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MODELING NONINTERSECTIVE ADJECTIVES USING
OPERATOR LOGICS

PAUL BANKSTON

ABSTRACT. Our topic is one that involves the interface between
natural language and mathematical logic. First-order predicate
language/logic does a good job approximating many parts of (Eng-
lish) speech, i.e., nouns, verbs and prepositions, but fails decidedly
when it comes to, say, adjectives. In particular, it cannot account
for the quite different ways in which the adjectives green and big
modify a noun such as chair. In the former case, we can easily
view a world in which the class of green chairs is the intersection
of the class of green things with the class of chair-things. By con-
trast, the way big modifies a noun depends on the noun itself: a
big chair is microscopic when compared to the smallest of galax-
ies. We investigate logical languages inspired by this phenomenon;
particularly those with variables ranging over individuals and with
variable-binding operators akin to generalized quantifiers.

1. THE CATEGORIZATION PROBLEM.

We take an “applied mathematics” view of natural language (NL), in
the sense that one may use mathematical techniques to model some of
its observed behaviors. The behavior of interest to us here is adjective-
noun (AN) combinations in English; i.e., those noun phrases in which
the adjective is in attributive position relative to the noun. In order to
be as concrete as possible at the outset, we focus our attention first on
two simple examples of AN combinations. While they have the same
syntactic appearance, they exhibit very different semantic behaviors.

(A) green chair
(B) big chair
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My own interest in this subject began in 1971, when I was a graduate
student, studying mathematical logic at the University of Wisconsin.
I found myself one day having a discussion with a friend, a linguis-
tics undergraduate, concerning parts of speech. I carefully explained
that first-order logic does not generally distinguish between common
nouns, intransitive verbs, and adjectives; they may all be represented
as (unary) predicates. I then cited an example like (A) above to make
the point that adjectives behave semantically like common nouns. The
class of green chairs is just the intersection of the classes of green enti-
ties and chair-like ones, and one may translate AN combinations eas-
ily into the language of first-order logic. The grammatical distinction
between adjectives and nouns as lexical categories, then, is purely ar-
bitrary, existing only at the syntactic level.

My friend’s almost immediate response was an example like (B).
Being a big chair does not entail being a big entity; indeed a big chair
is small when compared to, say, the smallest known galaxy. So while
the noun phrases green chair and chair-like green-thing might well
be regarded as synonymous, the same cannot be said for the phrases
big chair and chair-like big-thing. In short, my hasty theory that all
adjectives are intersective had to be reexamined.

At the time of this discussion, I happened to be participating in
H. J. Keisler’s seminar on generalized quantifiers (d la [8]) and was
thus familiar with the idea that (in the context of extensional logic)
one may view the interpretation of a quantifier on a domain A simply as
a subset of the power set p(A). So that, if @) is a generalized quantifier
symbol, z is an individual variable and ¢ is a formula, then Qz¢ means
(roughly) that the set of elements a of A such that ¢ holds when
a is substituted for each free occurrence of z in ¢ is a member of
the interpretation of () in A. A fellow student, J. Sgro, had already
begun the study of topological interpretations of the symbol @ (where
{a € A : ¢[a/z] holds in A} is an open set in a given topology on
A, see [15], [16]), so shortly after my linguistics friend pointed out my
faulty theory of adjectives, I was able to see that adjectives like big
behave not like unary relations on a domain, but rather like set-to-set
operators (much the way interior and closure operators do in topology).
(Of course, if A is a domain (of individuals) and U is a fixed subset,
then the operator M : p(A) — p(A), defined by M (X) := UNX, shows
how to interpret intersective adjectives like green as adjectives in the
higher-order—operator sense.)

Adjectives do not necessarily become nonintersective because of any
degree of vagueness or ambiguity on their part. Even in informal math-
ematics, arguably the least vague and ambiguous fragment of NL, there
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are examples of adjectives that behave nonintersectively. Consider the
following two phrases, paralleling (A) and (B) above:

(A" commutative group

(B") free group

To see how (A’) and (B') indeed parallel (A) and (B), we need to be
specific about our universe of discourse. For this we take the class of
individuals to be the binary algebras; for the present purposes, those
algebraic systems with one binary operation, one unary operation, and
one constant (i.e., nullary operation). Then it makes sense to say of
a binary algebra that it is commutative, independently of whatever
else one may say about it; e.g., that it is a group. Thus the individuals
that are commutative groups are all and only those binary algebras that
satisfy the commutativity identity as well as the identities defining a
group. Alternatively, an individual is free relative to a class to which
it belongs; a free group with more than one element is never free as a
binary algebra. This shows that the adjective free is nonintersective,
while having a clear and mathematically precise meaning.

I hasten to say that this discovery about the behavior of adjectives
was just my own repondering of some of the thinking that philosophers
of language had been doing for some time (see [7], [11], [12], and [17]
(esp., “English as a formal language”)). What those people had for-
mulated for adjectives like big was the operator approach, a partial
solution to what one might call the categorization problem,; i.e.,
the assignment of semantic categories to parts of speech in NL. This is
an important first step toward the modeling of (fragments of) NL, in
such a way that linguistic observations and intuitions are reasonably
reflected in the context of a formal language/logic.

I also wish to remark that the operator approach is extensional:
If, relative to a model, two formulas are synonymous, then the result
of applying the same operator (in a suitable formulation of syntax,
which we take up below) to both formulas should lead to synonymous
formulas. Adjectives like big seem to work this way; however, there
are some adjectives in NL that behave nonextensionally. Consider, for
example, the following AN combination:

(C) skillful writer

One can easily imagine a world in which there are no neurological
anomalies, and all and only those who can read are those who can
write. But even then it is a stretch to expect that all and only the
skillful readers are skillful writers: Evans may be very good at reading,
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but quite clumsy when it comes to writing. (This point, using other
examples, is made also in [7].)

As with nonintersectivity, nonextensional behavior in adjectives is
not a mark of vagueness or ambiguity; nonextensional adjectives also
occur (albeit rarely) in mathematical language. Consider the following
companion to (C):

(C") initial frame

The word frame refers to the objects in a category that consists of
certain bounded lattices (including open-set lattices for topological
spaces); arrows (morphisms) in this category are certain lattice homo-
morphisms. Now apparently for reasons of terminological convenience,
the dual of this category (i.e., same objects, arrows reversed) has come
to be known as the category of locales; hence the nouns frame and
locale are coextensive. However, the class of initial frames consists of
those frames F' such that there is just one frame morphism from F' into
any frame. This is just the class of two-element frames. On the other
hand, the class of initial locales is precisely the class of terminal frames;
i.e., those frames F' such that there is just one frame morphism from
any frame into F'. This is now the class of one-element frames. What
all this tells us is that the adjective initial behaves nonextensionally in
a mathematical context, without any hint of vagueness or ambiguity.

While it is possible to modify the extensional operator approach to
account for nonextensional AN behaviors, we do not take up the issue
here; but rather postpone a treatment to a later paper. (The interested
reader is referred to [7] and [17] (esp. “Pragmatics” and “Pragmatics
and intensional logic”) for other views on the subject.)

In [14] W. V. O. Quine suggests that while adjectives like green and
commutative can have semantic categories (i.e., unary predicates) as-
signed to them, others, like big and free cannot. Instead the latter must
play a syncategorematic role in language, acquiring meaning only in the
presence of lexical items that can have such assignments. It should be
noted that quantifier symbols were, at one time, also regarded as play-
ing a syncategorematic role in predicate logic. A symbol like 3 did not
stand for anything by itself; only in expressions like dx¢ did it have any
hope of interpretation. The advent of the notion of generalized quan-
tifier [10] changed all that, however; the classic quantifier symbols, as
well as others, could now be regarded as special “higher-order unary
predicates;” i.e., as subsets of the power set of a domain of individuals.
A similar thing could well be said for adjectives, viewed as operators on
a power set p(A). The trivial observation that they may equally well
be regarded as subsets of A x p(A) shows a kinship with generalized
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quantifiers, at least on the surface. To summarize this section, then,
we believe that the operator approach to the solution of the catego-
rization problem for extensional adjectives (as formalized below) offers
an alternative to Quine’s view.

2. OPERATOR LANGUAGES.

We now propose a kind of finitary formal language that reflects at
least some of the nonintersective behavior of (extensional) adjectives in
NL. The logic associated with languages of this kind will be easily seen
to be weaker than full second-order logic (in the sense of expressive
power, to be made precise below). For the purposes of readability, it
will be convenient to use the nonexponential notation [A — B] for the
family of maps from the set A to the set B. (In this way, the power set
©(A) of a set A may also be denoted [A — 2], where 2 := {0, 1} is the
usual set of classical truth values, 0 for false and 1 for true). Given a
set A of individuals and a triple (m, k,n) of nonnegative integers, we
define an (m, k,n)-ary truth-value operator on A to be a subset
of A™ x (p(A*))™; equivalently, a member of [(A™ x [AF — 2]*) — 2].
Similarly, one may define an (m,k,n)-ary individual-value oper-
ator on A to be a member of [(A™ x [4* — A]") — A]. Among
the familiar truth-value operators one finds: (i) m-ary relations, of
arity (m, k,0) (k is irrelevant if n = 0); (ii) interpretations of quanti-
fiers like 3 and @1 (“there exist uncountably many”), of arity (0,1, 1);
and (iii) interpretations of n-ary logical connectives, of arity (0,0, n).
Among the familiar individual-value operators one finds: (i) m-ary op-
erations, of arity (m, k,0) (or arity (0,0,m)); (ii) the interpretation of
function abstraction in models of A-calculus [2], of arity (0,1,1); and
(iii) the differentiation operator in Freshman Calculus, of arity (1,1, 1).
The (0,0,0)-ary truth-value operators are just the truth values, while
the (0,0, 0)-ary individual-value operators are the elements of a given
domain of individuals.

For the sake of simplicity of discussion we focus on truth-value op-
erators in this paper, and refer to them just as operators. In order
to be able to talk formally about operators, we introduce a variable-
binding language £ equipped with operator symbols. The language we
have in mind has individual variables and function symbols, just like
first-order predicate language, and terms are built up in the usual way.
Then, for each triple (m, k, n) of nonnegative integers, we have a family
of (m,k,n)-ary operator symbols. The atomic formulas are all of the
form Pt;...t,, where P is an m-ary predicate (i.e., an (m,k,0)-ary
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operator) symbol, and each ¢; is a term. The formation rule for a typ-
ical (m, k,n)-ary operator symbol H yields the string Ht T, where: ¢
is an m-tuple of terms, ¥ is a k-tuple of distinct variables, and @ is an
n-tuple of formulas. (See [6] for similar syntax; also [13] for another ac-
count of variable-binding operators.) The substring Z, in the position
displayed above, is a binding occurrence of these variables, and all
of their occurrences from that point onward are considered as bound
occurrences. Every other occurrence of a variable is considered free.
For example, in the formula Hzz Pz, where H is (1,1,1)-ary and P
is (1,0, 0)-ary, the first occurrence of z is free, the second is a binding
occurrence (therefore bound), and the third is bound by that binding
occurrence.

If ¢ is a (term or) formula, z is a variable, and t is a term, then
we say that ¢ is free for z in ¢ if no free occurrence of z in ¢ falls
within the scope of a binding occurrence of any variable occurring in
t. We then define ¢[t/x] to be the simultaneous substitution of each
free occurrence of z in ¢ by t, if ¢ is free for z in ¢, and to be ¢
otherwise. If T is a string of k distinct variables and ¢ is a string of k
terms, then we may easily define ¢[t/Z] in the same way, by induction
on the complexity of ¢. (Caution: (z = y)[zy/yz] is y = z, while
(z=9y)z/yDly/=] is y = y.).

Note that we are making no commitment to specific meanings of
symbols in defining the syntax and semantics of the operator language
L. In particular, the notion of operator logic is not yet on the agenda.
Our immediate aim is to provide a “ballpark” semantics that specifies
ranges of semantic values. Each triple (m,k,n) encodes a syntactic
category, the category of (m, k,n)-ary operator symbols; as well as a
semantic category, the category of (m, k,n)-ary operators on sets. So,
for example, the semantic category encoded by the triple (0,0,2) is
simply the set of all (sixteen) binary operations on the set 2 of truth
values.

Now, to define the semantics, let £ be a set of operator symbols.
(We often identify £ with the corresponding language of terms and
formulas.) Given a set A of individuals, an L-structure with domain
A is an assignment 2 that takes operator symbols in £ to same-arity
operators on A. The operator assigned to H in 2 is denoted H?.

We define the satisfaction relation between L-structures and L-for-
mulas in a manner that straightforwardly extends the Tarski semantics
for first-order logic; in the interests of precision and the establishment
of some notation, we detail some of the highlights in defining the con-
cept of “p is true in 2 in the environment p.” First of all, given an
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L-structure A, we borrow from computer science and define an envi-
ronment (on ) to be simply a function from the set of variables to
A. We use the notation p[a/T|, where T and @ are same-length strings
of distinct variables and (not necessarily distinct) individuals, respec-
tively, to indicate the new environment that: (i) agrees with p for all
variables not occurring in the string T = z; ...z, and (ii) takes each
x; in this string to a;.

Any environment p induces a semantic map || - ||% that takes L-terms
to members of A (in the conventional way) and L-formulas to truth
values. Not unexpectedly, the definition of || - ||%l uses induction on the
complexity of terms and formulas; the clause governing operators reads
as follows:

|Hty ... tmxy ... 2pp1 ... <pn||%L =
HA(|[E -5 3 1T - - AT nl[3),

where [|[XZe;||% is shorthand for the map from A* to 2 that takes @ to
||S0z'||%[a/z]-

It is easy to prove that the semantic values ||¢||% and ||¢[|% are equal
if p and p' agree on the variables that occur free in . If [|¢||> =1 (i.e.,
¢ is true in A in the environment p), we sometimes write A =, ¢; and
we write A = ¢ if A |=, ¢ for every environment p. (2 is a model of
©.) As usual, we define an L-formula ¢ to be a sentence if it has no
free variables; in which case A = ¢ if 2 =, ¢ for some environment p.

The following is the result one should expect about the semantics of
free substitution. We include the proof to illustrate the semantics just
introduced.

Proposition 1. Let ¢ be a term or formula from L, x a variable,
and t a term. If A is an L-structure and p is an environment, then
lolt/z]l|3 = llel|%; where o' is either p[||t|%/x] or p, depending, re-
spectively, upon whether or not t is free for x in .

Proof. Consider the case ¢ is a formula; argue using induction on for-
mula complexity. There is no problem at the base stage; at the H-in-
troduction stage, we make the simplifying (but not compromising) as-
sumption that H is (1,1, 1)-ary. Also, since the model 2 remains the
same throughout the argument, we suppress its mention in much of the
notation. We thus wish to show that ||(Hsye)[t/z]||, = ||Hsyel, as
stated above.
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First assume that y and = are the same variable. Then we have to
show

[(Hszo)[t/z]ll, = | Hszpl|p

If ¢ is not free for x in Hsxp, then there is nothing to prove. Otherwise,
the left-hand side becomes

1H s[t/z]zell, = H*(Is[t/=]ll,: | Azell,) = H* (Isllpfosar; I Aze0ll,),

by the semantic definition and the induction hypothesis (at the level
of terms), where a := ||t||,.
At the same time, the right-hand side is equal to

||H3x90||p[a/x] = Hﬁ(||3||p[a/x]> ||)‘xS0||p[a/ac])-
Now, for any b € A, plb/x] = pla/c]lb/a]. Hence [Aapll, = [ Acellya/a)
and the induction step in this case is proved.
Finally assume y and x are distinct variables. Again, if ¢ is not free
for x in Hsyyp, there is nothing to prove. Otherwise, the left-hand side
becomes

1H sft/xlyelt/2lllp = H*(Isllpfasa); [Ayeelt/lll,),

while the right-hand side is equal to H*(||s]|pfa/a]; | Ay || pfa/a1)-
It remains to show that, for any b € A,

lelt/2lptor1 = 11l otasanios-
But (p[a/z])[b/y] = (p[b/y])[a/z]; and, because t is free for x in Hsyyp,
y does not occur in ¢. Thus a = ||¢||,p/y. By the induction hypothesis,

then, we have the desired semantic equality, and the proof is complete.
O

Here are some examples of NL expressions, with their possible trans-
lations into the formalism introduced above.

(D) Many are chosen. = MzCx
(where M is (0,1, 1)-ary)

(E) Bobo is a small elephant. — SbxEx)
(where S'is (1,1,1)-ary

(F) Evans would rather eat than fight. - RexExFx

(where R is (1,1, 2)-ary)
(G)  Evans is more likely than Bobo to be studious. — LebxSz
(where L is (2,1, 1)-ary)

Two L-formulas ¢ and 3 are synonymous, relative to an L-struc-
ture A, if [p||2 = [[¢||> for every environment p. (In first-order
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logic, then, ¢ and 1 are synonymous, relative to 2, if and only if
A E (p < 9).) Two L-structures 2 and B are semantically equiva-
lent if the same L-sentences are true in both structures, and we write
2A = B when this relationship (the obvious extension of elementary
equivalence from first-order logic) holds.

Given an L-structure 2 and a relation R € [A¥ — 2] on A, we
say R is definable if there is an L-formula ¢, a string T of £ dis-
tinct variables, and an environment p such that R = [|[AT¢[|%. The
essential part 2° of 2 is then obtained from 2 by redefining each
H%: (A™ x [A4¥ — 2]") — 2 to take an (m + n)-tuple
(ai,...,am, Ri,..., Ry) to 1 just in case H*(a1,...,am, R1,..., Ry) =
1 and each R; is a definable element of [A* — 2]. The following is
proved using straightforward induction on formula complexity (see,

e.g., [3],9])-
Proposition 2. 2 = 2°

3. ALTERNATIVE SYNTAX.

Returning briefly to my personal 1971 insight concerning how to
categorize nonintersective adjectives like big as (1,1, 1)-ary operators,
I was soon led to a formulation of an interior-operator logic for topol-
ogy, paralleling J. Sgro’s open-set quantifier logic L(Q) [15]. Designated
L(I) (where L indicates a “base” vocabulary of predicate and function
symbols), this was an ordinary first-order language with one additional
(1,1,1)-ary operator symbol I. The formation rule for this operator
symbol was not Itxyp as prescribed in Section 2; rather it was [z,
a syntax that unfortunately muddies the distinction between free and
bound occurrences of variables. In Iz Pz, for example, the truth value
in a model may vary with what elements of the domain are substituted
for x; so the occurrences of x in this formula cannot be bound. At the
same time, treating those occurrences as free and defining (IxPzx)[c/x]
to have c being directly subsituted for z is not unlike the confused
Calculus student’s substituting x = ¢ before performing the differenti-
ation. In order to get the desired meaning, namely “c is in the interior
of the set of x such that Px holds,” it becomes necessary to circum-
locute, using the availability of first-order logic. ¢[t/z] is defined as
usual for free occurrences of x not within the scope of an occurrence of
Iz, and (Izv)[t/x] is defined to be Jz((x = t) A Ix1)). (We abandon
what amounts to Polish notation in our syntax for logical connectives,
in favor of the more traditional infix notation.)
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I had conversations with Sgro on this topic at the time; I had al-
ready been able to prove a completeness theorem for L(I) that was
analogous to, but much easier than, the one Sgro had proved for L(Q).
Also T had shown that L(I) is strictly stronger than L(Q) in expres-
sive power (in the sense that: (i) there is a faithful translation from
L(Q)-formulas to L(I)-formulas; but (ii) one can find two topological
L-structures that satisfy the same L(Q)-sentences, but not the same
L(I)-sentences). Despite this, there did not seem to be a clear way to
convert a completeness theorem for one logic into one for the other.
(We return to this theme in Section 5 below.)

It was not long after these conversations that I happened across C.
C. Chang’s article [3]. Being inspired by R. Montague’s “Pragmatics”
article in [17], Chang developed a syntax with formulas Nz, the in-
tended semantic category for N being encoded by (1,1,n). (He, too,
stipulated that the variable after the operator symbol should be free,
but never needed to address the issue of defining ¢[t/z] as a syntactic
object.) One possible interpretation of NV is as an indexed necessity op-
erator: “x thinks ¢ is necessarily true.” Chang argued that his modal
model theory contained Montague’s “Pragmatics” language; in partic-
ular, he claimed it subsumed most versions of modal, temporal, and
intensional logic. This claim is questionable, however, because of the
essentially extensional nature of Chang’s (and our) approach: from the
synonymy of ¢ and 1, one must infer the synonymy of Nx¢ and Nzi.
Modal logics (et al) simply do not allow this inference in general.

Sgro also considered extensions of L(Q) in [15], designed to treat
product topologies. In the language L(Q,Q?,...), each Q*, k > 1, is
a (0,k, 1)-ary operator symbol, interpreted as the open set quantifier
in the k-fold cartesian product topology. (Q' = @.) In the later paper
[16], he did the same thing for the interior operator. Again, the vari-
ables occurring after the (m,m, 1)-ary operator symbol I™ were taken
to be free, and the substitution problem was solved using the circumlo-
cution mentioned above. Interestingly enough, at about the same time
as Sgro’s article [16], there appeared the article [9] of J. Makowski and
M. Ziegler. They were also interested in Chang’s operators, especially
as a source of new languages for topological model theory. However,
when they formulated their interior-operator language, their choice of
syntax was the less problematic one given in Section 2.
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4. CONSTRAINED SEMANTICS.

Up to this point, except for historical asides, we have been concerned
with operator languages whose symbols are given the widest possible
interpretation. From here on, we focus on languages where certain sym-
bols are given narrow or constrained interpretations. If H is a set of
operator symbols whose meanings are to be considered as constrained
(including equality, as well as the connective and quantifier symbols
of first-order predicate logic), and L denotes an additional (disjoint)
set, of predicate and function symbols whose meanings are to be con-
sidered unconstrained, we denote by L(#) the operator language with
symbols from L UH. In practice, the notation L(H) refers to a family
of operator languages, with L acting as a parameter. In keeping with
the notation (L(I), L(Q), etc.) introduced in the last section, we often
write L(Hy, Ha,...) instead of L(H) when Hi, Ho,... is a list of the
symbols of H that are not the logical symbols from first-order logic.

When we are considering a fixed set H of “special” operator symbols
as described above, we use the notation (4, @) to indicate an H-struc-
ture with domain A (i.e., « is a map that interprets each symbol from
H in the set A). If K is a class of #-structures in which all the logi-
cal symbols are interpreted in the usual manner, then we call the pair
(H,K) a constraint system. For any set L of extra predicate and
function symbols, Kj, is the class of constrained L(H)-structures, de-
fined to be all pairs (A, o), where 2 is an arbitrary L-structure over A
and (4,«a) € K If (H,K) is a constraint system and A C H, we call
the pair (A4, K) a subsystem of (H, K).

Given a constraint system (H,K), we may define a partial order
on p(H), extending the inclusion order, and based on the notion of
expressive power. If A, B C H, define A to be expressively weaker
than B (in symbols, A < B) if, for each L and formula ¢ of L(A),
there is a formula ¢* of L(B) such that for each (2, «) € K, and each

environment p on A, ||| = [l¢*||5**. If A < B holds and wvice
versa, we say A and B are intertranslatable; we write A < B to
indicate that A < B holds, but not vice versa.

When indicating relative expressive power, we often abuse notation
slightly and write L(A) < L(B). Such a relation is usually established
by way of a uniform translation procedure, defined by induction on the
complexity of formulas (see below). On the other hand, to refute the
relation, one frequently uses an argument based on semantic equiva-
lence. Let (2, ), (B,08) € K,, A C H. Write (A, ) =4 (8, 5) to
mean that (A, a) and (B, ) are semantically equivalent over A,
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that the same sentences of L(A) are true in both structures. The fol-
lowing assertion is immediate.

Proposition 3. Suppose L(A) < L(B). If (A, «) and (*B,3) are in
K, and (A, «) =5 (B, B), then (A, ) =4 (B, 5).

An interesting case study of relative expressive power, already in the
literature, concerns topological operator languages. To set the stage, let
H=1{Q,I,Q%Q.}, where: Q and @Q? are Sgro’s open set quantifiers,
I is the interior operator (of respective arities (0,1,1), (0,2,1), and
(1,1,1), see Section 3 above), and @, of arity (0, 1,2), whose intended
reading is that the first of two sets meets the interior of the second. To
complete the picture, K may be viewed as consisting of pairs (A, 7),
where 7 is a topology with underlying set A. So 7 itself is the inter-
pretation of the symbol @ in (A, 7), but the interpretation of I is the
associated interior operator. Likewise, the informal interpretations of
the other two symbols may be easily given their formal counterparts,
all relative to the given topology. The following shows that, while topo-
logical structure may be expressed interdefinably in terms of open sets
and interior operators at the set-theoretic level, there is a breakdown
at the level of operator language. Here is a summary of how the four
operator languages L(H), H € H, relate to one another in expressive
power. (This is also proved in [9]; we had a proof in 1971 of the first
half of Proposition 4(iii), as mentioned earlier.)

Proposition 4. (i) L(Q) < L(Q?).
(ii) L(Q?) and L(I) have incomparable expressive power.
(iii) L(Q) < L(I) and L(Q) < L(Q?).
(iv) L(Q2) and L(I) have the same expressive power.

Proof. Ad (i). As a rule, translation definitions use induction on for-
mula complexity. Often (but not always) they fix atomic formulas, and
commute with certain of the operator symbols (e.g., (Fxp)* := Jz*).
So when we specify a translation, we will focus, without further com-
ment, on those parts that involve anything new. The translation (-)*
from L(Q) to L(Q?) is then given by (Qz)* := Q*ryp*, where y is the
first variable not occurring in ¢* (assuming a preassigned well-ordering
on the set of individual variables). It is a straightforward induction to
see that this works.

Ad (ii). In [9] it is proved that every countable 77 topological L(I)-struc-
ture (i.e., for any two distinct points, each is contained in an open set
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not containing the other) is semantically equivalent to a countable T}
topological L(I)-structure with a countable base of closed open sets.
An immediate consequence of this is that no L(I) can formulate the T
axiom, saying that for any two points, there are disjoint neighborhoods
of those points. The L(Q?) sentence Q%*zy(x # y), however, does for-
mulate this axiom because of the well-known fact that a space is a Ty
space if and only if the diagonal is closed in the square of the space.
Thus it is not the case that L(Q?) < L(I).

The L(I)-sentence Jxylzz(z # y) expresses that the topology is
nontrivial. Nontriviality cannot be expressed using L(Q?) because of
the following example. Let L consist of just one unary predicate P.
Let A be an infinite set, and form 2 by interpreting P as an infi-
nite set B with infinite complement in A. Let 7 be the trivial topol-
ogy, and let 7' := 7 U {X}, where X is a proper infinite subset of B.
Then (2, 7') is a model of JzlzzPx, while (2, 7) is not. On the other
hand, it is easy to show that the essential parts, relative to L(Q?), of
both (2(,7) and (2, 7') are the same. By Proposition 2 it follows that
(A, 7) =qqzy (A, 7'); thus it is not the case that L(I) < L(Q?).

Ad (iii). We already know L(Q) < L(Q?), and the induction clause
(Qxp)* := Vx(p* — Izzp*) shows how to establish L(Q) < L(I). If
there were translations in the reverse direction in either case, then we
would be contradicting (ii).

Ad (iv). We were introduced to @2 in [9], and we use their translations.
(Note that they treat @2 as a quantifier with two binding variables, but
there is really only one because the two formulas following are regarded
as having only one free variable. So when they write Qzy(¢(x), ¥ (y)),
we write Qazp1.) What is interesting in this result is the fact that
topological operators of different arities can be equivalent to one an-
other.

The translation (-)* that takes L(I) to L(Q2) has ([txp)* :=
Q2y(y = t)p* as its major defining clause; the reverse translation (-)
has (Qxp)* := Jy(p* A Iyz1p*) as its major clause. O

3 |

Another way to see that L(Q) is strictly weaker than L(I) is to
consider the T axiom, the statement that for any two points, at least
one is in an open set not containing the other. This is easy to express
in L(I) (i.e., VaVy((x = y) V Izz(z # y) V Iyz(z # z)), but cannot be
expressed in L(Q). (By contrast, the T} axiom can be so formulated.
This is because the 77 axiom holds if and only if each singleton set is
closed; so we have the L(Q)-sentence VxQy(y # x) expressing this.)
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The reader interested in highly expressive topological languages is
referred to the monograph [4]. There the parametrized language L, a
fragment of monadic second-order logic, is studied in depth.

5. COMPLETENESS ISSUES.

The question of the completeness of a particular logic concerns wheth-
er a given proof theory is enough to include exactly the true statements
as theorems. To make things more precise, suppose we are given a sub-
system (A,K) of a constraint system (#,K). We want to be able
to specify a proof-theoretic mechanism, uniform over languages L(.A),
valid for models in K, and sufficient to provide finitary proofs for all
semantic consequences of sets of sentences in L(A). The uniformity
aspect is achieved via axiom/rule schemata, expressed in terms of gen-
eralized formulae that avoid mention of particular extra predicate and
function symbols. These include the axiom/rule schemata from first-
order logic with equality. When, say, an axiom schema is interpreted
in L(.A), the result is a set of formulae of a particular syntactic shape.
Each such formula may be viewed as a sentence by taking its universal
closure.

For our basic proof theory, then, one that ignores the particulars of
K, we include first-order logic, plus the following axiom schemata:

(Bound Substitution Schema)
Hy T, ... on > HYZp1[2/T] .. 0n[2/7)]

(Extensionality Schema)

N\(gi & ¢:) = (HTTpr ... 00 ¢ HTTY: ... 4,)

i=1
In each schema, H is a generic (m, k, n)-ary operator symbol (n > 0), g
is a string of m variables, and ¥ and Z are strings of k£ distinct variables
such that no z; occurs in any ¢;.

As usual, we define a set ¥ of L(A)-sentences to be consistent if
no contradiction is provable from X, relative to this proof-generating
framework. Clearly every L(A)-structure satisfies all sentences that
are instances of these schemata, so soundness is not a problem. The
first step in proving completeness results for operator languages is the
following “weak completeness theorem,” which may easily be proved
using the method of witnesses (pioneered by L. Henkin [5]; see also [8],
[15], [16] for extensions of this method to other operator languages).
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Proposition 5. Let X be a set of sentences from an operator language
L(H). Then X is consistent if and only if X2 has a model (among all
possible L(H)-structures).

The second step in proving completeness results for operator lan-
guages is model-theoretic: Let (A, K) be a subsystem of the constraint
system (#, K). Define (A4, K) to be complete if it is possible to specify
for each L, a set O of L(A)-sentences such that: (i) every sentence
in ©y, is true in every model in K, ; and (ii) every L(.A)-structure that
is a model of ©f, is semantically equivalent, over A, to some model in
K. The following is immediate.

Proposition 6. Let (H,K) be a complete constraint system, with ©y,
witnessing the fact for each L. Let Y be a set of sentences from L(H).
Then Y is consistent with ©r, if and only if ¥ has a model in K.

So for example, in [8], a constrained L(Q)-structure is defined to
be just an L-structure in which the uncountably-many quantifier ),
has the interpretation as the set of uncountable subsets of the domain
of that structure. A special set Oy, of four simple L((Q;)-schemata is
given, it being easy to show that each instance of these schemata is
true in any constrained structure. The hard part of the L(Q;) com-
pleteness theorem, originally conjectured by W. Craig and G. Fuhrken
in 1962, is showing that every model of @y is semantically equivalent
to a constrained structure; i.e., that this constrained operator language
is complete (via ©p). (In [15] and [16], a similar program is carried out
for the topological languages L(Q) and L([I), inter alia.)

An easy corollary of (finitary) completeness is the model-theoretic
phenomenon of compactness. Define a subsystem (A, K) of a constraint
system (H,K) to be compact if, for any L and any set ¥ of L(A)-sen-
tences: if X has no model in K, , then some finite subset of ¥ has no
model in K .

Proposition 7. Every complete constraint (sub)system is compact.

An easy example of a constraint system (#,K) that is not com-
pact is any one where K consists of finite structures of arbitrarily large
cardinality. The next two results connect completeness/compactness
notions with translation.

Proposition 8. Let (H,K) be a constraint system, with A < B C H.
If (B,K) is compact, so is (A, K).
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Proof. Fix L, and let ¥ be a set of L(.A)-sentences, such that every
finite subset of ¥ has a model in K. Let ¢ — ¢* be a translation that
witnesses L(A) < L(B). Let ©* := {¢* : p € Z}. If {¢f,..., ¢} } is any
finite subset of ¥*, then this set has a model in K, by the definition
of translation and the fact that {¢1, ..., ¢,} has a model in K;,. Since
(B,K) is compact, ¥* has a model in K;,. That structure must also be
a model of X.. O

It would be nice to have an analogue of Proposition 8 with complete
replacing compact. We do not know whether this is true; however, we
have the following weaker result.

Proposition 9. Let (H,K) be a constraint system, and let A and B
be intertranslatable subsets of H. If ¢ — ¢* witnesses L(A) < L(B),
and if ©p witnesses the completeness of L(A), then (©r)* witnesses
the completeness of L(B).

Proof. We wish to show that if (A, «) = (©r)%, then (U, @) is seman-
tically equivalent, over B, to some member of K;. By the definition
of translation, we know (2, «) = O. Since L(A) is complete, (2, «)
is semantically equivalent, over A, to a member of K;,. Now, since
L(B) < L(A), (A, a) is semantically equivalent, over B, to a member
of Kz, by Proposition 3. O

Other issues of translatability and completeness are inspired by the
phenomenon of intersective adjectives in NL (such as green and commu-
tative, etc.). In some cases (m, k,n)-ary operators “behave like predi-
cates;” we make this notion clearer, in the case m = k, as follows.

For simplicity, let H consist of the (m, m, n)-ary operator symbol H,
as well as the (m,0,0)-ary operator (predicate) symbol P that H is
intended to behave like. In the case of intersective adjectives, we have
Hzzp being interpreted as Px A ¢ (see the example above involving
green chairs), so there is the added ingredient of a logical connective.

In a more general setting, we specify an (n-+ 1)-ary Boolean function
f: 2" — 2. and define K/ to consist of all H-structures (A, ) such
that, for any m-ary relations Ry, ...,R, on A, and any @ € A™, we
have H*(a, Ry, ..., R,) = f(P*(a), Ri(a), ..., R,(@)). (So in the inter-
sective adjective case, f: 2> — 2 is the minimization function min.)

Proposition 10. Let (H,K/) be as defined above. Then L(H) < L(P).
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Proof. Let By be a realization of f in terms of logical connectives, in-
troduced as an abbreviation and expressed in Polish notation. Our pro-
posed translation ¢ — ¢* witnessing L(H) < L(P) makes no changes
in terms or formulae until the H-introduction clause, where we make
the definition (HIZ; ...pn)* == BrPt(¢))*[t/T]... (¢))*[t/Z], where
the formula ¢} results from ¢; via a uniform meaning-preserving re-
placement of bound variables, in such a way that no variable in ¢ oc-
curs bound in ¢}. (This may be accomplished, e.g., by first assuming a
well-ordering on the set of variables, and then using a “pick-the-least-
variable-not-previously-seen” type of replacement algorithm. So, for
example, if H is (1,1,1)-ary and f is min, then (restoring infix nota-
tion for logical conjunction)

(Hrox13wo RT119)* = Py A (322 R2112)") [12/21]
= Pzy A (FrzRr123)" [22/21]
= Pxy A (Fz3Rr123)[22/21]
= Pxy A Jz3Rxoxs.)

To see that this works, fix L, let (A, ) € K, and let p be an envi-
ronment on A. We prove by induction on formula complexity that, for
any L(H)-formula o, ||| = ||¢*||®). The least trivial part is the
H-introduction clause; we make the inessential simplification that H
is (1,1,1)-ary. It remains to show that ||Htzy||, = ||BsPt(¢")*[t/z]|,
(where the superscript indicating (2, ) is suppressed), under the in-
ductive assumption that ||(¢')*||, = ||¢||s for every environment o on
A. Let a :=||t||,- We may assume, without loss of generality, that no
variable in ¢ occurs bound in ¢; so ¢’ may be taken to be ¢. Then
the left-hand side of our proposed equality becomes || H*(a, ||Az¢]|,)|l,
while the right-hand side becomes f(P*(a),|¢*[t/z]||,). DBecause
(A, @) € Ky, the left-hand side then becomes f(P“(a), || Az¢],(a)) =
F(P%(a),||¢llpjasa)- What is left to show, then, is the equality
le*[t/z]ll, = ||¢llpja/z- Now ¢ is free for x in ¢; by the nature of the
translation mechanism (-)*, ¢ is free for z in ¢*. Thus, by Proposition
1, the left-hand side is ||¢*(|yja/2], Which, by the inductive hypotheses,
is equal to the right-hand side. O

We would now like to show L(P) < L(H). This, however, requires
a testriction on the Boolean function f. Define f: 2"l 4 92 to be
nonsingular if there is some 3 € 2" such that the one-variable function

f(z,B) is one-one (i.e., either the identity map or the negation map on
2).
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Proposition 11. Let (H,K/) be as defined above. If f is nonsingular,
then L(P) < L(H).
Proof. Our proposed translation ¢ — ¢ witnessing L(P) < L(H)
makes a change only at the atomic level, and then only with the symbol
P. First we pick 8 € 2" such that f(z, 8) is one-one; say it is identically
x. We identify 8 naturally with the corresponding string of (0,0,0)-ary
logical operations, | for false and T for true. Then (P%)* := H{z
(the variable string T being fixed, but arbitrary).

To see that this definition works requires only a verification at the

atomic level. So let (A, a) € K be given, with p an environment on
A. Then

|(Pty...tw)* |, = [|Ht1 - - . tZ B,
= f(P(tallps - - - ltmll ), B)
= P([[tallp, - - s lItmll,)
= ||Pt1 ... tml|,-
If f (x,_B) happens to be identically 1 — z, then we define (Pt)* :
-Htz f.

We close this report with the following completeness result.

o

Proposition 12. Let (H,K’) be as defined above. Then ({H},K') is
complete.

Proof. Let B; be a realization of f: 2"*' — 2 as described earlier,
and let L be given. If f is nonsingular, then we have our conclusion,
by Propositions 9, 10, and 11 (plus completeness for first-order logic).
So suppose f is singular. Then, for all 8 € 2", the map z — f(z, )
is constant. Thus let 3 € {1, T}" be fixed, but arbitrary, and de-
fine ©p to be the set of L(H)-formulae of the form HZ Ty, ..., <
ByHTZ By ... pn. For simplicity, assume H is (1,1,1)-ary, so Oy, is
the set of formulae Hzzy <> ByHzzfy. Let (A, o) € K! | with p an
environment on A. Set a := ||z||®* = ||z||,. Then

|Hzzp|, = H(a, [ \zel],)
= f(P*(a), [|Azell,(a))
= f(P*(a), [|¢llpa/a))
= f(P*(a), ll¢ll,)-

But this is f(|[HzzpB|,,||l¢ll,) because f is singular, and this is
|BfHzxpp||,- This tells us that (A, o) = Oy,
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Now pick an arbitrary L(H)-structure (2,7) that satisfies all sen-
tences in ©7. We need to show that (2, 7n) is semantically equivalent,
over L(H), to a structure in KJ . So for all L(H)-formulae ¢ and all en-
vironments p on A, we have ||Hzzy|, = ||BfHzzP¢||,. Let a := p(z).
Then the left-hand side is H"(a, || Az¢||,), and the right-hand side is
f([HzzB|,, ||¢ll,). But then this is f(||AeHzzf||,(a), | z¢]|,(a)). So
by setting U := ||A\zHzzf)||,, we see: first, that U is independent of p;
and second, that whenever ¢ € A and R € [A — 2] is definable, then
H"(a,R) = f(U(a), R(a)). So define the L(H, P)-structure (2, «) so
that H*(a, R) = f(U(a), R(a)) for all a € A and R € [A — 2] and
P* = U. Then (A, «a) € Ké; and, by Proposition 2, (A, ) =my
(A ). O
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