locally n-convex at the point, for some n ∈ ω, then it is 
locally convex at that point.

Proof. Let 〈X, [·, ·, ·]〉 be a TBS which is USC at a ∈ X and also locally n-convex at a for some n > 0. 
Let U an open neighborhood of a. Then U contains [a, a] = {a}, so−by the definition of being USC at a 
point−there is an open neighborhood V of a with [V ] ⊆ U . By local n-convexity at a, there is an n-convex 
set C with a ∈ C◦ ⊆ C ⊆ V . Then [C] is (n − 1)-convex and a ∈ [C]◦. Also, since the span operator is 
clearly monotone, we have [C] ⊆ [V ] ⊆ U . This proves that our TBS is locally (n − 1)-convex at a; and, 
after n repetitions of the argument, that it is locally 0-convex at a. �
By [6, Proposition 2.10], every metric space is USC at singletons; and by Corollary 3.9, each continuum is 
locally 1-convex. Hence we have the following.

4.6 Corollary.

(i) A metric space is locally convex if it is locally n-convex for some n ∈ ω.
(ii) A continuum is locally convex if it is USC at singletons.

We are interested in identifying some familiar metric/topological properties which force a TBS to be locally 
convex, but first we address the issue of when local convexity fails. We start with two examples of Banach 
spaces that are not locally M-convex. The first example is finite-dimensional, but does not have convex 
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betweenness; the second has convex betweenness, but does not have finite dimension. In light of Corollary 4.6
(i), these spaces are not locally M-n-convex for any n ∈ ω.

4.7 Examples.

(i) Let our Banach space be X = 〈R3, ‖ · ‖∞〉, and fix ε > 0. For n = 1, 2, . . . , let an = 〈−ε, 0, (2n − 2)ε〉, 
bn = 〈ε, 0, (2n − 2)ε〉, cn = 〈0, −ε, (2n − 1)ε〉, dn = 〈0, ε, (2n − 1)ε〉, with A = A(ε) = {a1, b1}. Then 
c1 and d1 are in [a1, b1] = [A], a2 and b2 are in [c1, d1] ⊆ [A]2, etc. In general, n ≥ 2, we have 
cn, dn ∈ [an, bn] ⊆ [A]2n−1 and an, bn ∈ [cn−1, dn−1] ⊆ [A]2n−2. Since the convex hull [A]ω is 

⋃∞
n=1[A]n, 

we have an inductive proof that all the points an, bn, cn, dn lie in [A]ω. But, for n ≥ 2, ‖an‖∞ = (2n −2)ε; 
hence [A]ω is unbounded. Consequently, if C is any convex neighborhood of the origin, then C is 
unbounded because it contains A(ε) for suitably small ε. So X cannot be locally M-convex. (To see that 
X does not have convex M-betweenness, notice that a2 ∈ [c1, d1], c1, d1 ∈ [a1, b1], but a2 /∈ [a1, b1].)

(ii) Consider the Banach space X = �1 of all real sequences with absolutely convergent series, and norm 
given by ‖a‖1 :=

∑∞
i=1 |a(i)|. Given a, b ∈ X, it is routine to show that [a, b] is the Cartesian product ∏∞

i=1[a(i), b(i)]. As a result, all M-intervals are M-convex (i.e., X has convex M-betweenness). To see 
this space is not locally convex, it suffices to show that every open ball B(0; ε) has unbounded convex 
hull. So, given ε > 0, n ≥ 1, let en(i) be ε

2 if i = n, and 0 otherwise. Let B′ = [B(0; ε)]ω. Then B′

contains [e1, e2] = [0, ε2 ]2 ×
∏∞

i=3{0}, and hence it contains the point a2 = e1 + e2. B′ also contains 
[a2, e3] = [0, ε2 ]3 ×

∏∞
i=4{0}, and hence the point a3 = a2 + e3. Proceeding by induction, where an+1 =

an + en+1, we see that B′ contains each an–whose norm is precisely nε2 –and is therefore unbounded.

The “failings” of the previous two examples suggest the following.

4.8 Question. If a normed vector space has convex M-betweenness and is finite-dimensional, is it locally 
M-convex?

We can answer this question positivitely−even without the dimension hypothesis−if we assume something 
stronger than convex M-betweenness, namely the following softening of the disjunctivity axiom (B8).

(B9) Weak Disjunctivity: ∀xuzy (([x, u, y] ∧ [x, z, y]) → ([x, u, z] ∨ [z, u, y]))

In the language of intervals, a betweenness structure 〈X, [·, ·, ·]〉 satisfies weak disjunctivity if and only if 
[a, b] ⊆ [a, c] ∪ [c, b] whenever a, b ∈ X and c ∈ [a, b]. Since we do not require c ∈ [a, b] in the statement of 
disjunctivity, (B9) is formally weaker than (B8).

Transitivity (B5) and weak disjunctivity (B9) formally imply convexity (B6): For if c, d ∈ [a, b] and 
e ∈ [c, d], (B9) implies that d ∈ [a, c] or d ∈ [c, b]. In the first instance, we have e ∈ [a, c], by transitivity; 
another application of transitivity gets us e ∈ [a, b]. The story is similar in the case d ∈ [c, b]. Since M-
betweenness always satisfies transitivity, the presence of weak disjunctivity implies that convexity (B6) 
holds too.

The following establishes the equivalence of weak disjunctivity (a betweenness-theoretic property) and 
strict convexity (a geometric property) in normed vector spaces.

4.9 Theorem. Let X be a normed vector space. Then X is strictly convex if and only if its M-betweenness 
satisfies weak disjunctivity (B9). Hence normed vector spaces with weakly disjunctive M-betweenness are 
locally M-convex.

Proof. If X has a strictly convex norm, then its M-betweenness and linear betweenness agree. Linear be-
tweenness trivially satisfies weak disjunctivity.
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For the converse, suppose X has weakly disjunctive M-betweenness. For any a, b ∈ X−because linear 
intervals are contained in corresponding M-intervals−it suffices to show [a, b] ⊆ �a, b�. If a = b there is 
nothing to prove. So assume a �= b and fix c ∈ [a, b]. Then ‖c − a‖ ≤ ‖b − a‖; so

c′ =
(
1 − ‖c− a‖

‖b− a‖
)
a + ‖c− a‖

‖b− a‖b ∈ �a, b� ⊆ [a, b].

Now, by rewriting

c′ = a + ‖c− a‖
‖b− a‖ (b− a),

we have immediately that ‖c′ − a‖ = ‖c − a‖. Since c′ ∈ [a, b], we also have ‖b − c′‖ = ‖b − c‖. If it happens 
that c ∈ [a, c′], then we quickly conclude that c = c′. By weak disjunctivity (B9), the alternative is that 
c ∈ [c′, b], from which we obtain the same conclusion. Hence c ∈ �a, b�. �
4.10 Remark. The authors originally used [6, Theorem 3.8 (ii)] to prove the finite-dimensional version of 
Theorem 4.9. We are grateful to the anonymous referee for suggesting the simple direct approach above to 
obtain a stronger result.

Weak disjunctivity also plays a role in the study of betweenness structures à la [17]. Paraphrasing slightly, 
a transitive betweenness structure is geometric if it satisfies the following first-order axiom.

(B10) Inversion: ∀xuzy (([x, u, y] ∧ [x, z, y] ∧ [x, u, z]) → [u, z, y])

In interval terms, inversion9 says that if c, d ∈ [a, b] and c ∈ [a, d], then d ∈ [c, b]. It is shown in [12] that 
M-betweenness structures satisfy this axiom, and [17, Chapter I, §4] offers an extensive study of geometric 
betweenness structures−geometric interval spaces, in the parlance of [17]−from the perspective of classical 
geometry. The following is an immediate consequence of [3, Theorem 5.0.6].

4.11 Proposition. A transitive, weakly disjunctive betweenness structure is geometric if and only if it is 
antisymmetric.

4.12 Corollary. The K-betweenness structure of a continuum satisfies inversion (B10) if and only if it satisfies 
antisymmetry (B7).

So, among the continua, all (and only) the antisymmetric ones are geometric, in the sense of [17].
Examples 4.7 (i,ii) fail to be locally M-convex, but are of course locally linearly convex as normed vector 

spaces. On the other hand there exist metric vector spaces that are locally M-convex−for trivial reasons in 
fact−but which fail dramatically to be locally linearly convex.

4.13 Example. Let X = Lp([0, 1]), where 0 < p < 1. Elements of X are continuous f : [0, 1] → R, and 
�(f, g) :=

∫ 1
0 |f(t) − g(t)|pdt. Because of the subadditivity condition (i.e., (a + b)p ≤ ap + bp, for a, b ≥ 0), 

this defines a metric on X. (Indeed, it is a metric which is both complete and translation-invariant.) Because 
of strict subadditivity (see Example 4.3 (i)) it is easy to show that all M-intervals are gaps; hence every
subset is M-convex. However (see [13, Paragraph 1.47]), every linearly convex proper subset of X has empty 
interior.

9 This is called reciprocity in [3].
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The next two examples illustrate how local convexity−and, by implication (Corollary 4.6 (ii)), USC at 
singletons−can fail in continua.

Nondegenerate metrizable continua which are antisymmetric are well known to be decomposable; i.e., 
they can be written as the union of two proper subcontinua. Continua that are not decomposable are called
indecomposable.

4.14 Examples.

(i) Let X be the harmonic fan; namely the planar continuum H ∪
⋃∞

n=1 Dn, where H = [0, 1] × {0} and 
each Dn is {〈t, tn 〉 : t ∈ [0, 1]}. This continuum is easily seen to be antisymmetric. Let a = 〈0, 0〉; 
b = 〈1, 0〉; and, for n ≥ 1, bn = 〈1, 1n 〉. Then, since 〈bn〉 → b, any convex set containing b in its interior 
must contain some bn; and hence it must contain a. If U is an open subset of X \{a} containing b, then 
no convex subset contained in U contains b in its interior. Hence X is not locally convex at b.

(ii) Recall that a continuum X is irreducible if there are two points a, b ∈ X such that [a, b] = X (i.e., if 
some doubleton set spans X). An irreducible indecomposable continuum is not locally convex at any of 
its points. Indeed, recall (see, for example, [15]) that each such continuum is partitioned into at least 
two dense connected subsets, called composants,10 such that [a, b] = X whenever a and b lie in distinct 
composants. Every nonempty open subset of X meets every composant; hence every proper convex 
subset of X has empty interior.

4.15 Question. If a nondegenerate continuum is locally convex at some point, is the continuum decompos-
able? (By Example 4.14 (ii), a counterexample would have to be an indecomposable continuum with exactly 
one composant. Such continua exist, with weights as little as ℵ1 [7], but none of the examples we know of 
(see [2]) seem to be locally convex.)

A continuum X is aposyndetic if for any two distinct points, each has a subcontinuum neighborhood that 
misses the other; i.e., if a, b ∈ X and a �= b, then there is a subcontinuum K ∈ KX such that a ∈ K◦ ⊆
K ⊆ X \ {b}. Aposyndesis is considerably weaker than local connectedness, and implies antisymmetry [5, 
Theorem 3.2]. In the remainder of this section we show that while antisymmetry is not enough to ensure local 
convexity in a continuum−see the harmonic fan above−aposyndesis implies local convexity very decisively: 
while being USC at singletons is sufficient, aposyndetic continua are USC at all pairs.

We introduce the following notion in order to deal with upper semicontinuity by means of (net) conver-
gence. Define a TBS 〈X, [·, ·, ·]〉 to satisfy the interval convergence property (ICP) if the following condition 
holds: Given convergent nets 〈aλ〉 → a, 〈bλ〉 → b, and 〈cλ〉 → c (where the variable λ ranges over the 
elements of a directed set Λ = 〈Λ, ≤〉), if cλ ∈ [aλ, bλ] for each λ ∈ Λ, then c ∈ [a, b].

4.16 Theorem. A TBS that is USC also satisfies the ICP. A compact TBS satisfying the ICP is USC.

Proof. Assume 〈X, [·, ·, ·]〉 is USC, and suppose the convergent nets 〈aλ〉 → a, 〈bλ〉 → b, and 〈cλ〉 → c are 
given, where cλ ∈ [aλ, bλ], for each λ ∈ Λ. Suppose c /∈ [a, b]. Then, by regularity and the fact that [a, b] is 
closed, there is an open set U ⊇ [a, b] such that c ∈ X \U−. By USC, there are open neighborhoods Va of a
and Vb of b such that [a′, b′] ⊆ U for any 〈a′, b′〉 ∈ Va × Vb. By net convergence, there is a λ0 ∈ Λ such that 
aλ ∈ Va and bλ ∈ Vb for all λ ≥ λ0. Thus cλ ∈ U for all λ ≥ λ0, implying that c ∈ U−, a contradiction.

Now suppose X is compact and satisfies the ICP. If USC fails at 〈a, b〉, we have an open U ⊇ [a, b], 
convergent nets 〈aλ〉 → a, 〈bλ〉 → b, and a net 〈cλ〉 such that, for each λ ∈ Λ: (1) cλ ∈ [aλ, bλ]; and (2) 
cλ ∈ X \U . By compactness, there is a subnet of 〈cλ〉 converging to some c ∈ X. That is, there is monotone 

10 The number of composants in a nondegenerate indecomposable metrizable continuum is uncountable [15].
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cofinal mapping f : Δ → Λ of directed sets such that 〈c′δ〉 → c, where c′δ := cf(δ). Since subnets of convergent 
nets converge to the same limit, the corresponding nets 〈a′δ〉 and 〈b′δ〉 converge to a and b, respectively. But 
then, by the ICP, we have c ∈ [a, b] ⊆ U , a contradiction. �
4.17 Remark. By continuity of the metric function, it follows that every metric space satisfies the ICP; and 
so, by Theorem 4.16, each compact metric space is USC (see also [6, Theorem 2.5]). Compactness is crucial 
here, for consider the Banach space c0 consisting of all real sequences converging to zero. Equipped with 
the supremum norm, the resulting metric space is USC at a pair 〈a, b〉 if and only if [a, b] is compact, if and 
only if a = b (see [6, Example 4.19]).

The following is a significant improvement on [6, Theorem 5.2].

4.18 Theorem. Every aposyndetic continuum is USC, and hence locally convex.

Proof. Let X be an aposyndetic continuum. Since X is compact, Theorem 4.16 tells us that all we need to 
show is that the ICP holds. Assume we have three convergent nets 〈aλ〉 → a, 〈bλ〉 → b, and 〈cλ〉 → c, such 
that cλ ∈ [aλ, bλ] for all λ ∈ Λ. We need to show that c ∈ K for every subcontinuum of X containing {a, b}. 
Assuming c ∈ X \ {a, b}, we use aposyndesis to find subcontinua Ka and Kb such that a ∈ K◦

a and b ∈ K◦
b , 

but c ∈ X \ (Ka ∪Kb). Let K ∈ KX(a, b). By net convergence there is some λ0 ∈ Λ such that aλ ∈ K◦
a and 

bλ ∈ K◦
b for all λ ≥ λ0. Since Ka∪K ∪Kb ∈ KX(aλ, bλ) for λ ≥ λ0, we know that [aλ, bλ] ⊆ Ka∪K ∪Kb on 

a tail of Λ. Hence, on this tail, we know cλ belongs to the closed set Ka ∪K ∪Kb; so c ∈ Ka ∪K ∪Kb. But 
c /∈ Ka ∪Kb; so c ∈ K. We conclude that the ICP holds. Theorem 4.16 says X is USC, and Corollary 4.6
(ii) says X is locally convex. �
4.19 Question. Call a TBS openly locally n-convex at a point if the point has a neighborhood base consisting 
of open n-convex sets. Does being locally n-convex at a point imply being openly so? (We do not know how 
to obtain the “open” version of Theorem 4.5; nor can we improve Theorem 4.18 to conclude that aposyndetic 
continua are openly locally convex. However, it is worth noting that all strictly convex normed vector spaces 
are openly locally M-convex and all Takahashi-convex metric spaces are openly locally T-convex.)

5. Spans and hulls of subsets

This section is about when topological properties of subsets are preserved by taking the span/hull.
Let P be a property of subsets of a set. The TBS 〈X, [·, ·, ·]〉 is called span-P (resp., hull-P if the span 

(resp., hull) of each subset of X with property P also has property P .

5.1 Examples.

(i) A TBS with discrete betweenness structure is clearly span-P for any property P .
(ii) Span-open implies hull-open: If U ⊆ X is open, then each [U ]n is open because of span-openness and 

induction. Thus the hull [U ]ω =
⋃∞

n=1[U ]n is open.
(iii) For continua, span-P is equivalent to hull-P : This follows from Corollary 3.9, which says that spans 

and hulls coincide.
(iv) Each topological vector space X is span-open (hence hull-open) with respect to linear betweenness: 

For each open U we can write the span as [U ] =
⋃
{(1 − t)U + tU : 0 ≤ t ≤ 1}. By continuity of 

the vector space functions, the maps x �→ x + a and x �→ sx are homeomorphisms on X for any 
vector a and nonzero scalar s. This quickly implies that each (1 − t)U + tU is open; hence so is [U ]. 
Moreover, if the topology is generated by a strictly convex norm, then linear betweenness coincides 
with M-betweenness and X is span-open with respect to the latter.
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(v) Each topological vector space X is span-compact with respect to linear betweenness: For let K ⊆ X be 
compact. Then [K] is the image of the compact set K2×Y , where Y = {〈t1, t2〉 ∈ [0, 1]2 : t1 + t2 = 1}, 
under the continuous map 〈a1, a2, t1, t2〉 �→ t1a1 + t2a2, and is hence compact. If the space is finite-
dimensional, then it is hull-compact too: Recall Carathéodory’s theorem in this regard (see [1, Theorem 
5.32]), which says that if a is in the convex hull of E ⊆ Rn, then a is in the convex hull of a subset 
of E of cardinality ≤ n + 1. So if K ⊆ Rn is compact, then [K]ω is the image of the compact 
set Kn+1 × Y , where Y = {〈t1, . . . , tn+1〉 ∈ [0, 1]n+1 :

∑n+1
i=1 ti = 1}, under the continuous map 

〈a1, . . . , an+1, t1, . . . , tn+1〉 �→
∑n+1

i=1 tiai. On the other hand, it is known [1, Example 5.34] that 
convex hulls of compact subsets of a Hilbert space need not even be closed.

(vi) Not every finite-dimensional topological vector space is span-closed (or hull-closed) with respect to 
linear betweenness: Let X be R2, with the Euclidean norm. If A is the closed set (R ×{0}) ∪{〈0, 1〉}, 
then [A] = [A]ω = (R × [0, 1)) ∪ {〈0, 1〉}, which is not closed.

(vii) Let X be the standard unit circle in the plane, equipped with its intrinsic (i.e., “shortest arc”) metric. 
Then X is span-open with respect to M-betweenness: To see this, note that the nondegenerate convex 
proper subsets of X are precisely those circular arcs−with or without end points−that do not contain 
a semicircle. So let U be any nonempty open set. If U is contained in one of these arcs, then [U ] is a 
circular arc without end points; otherwise [U ] = X. Either way, [U ] is open in X.

(viii) Let X be the triod in the plane, given by X = A ∪B, where A = [−1, 1] × {0} and B = {0} × [0, 1]. 
With the shortest arc metric on X, the M-interpretation and the K-interpretation of betweenness 
are identical. Let c = 〈0, 0〉, with U = A \ {c}. Then U is open in X; however [U ] = [U ]ω = A is 
not open in X. This is simultaneously a metric and a continuum example of how hull-openness and 
span-openness can fail.

(ix) Let X be any irreducible indecomposable continuum (see Example 4.14 (ii)). Then we have [U ] = X

for each nonempty open U ⊆ X. Thus such continua are span-open for trivial reasons.
(x) Let X = G ∪ I be the sin 1

x -curve from Example 3.4 (iv). Then X is both span-closed and span-open. 
To see this, let π : X → [0, 1] be projection onto the x-axis. It is straightforward to see that the 
span/hull of any A ⊆ X is π−1([π(A)]). The projection is a closed map, and arcs are easily seen to 
be span-closed; hence X is span-closed. To see that X is span-open, let U ⊆ X be a proper open set. 
If U intersects I, then there is a unique point tU ∈ (0, 1] such that [U ] = I ∪ {〈t, sin 1

t 〉 : 0 < t < tU}. 
If U does not intersect I, then [U ] is the image, under the sine function, of an open interval in (0, 1]. 
In either case, [U ] is open in X.

Our first result resembles the well-known characterization of closed maps as: “the closure of the image is 
contained in the image of the closure.” Recall that a subset is relatively compact if its closure is compact.11

5.2 Theorem. Suppose a TBS 〈X, [·, ·, ·]〉 satisfies the ICP. If A ⊆ X is relatively compact, then [A]− ⊆ [A−]. 
In particular, spans of compact subsets are closed.

Proof. Let 〈X, [·, ·, ·]〉 be a TBS which satisfies the ICP, and fix A ⊆ X a relatively compact subset. Suppose 
c ∈ [A]−; we want to show c ∈ [A−]. Let U be the family of open neighborhoods of c; and for each U ∈ U , 
pick cU ∈ [A] ∩ U . Then, for each such U , we have aU , bU ∈ A such that cU ∈ [aU , bU ]. By the relative 
compactness of A, the nets 〈aU 〉 and 〈bU 〉 have subnets converging in A−. And, since 〈cU 〉 → c, and subnets 
of convergent nets converge to the same limit, we lose no generality in assuming the existence of a, b ∈ A−

with 〈aU 〉 → a and 〈bU 〉 → b. By the ICP, we have c ∈ [a, b]; i.e., c ∈ [A−]. For the last assertion, suppose 
A is compact. Then A is closed, since X is Hausdorff, and we have [A]− ⊆ [A−] = [A]. Thus [A]− = [A] as 
desired. �
11 Many authors also use the term, precompact.
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Fig. 1. The Harmonic rake from Example 5.6 (ii). The points c1, c2, . . . are shown in pink and [C] is shown in blue. The span is 
not closed since it does not contain the black segment [c, b]. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

The following is an immediate consequence of Theorem 5.2.

5.3 Corollary. Every compact TBS satisfying the ICP is span-closed.

When we combine Corollaries 3.9 and 5.3 with Theorems 4.16 and 4.18, we have the following.

5.4 Corollary. Every aposyndetic continuum is span-closed, as well as hull-closed.

5.5 Remark. Corollary 5.4 specifies a large class of well-behaved continua which are span/hull-closed. On 
the other hand it is easy (see Example 5.1 (viii)) to find continua in this class which are not span-open. 
Span-openness seems to be an elusive property: aside from a few ad hoc examples, the only general result 
along these lines makes the unremarkable assertion that irreducible indecomposable continua are span-open.

5.6 Examples.

(i) A continuum can be span-closed while not satisfying the ICP, so the converse of Corollary 5.3 is false. To 
see this, let X = I ∪G be the sin 1

x -curve. Then X is span-closed, by Example 5.1 (x). For n = 1, 2, . . . , 
let an = 〈 2

(4n+1)π , 1〉. Then 〈an〉 is a sequence in G converging to a = 〈0, 1〉. Let 〈bn〉 and 〈cn〉 be 
constant sequences, where bn = b = a and cn = c = 〈0, −1〉. Then each [an, bn] contains the limiting 
arc I, and so [an, cn, bn] always holds. But [a, b] = {a} and c �= a. Hence [a, c, b] does not hold.

(ii) A continuum X is unicoherent if whenever X is the union of two subcontinua K, M , then K ∩ M is 
connected. We say that a continuum satisfies a property hereditarily if each nondegenerate subcontin-
uum satisfies the property. (For example, the continuum is hereditarily unicoherent if no two of its 
subcontinua have disconnected intersection; equivalently [4, Proposition 2.1], if each of its intervals is 
connected.) The continuum in (i) above is hereditarily unicoherent, as well as hereditarily decomposable, 
but it is not antisymmetric. Here is an example of a continuum (see Fig. 1) that is both hereditarily 
unicoherent and hereditarily antisymmetric,12
but which fails to be span-closed: Start with X the harmonic fan from Example 4.14 (i), so we have 
X = H ∪

⋃∞
n=1 Dn. For each n ≥ 1, let bn = 〈1, 1n 〉 (the end point of Dn other than the origin a), with 

12 Hereditary antisymmetry implies being hereditarily decomposable [5, Theorem 3.6]. Wilder [18] first showed that nondegenerate 
antisymmetric continua are decomposable if they are metrizable, but it is unknown whether nonmetrizable antisymmetric continua 
are always decomposable.
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cn = 〈1
2 , 

1
2 ( 1

2n + 1
2n+2 )〉. Let Cn be the linear interval joining bn and cn, and now define the harmonic 

rake Y to be X ∪
⋃∞

n=1 Cn. With c = limn→∞ cn = 〈1
2 , 0〉 and C = {c} ∪ {cn : n = 1, 2, . . . }, we have 

that C is a closed set in Y . However, [C] = [a, c] ∪
⋃∞

n=1(Dn ∪ Cn). This set is not closed because it 
contains the sequence 〈bn〉, which converges to b /∈ [C].

By Remark 4.17, every metric space satisfies the ICP. Hence Theorem 5.2 gives the following facts about 
M-betweenness.

5.7 Corollary.

(i) In a metric space, spans of compact subsets are closed.
(ii) Every compact metric space is span-closed.

5.8 Theorem.

(i) Every metric space is span-bounded.
(ii) In any metric space, the span of a compact subset is both closed and bounded; hence a metric space with 

the Heine-Borel property is span-compact.

Proof. To prove Item (i), let A be a bounded subset of the metric space 〈X, �〉. Fix M ≥ sup{�(x, y) :
x, y ∈ A}, and let u, v ∈ [A]. Then we have a, b, c, d ∈ A with u ∈ [a, b] and v ∈ [c, d]. Then �(u, v) ≤
�(u, b) + �(b, d) + �(d, v), by two applications of the triangle inequality. Since �(a, u) + �(u, b) = �(a, b), we 
have �(u, b) ≤ �(a, b). Similarly, �(v, d) ≤ �(c, d); hence �(u, v) ≤ �(a, b) + �(b, d) + �(c, d) ≤ 3M . Item (ii) 
now follows from Item (i), Corollary 5.7 (i), and the fact that compact subsets of metric spaces are closed 
and bounded. �
5.9 Examples.

(i) Examples 4.7 (i,ii) are Banach spaces that are not hull-bounded; hence we cannot generally get the 
diameter of [A] to equal that of A in the proof of Theorem 5.8 (i).

(ii) Consider again the Banach space c0 from Remark 4.17. The supremum norm metric fails quite strongly 
to have the Heine-Borel property: nondegenerate M-intervals, known [6, Proposition 2.1] to be both 
closed and bounded, are never compact ([6, Example 4.19]); hence we cannot conclude in Theorem 5.8
(ii) that spans of compact−even finite−subsets are compact.

6. Closures and interiors of convex subsets

The last section was about how taking the span/hull affects topological properties; in this section we shift 
perspective and focus on how topological operators affect convexity. A TBS is said to be closure-stable if 
closures of convex subsets are convex; similarly we define a TBS to be interior-stable. In the classical theory 
of convexity, Euclidean spaces are well known to be stable in both senses.

6.1 Proposition. Every hull-open TBS is interior-stable.

Proof. Let 〈X, [·, ·, ·]〉 be a hull-open TBS, with C ⊆ X convex. Then C◦ ⊆ [C◦]ω ⊆ C. Since [C◦]ω is open, 
we have C◦ = [C◦]ω; hence C◦ is convex. �
6.2 Remarks. Here are some easy applications of Proposition 6.1.



JID:TOPOL AID:107783 /FLA [m3L; v1.307] P.17 (1-20)
D. Anderson et al. / Topology and its Applications ••• (••••) •••••• 17
(i) With reference to Examples 5.1 (iv,ix): Strictly convex normed vector spaces and irreducible indecom-
posable continua are interior-stable.

(ii) With reference to Examples 5.1 (vii,x): The standard unit circle, with the intrinsic metric, and the 
sin 1

x -curve are interior-stable. (These facts can also be easily verified directly.)

6.3 Example. With reference to Example 5.1 (viii): The triod X = A ∪ B has a convex subset, namely 
A, whose interior, namely A \ {c}, is not convex. This serves as an example−for both the M- and the 
K-interpretations of betweenness−to show interiors of convex sets need not be convex.

6.4 Theorem. If a TBS is LSC, then it is closure-stable.

Proof. Let 〈X, [·, ·, ·]〉 be a TBS that is LSC, with C ⊆ X convex. Let a, b ∈ C−, with c ∈ [a, b]. If U is any 
open neighborhood of c, then lower semicontinuity provides us with a neighborhood Va × Vb of 〈a, b〉 ∈ X2

so that [a′, b′] ∩ U �= ∅ for all 〈a′, b′〉 ∈ Va × Vb. Because both a and b are in C−, both Va and Vb intersect 
C. So there exist a′, b′ ∈ C such that [a′, b′] intersects U . Since C is convex, U ∩C �= ∅. Hence c ∈ C−, and 
we conclude that [a, b] ⊆ C−. Therefore C− is convex. �
6.5 Remark. Lower semicontinuity holds in the following circumstances; and hence closure stability holds, 
by Theorem 6.4:

(i) Unique geodesic metric spaces with the Heine-Borel property [6, Theorem 3.10].
(ii) Strictly convex normed vector spaces [6, Theorem 4.2].
(iii) Normed vector spaces of dimension ≤ 2 [6, Proposition 4.13].
(iv) Hereditarily unicoherent continua [6, Theorem 5.9].

Closure-stability in a hereditarily unicoherent continuum is much easier to prove than LSC: intervals are 
connected, and hence so are convex subsets. Thus the closure of a convex subset is a subcontinuum, and 
therefore convex.

Hereditary unicoherence is an important continuum-theoretic property that implies LSC; we claim an-
other such property is aposyndesis. We know that aposyndetic continua are USC (Theorem 4.18); now we 
show they are LSC as well.

6.6 Theorem. Every aposyndetic continuum is LSC, and hence closure-stable.

Proof. Assume X is aposyndetic, with a, b ∈ X and U an open set intersecting [a, b]. We need to find an 
open neighborhood Va × Vb of 〈a, b〉 such that [a′, b′] intersects U for all 〈a′, b′〉 ∈ Va × Vb. Fix c ∈ [a, b] ∩U . 
If c ∈ {a, b}, say c = a, then we may let Va equal U , with Vb arbitrary. So assume c /∈ {a, b}. By aposyndesis 
there are subcontinua Ka and Kb such that a ∈ K◦

a , b ∈ K◦
b , and c ∈ X \ (Ka ∪ Kb). Let Va = K◦

a and 
Vb = K◦

b . For any 〈a′, b′〉 ∈ Va × Vb, let K be a subcontinuum containing {a′, b′}. Then Ka ∪K ∪Kb is a 
subcontinuum containing {a, b}; hence c ∈ [a, b] ⊆ Ka∪K∪Kb. But c /∈ Ka∪Kb, so c ∈ K. Thus c ∈ [a′, b′], 
and the proof of lower semicontinuity is complete. Closure-stability follows from Theorem 6.4. �
Aposyndetic continua satisfy a property somewhat stronger than closure-stability, as stated in Theorem 6.9
below. To formulate this, first define a subset C of a TBS 〈X, [·, ·, ·]〉 to be strictly convex if for any a, b ∈ C−, 
we have [a, b] \ {a, b} ⊆ C. Every strictly convex set is convex; also the closure of a strictly convex set is 
clearly strictly convex. Closed convex sets are strictly convex, but the open upper half-plane in R2 (with 
the Euclidean norm) is clearly M-convex without being strictly M-convex.
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6.7 Remark. Our terminology is justified because a normed vector space is strictly convex in the traditional 
sense if and only if its open unit ball−hence any open ball−is strictly linearly convex in the sense above. 
This further implies that every open ball is strictly M-convex because M-intervals and linear intervals then 
agree. Because M-intervals contain the corresponding linear ones, we conclude that a normed space is strictly 
convex if and only if each of its open balls is strictly M-convex.

6.8 Question. What should it mean for a TBS to be strictly convex? From the remark above, one could 
define a metric space to be strictly convex if each open ball is strictly M-convex, but it is unclear how to 
define strict convexity in the absence of a “standard open base,” or whether this would be a useful notion 
outside of the context of normed vector spaces.

We now define a TBS to be strictly closure-stable if each of its convex subsets is strictly convex. It is easy 
to see that a strictly convex normed vector space is strictly closure-stable if and only if its dimension is at 
most one. In the case of continua, we have the following.

6.9 Theorem. Every aposyndetic continuum is strictly closure-stable.

Proof. Let X be an aposyndetic continuum, with C ⊆ X a convex subset. Let a, b ∈ C−; we wish to show 
that [a, b] \ {a, b} ⊆ C. So arbitrarily pick c ∈ [a, b] \ {a, b}, and use aposyndesis to find subcontinua Ka and 
Kb as in the proof of Theorem 6.6. Then there exist a′ ∈ C ∩K◦

a and b′ ∈ C ∩K◦
b . If K is any subcontinuum 

containing {a′, b′}, then we argue as before to infer that c ∈ K. Since C is convex, we have c ∈ C, as 
desired. �
6.10 Examples.

(i) The harmonic fan X = H∪
⋃∞

n=1 Dn from Example 4.14 (i) is antisymmetric and hereditarily unicoher-
ent; so by Theorem 6.4 and Remark 6.5, it is LSC and therefore closure-stable. However, 

⋃∞
n=1 Dn is a 

convex subset which is not strictly convex; hence X is not strictly closure-stable. This continuum also 
demonstrates that we cannot replace aposyndetic with antisymmetric in Theorem 6.9, but one can do 
better: antisymmetric continua need not even be closure-stable, let alone strictly so (see the harmonic 
needle cushion, Example 6.13 (iii) below).

(ii) If X is an irreducible indecomposable continuum, then each of its composants is convex without being 
strictly convex. Indeed, pick composant A and let B be a composant different from A. If a ∈ A and 
b ∈ B, then (because composants are dense) we have a, b ∈ A−. However, [a, b] \ {a, b} = X \ {a, b}, a 
set with finite complement and therefore not contained in A. Irreducible indecomposable continua are 
often hereditarily unicoherent, and are hence closure-stable without being strictly closure-stable.

The converses of Theorems 4.18, 6.6, and 6.9 are all false, as witnessed by the following example.

6.11 Example. Let X be the thick Warsaw circle Y ∪ A ∪ B (see Fig. 2), where Y = G ∪ I is the sin 1
x -

curve from Example 3.4 (iv), A is the rectangle [−1, 0] × I, and B is an arc joining the end point of G to 
〈−1

2 , −1〉 on the boundary of A and missing all other points of Y ∪ A. It is straightforward to see that the 
K-betweenness structure of X is discrete, and hence X is trivially USC, LSC, and strictly closure-stable. 
On the other hand, no two points of I are aposyndetic relative to one another.

6.12 Question. What “reasonable” continuum-theoretic properties could one add to either USC, LSC, or 
strict closure-stability to infer aposyndesis?



JID:TOPOL AID:107783 /FLA [m3L; v1.307] P.19 (1-20)
D. Anderson et al. / Topology and its Applications ••• (••••) •••••• 19
Fig. 2. The thick Warsaw circle from Example 6.11.

Fig. 3. The Harmonic needle cushion from Example 6.13 (iii). The blue region is convex. Its closure is the union of the blue and 
red regions. The closure is not convex as it does not contain the segment [a, b].

We end with three examples in which closure-stability fails. The first two occur in the metric setting, the 
third in the setting of continua.

6.13 Examples.

(i) Let X be the unit circle from Example 5.1 (vii), with C a semicircle, minus an end point. Then C is 
convex, but C− includes a pair of antipodal points without being all of X. Hence C− is not convex.

(ii) Note that, as mentioned above in Remark 6.5, every normed vector space of dimension ≤ 2 is closure-
stable. The dimension restriction is important because there is a norm ‖ · ‖ on R3 resulting in a space 
that fails to be closure-stable. To see this, let P = R2 ×{0} be the xy-plane. Then−as explained in [6, 
Example 4.12]−the norm, when restricted to P , coincides with the supremum norm (i.e., ‖〈x, y, 0〉‖ =
max{|x|, |y|}), and hence M-intervals with bracket points in P are almost always quadrilaterals. In all 
other situations, however, M-intervals are linear. So let H be the open half-plane {〈x, 0, z〉 : z > 0〉}. 
Then H is M-convex, while H− is not: If a = 〈0, 0, 0〉 and b = 〈1, 0, 0〉 in H−, then [a, b] is the square 
in P with diagonal whose end points are a and b. So [a, b] � H−.

(iii) For our continuum example, we construct the harmonic needle cushion (see Fig. 3) as a continuum that, 
while being neither aposyndetic nor unicoherent, is still antisymmetric and hereditarily decomposable. 
Start with the harmonic fan X = H ∪

⋃∞
n=1 Dn (Example 4.14 (i)), and then replace a section of each 

arm Dn with an eye, in such a way that the eyes narrow with increasing n and converge to an arc. 
Formally we take the following steps: (1) write H = A ∪B∪C, where A = [0, 1 ] ×{0}, B = [ 1 , 2 ] ×{0}, 
3 3 3
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and C = [ 23 , 1] × {0}; (2) for n = 1, 2, . . . , write Dn = An ∪Bn ∪ Cn, where An = {〈t, tn 〉 : 0 ≤ t ≤ 1
3}, 

Bn = {〈t, tn 〉 :
1
3 ≤ t ≤ 2

3}, and Cn = {〈t, tn 〉 :
2
3 ≤ t ≤ 1}; (3) for n = 1, 2, . . . , set Vn = {1

3} × [ 1
3n+3 , 

1
3n ]

and Wn = {2
3} ×[ 2

3n+3 , 
2
3n ]; for n = 1, 2, . . . , let En = Bn∪Bn+1∪Vn∪Wn (the nth eye); for n = 1, 2, . . . , 

set Fn = An∪En∪Cn (the nth needle). Finally, we set Y = H ∪
⋃∞

k=0 F2k+1. (Note: We are using only 
the odd-numbered needles to make our continuum Y , in order to avoid successive needles intersecting 
where they should not. In Fig. 3, the upper part of the−slightly rounded−eye En is Bn, and the lower 
part−also rounded−is Vn ∪Bn+1 ∪Wn.)
The set G =

⋃∞
k=0 A2k+1 ∪ C2k+1 is convex because the eyes introduce convenient gaps. However, 

G− = G ∪ (A ∪ C) is not convex, because the “eye” belonging to H has degenerated into the arc B. 
Hence any interval [a, c], with a ∈ A and c ∈ C, has to include B � G−.
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