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MODEL-THEORETIC CHARACTERIZATIONS OF ARCS 
AND SIMPLE CLOSED CURVES 

PAUL BANKSTON 

(Communicated by Thomas J. Jech) 

ABSTRACT. Two compact Hausdorff spaces are co-elementarily equivalent if 
they have homeomorphic ultracopowers; equivalently if their Banach spaces of 
continuous real-valued functions have isometrically isomorphic Banach ultra- 
powers (or, approximately satisfy the same positive-bounded sentences). We 
prove here that any locally connected compact metrizable space co-elementarily 
equivalent with an arc (resp. a simple closed curve) is itself an arc (resp. a 
simple closed curve). The hypotheses of metrizability and local connectedness 
cannot be dropped. 

0. Introduction. An arc is a topological space homeomorphic with the closed 
unit interval I on the real line; a simple closed curve (s.c.c.) is a space homeo- 
morphic with the standard unit circle S in the plane. By a continuum we mean a 
connected compact Hausdorff space; a locally connected metrizable continuum is 
termed a Peano continuum. (Peano continua are precisely those Hausdorff spaces 
that are continuous images of I, by the Hahn-Mazurkiewicz theorem [12].) A sim- 
ple triod is any space homeomorphic with the set { (x, y): - 1 < x < 1 and y = 
0, or x = 0 and 0 < y < 1} in the plane. A point of a connected space is a cut point 
if the complement of that point is disconnected. Our topological nomenclature is 
predominately from Willard [12]. 

Characterizations of I and S go back to the 1920's, principally to the work of 
R. L. Moore. 

0.1 THEOREM (MOORE [12]). If X is a metrizable continuum with exactly 
two noncut points, then X is an arc. C1 

0.2 THEOREM (MOORE [12]). If X is a nondegenerate metrizable continuum 
such that the complement of any two points is disconnected, then X is a s.c.c. C1 

0.3 THEOREM (MOORE [11]). If X is a nondegenerate Peano continuum 
containing no simple triod, then X is either an arc or a s.c.c. 1I 

The first model-theoretic characterization of I and S of which we are aware 
appears in the paper [10] by C. W. Henson, C. J. Jockusch, L. A. Rubel, and G. 
Takeuti. For any space X, let F(X) be its bounded lattice of closed sets. We use 
standard model-theoretic terminology, as can be found in [6]. 
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0.4 THEOREM (HENSON ET AL. [10]). If X is a metrizable space such that 
F(X) is elementarily equivalent with F(I) (resp. with F(S)), then X is an arc 
(resp. a s.c.c.). C1 

The form of Theorem 0.4 is interesting in itself; it characterizes a member of a 
class of spaces, within that class, using a list ("taxonomy") of model-theoretically 
specified topological properties. (We treat this topic more fully in [5].) What makes 
this theorem more than just a routine application of Theorems 0.1 and 0.2 is that 
compactness is not assumed for X. 

Our result is similar to Theorem 0.4 in form but not in content. We characterize 
the same spaces within a smaller class (the locally connected compact metrizable 
spaces) using a different taxonomy. Our methods, which employ Theorem 0.3 
(Theorems 0.1 and 0.2 seem to be useless for our purposes), de not allow us to drop 
compactness; however, there are examples to show that metrizability and local 
connectedness are essential. 

The taxonomy arises as follows. For a compact Hausdorff space X, let C(X) be 
the Banach space of continuous real-valued functions (with the norm of uniform 
convergence). The first-order alphabet appropriate to C(X), introduced by C. W. 
Henson [9], includes vector addition, a unary operation of scalar multiplication 
for each rational scalar, the null vector, and two unary predicates P and Q. The 
interpretation of Px (resp. Qx) is that the norm of x is < 1 (resp. > 1). The 
positive-bounded formulas are built up from the atomic formulas using disjunction, 
conjunction, and quantification bounded over members of the unit ball. For each 
positive-bounded formula q and whole number n > 1, the formula q$n is the nth 
approximation to q and is defined by induction on the complexity of 0. If q is 
atomic, say it is x = y, then q$n is Pm(x - y). If q is Px (resp. Qx) then q$n 
is P(1 - )x (resp. Q(1 + 1 )x). Finally, (q A b)n is q$n A On, (q$ V b)n is q$n V 

On, (3x(Px A q$))n is 3x(Px A qn), and (VX(Px - q))n is Vx(Px -- q$n). Given a 
structure A and a positive-bounded sentence a, we say A approximately satisfies a 
(in symbols A I=A a) if A satisfies an for every n > 1. Our taxonomy is then the 
positive-bounded sentences; the topological property represented by such a sentence 
a is just {X: X is compact Hausdorff and C(X) kA a}. 

The main result of [9] is that two Banach spaces A and B approximately satisfy 
the same positive-bounded sentences if and only if A and B have isometrically 
isomorphic Banach ultrapowers. (Briefly, one forms the Banach ultraproduct HI- A, 
by first taking the usual ultraproduct, removing the elements of infinite norm, and 
then identifying two elements if they are infinitely close.) In the case where the 
Banach spaces are of the form C(X) for X compact Hausdorff, the Banach-Stone 
theorem [7] allows one to recover the topological structure of X from the Banach 
space structure of C(X). In [9], Henson shows that the Banach ultrapower II0BC(X) 
is of the form C(X), where X is a suitable compact Hausdorff space. In [2, 3, 
4] we study the ultracoproduct construction EDXi for compact Hausdorff spaces 
Xi; it turns out that the ultracopower EDX is precisely Henson's X. In general, 
we have C(EDXi) isometrically isomorphic with I-IBC(X,). Putting these facts 
together, we obtain the result that for any two compact Hausdorff spaces X and Y, 
C(X) and C(Y) approximately satisfy the same positive-bounded sentences (i.e. 
X and Y belong to the same taxon in this particular taxonomy), if and only if 
C(X) and C(Y) have isometrically isomorphic Banach ultrapowers, if and only if 
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X and Y have homeomorphic ultracopowers. When this last condition holds, we 
say X and Y are co-elementarily equivalent and write X _ Y. 

There are several equivalent ways of defining the ultracoproduct EDXi, each 
with its particular merits. To give but three, we have: 

(i) the maximal ideal space of 11DC(Xi) (with the natural ring structure); 

(ii) p-1[D], where p: (UiXi) /3(I) is the Stone-Cech lifting of the map that 
takes an element of the disjoint union to its index in I; and 

(iii) the compactification of the topological ultraproduct (see [1]) using ultra- 
products of zero sets from the factors as a Wallman basis (see [3, 8] for 
details, as well as other ways to view EDXi). 

The approach (iii) to the ultracoproduct allows the most flexibility. Because 
each Xi is compact Hausdorff, one may substitute any closed set basis Bi of Xi in 
place of the zero sets, as long as Bi is a sublattice of F(Xi). (One can easily see 
that Bi will then be a Wallman basis satisfying the condition that disjoint members 
of F(Xi) can be separated by disjoint members of Bi. This is more than enough 
to ensure that the compactification using the Wallman basis ID Bi will result in 
EDXi ) 

The relation is an equivalence relation; the co-elementary equivalence of X 
and Y follows from the elementary equivalence of Wallman bases Bx and By for X 
and Y respectively (taken as lattices: use the Keisler-Shelah ultrapower theorem). 
If X and Y are 0-dimensional compact Hausdorff spaces, then X _ Y if and only 
if their Boolean algebras of closed open sets are elementarily equivalent (see [3]). 

In [3] we conjectured that if X is any compact metrizable space co-elementarily 
equivalent with I, then X is an arc. In [8], however, R. Gurevic disproves that 
conjecture with the following. 

0.5 EXAMPLE (GUREVIC [8]). There is a metrizable continuum X such that 
X _ I, but X fails to be locally connected. 0 

Co-elementary equivalence detects connectedness; Gurevic shows that it fails to 
detect local connectedness. In fact, he proves that if D is any nonprincipal ultrafilter 
on the natural numbers w, then ED I cannot be locally connected. He uses this fact, 
plus a downward Lowenheim-Skolem type argument, to produce his Example 0.5. 

The new result in this article is the following. 

0.6 THEOREM. Let X be any locally connected compact metrizable space co- 
elementarily equivalent with I (resp. S). Then X is an arc (resp. a s.c.c.). 

The proof, an outgrowth of techniques developed in [3 and 4], is 
continua-theoretic, making crucial use of Moore's Theorem 0.3. Before proceeding 
to the proof, we include an example, kindly suggested by the referee to show that 
metrizability is an indispensable hypothesis in Theorem 0.6. 

0.7 EXAMPLE (REFEREE). There is a locally connected continuum X -such 
that X _ I, but X fails to be metrizable. 

CONSTRUCTION. Let T be the first order theory of dense linear orderings with 
distinct endpoints. If A is a model of T, let LA be the lattice of all finite unions 
of closed intervals of A. LA forms a closed set basis for the associated linear order 
space, which we denote XA. If A is a complete ordering, then XA is connected, 
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locally connected, compact Hausdorff, and CA is a Wallman basis that can be used 
to form the ultracopowers of XA. 

Now let T' be the set of all first order sentences of lattice theory that are true 
in all lattices CA, where A is a model of T. Given a model C of T', let A be the set 
of atoms of C. It is easy to show that there are two linear orderings on A, one the 
reverse of the other and both models of T, such that C LA where A is either one 
of these orderings. Since T is No-categorical, so is T'. Consequently, if A and B are 
any two models of T, then CA and 4B are elementarily equivalent. So let A and 
B be complete models of T, say A is the ordering on the closed unit interval and 
B is the ordering on the long line with last element. Then XA = I is metrizable, 
while XB is not. However, CA and LB are elementarily equivalent; hence they have 
isomorphic ultrapowers. Therefore XA and XB are co-elementarily equivalent. 0 

1. Proof of Theorem 0.6. As remarked above, if (Xi: i E I) is a collection 
of compact Hausdorff spaces and D is an ultrafilter on I, then the ultraproduct of 
closed set lattices HDF(Xi) represents a Wallman basis for the closed subsets of 
E DXi. In particular, if Ai and Bi are closed subsets of Xi for each i E I, then 
the sequences (Ai: i E I) and (Bi: i E I) represent the same closed subset of 
EDXi if and only if {i: Ai = Bi} E D. We denote this basic closed set as EDAi; 
the singletons EDxi = ED{xi} correspond exactly to the points of the topological 
ultraproduct, which densely embeds in E DXi. It is easy to see that SD (D) commutes 
with finite unions and intersections. 

Let P be any topological property. We say P is "preserved by co-elementary 
equivalence" if whenever X and Y are compact Hausdorff, X =_ Y, and X has 
property P, then Y also has property P. Easy to prove (see [3]) is the fact that the 
properties of finiteness and connectedness are preserved by co-elementary equiva- 
lence. (Local connectedness and metrizability are not so preserved, as a consequence 
of Examples 0.5 and 0.7. Also, since there is a sentence q in the first order language 
of bounded lattices such that if X is any compact Hausdorff space, then X is locally 
connected if and only if F(X) 1 X, we see by Example 0.5 that the co-elementary 
equivalence of metrizable continua X and Y does not necessarily imply that F(X) 
and F(Y) are elementarily equivalent.) 

We will need the following fact (which also played an important role in [4]). 

1.1 LEMMA (GUREVI1 [4, 8]). Let (Xi: i E I) be compact Hausdorff spaces. 
For i E I, let xi E Xi, with Ci the (connected) component of xi in Xi. Then EDCi 
is the component of EDXi in EDXi. J 

A key property that proved useful in [4] in the counting of co-elementary equiv- 
alence classes, and that will prove useful here, is "n-odicity". Let X be compact 
Hausdorff, n < w. An n-wheel on X is a cover {K} U {Lj: j < n} of X by subcon- 
tinua such that: 

(i) K\ Uj<n Lj 5 0 (K is the "hub"); 
(ii) Lj\K $ 0 for j < n (Lj is a "spoke"); 

(iii) Lj n K$0 for j < n; and 
(iv) forj<k<n,LjnfLk= 0 

Of course, if X has an n-wheel then X is a continuum. X is n-odic if X has 
an n-wheel but no m-wheel for m > n. Note that simple triods are 3-odic, arcs 
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are 2-odic, simple closed curves are 1-odic, and that the 0-odic continua are the 
indecomposable continua. Note also that higher dimensional cells, such as 12, have 
n-wheels for all n < w. The following uses Lemma 1.1. 

1.2 LEMMA [4]. The property of being n-odic for any n < w is preserved by 
co-elementary equivalence. 0 

We say that a compact Hausdorff X contains an n-wheel if X has a subcon- 
tinuum that has an n-wheel. Obviously arcs and simple closed curves contain no 
3-wheels. 

The main new result we require to prove Theorem 0.6 is the following. 

1.3 LEMMA. Suppose X and Y are co-elementarily equivalent compact Hauvs- 
dorif spaces, and that X is locally connected and contains an n-wheel. Then Y also 
contains an n-wheel. 

PROOF. Assume D and 6 are ultrafilters, and that h: E D2X ` E Y is a home- 
omorphism. Let {K} U {Lj: j < n} be an n-wheel on X. An n-wheel is called fat if, 
in clauses (i)-(iii) of the definition above, the intersections are not only nonempty, 
but have nonempty interiors. 

Now while the original n-wheel may not be fat, we may "fatten" the hub and 
spokes using a compactness argument so that the resulting family {K'} U {L': j < 
n} would be a fat n-wheel if the new sets were only connected. In this we are in 
luck: since X has a basis of connected open sets, we may easily arrange for the 
sets K', Lj, j < n, to be connected as well. So without loss of generality, we may 
assume that our original n-wheel {K} U {Lj: j < n} is fat, and we see immediately 
that {X DK} U {XEDLj: j < n} is a fat n-wheel in EDX. Let K' = h[EDK]I Lj = 
h [EDLj], j < n. Then, since h is a homeomorphism, {K'} U {L : j < n} is a fat 
n-wheel in E Y. 

Since K'\ Uj<n L', has nonempty interior, there is a point 

EDXiCE K'\ U Lj. 
j<n 

Similarly, for j < n, there is a point XE yj,i E L',\K'. Using a second compactness 
argument, one can show that if C and D are any disjoint closed subsets of SEY, 
there are, for i E I, open sets Ui, Vi C Y, with disjoint closures, such that C C E6Ui 
and D C EEVi. Of course, 36Ui n XEvi = 0. Hence, for each j < n, we can 
find closed EECj,i D L' such that EeCj,i n feCk,i = 0, j < k < n, and XExi ? 
Uj<n XECj,i. Using Lemma 1.1, let YELj,i be the component of SECj,i containing 
SEYj,i, j < n. Then LV, being connected, must be contained in YELj,i. Similarly 
we obtain an ultracoproduct subcontinuum E Ki D K containing no point E 6Yj,i. 
Thus the family {Y4Ki} U {JELj,i: j < n} is an n-wheel in YEY consisting of 
ultracoproduct subcontinua. From this we easily infer that {i: {Ki } U {LL: j < n} 
is an n-wheel in Y } E D; whence Y contains an n-wheel. 0 

Now we are ready to finish the proof of Theorem 0.6. Assume X is locally 
connected compact metrizable, and suppose X _ I. Since I is connected and 
infinite, so is X. Since I is 2-odic, so too is X, by Lemma 1.2. S is 1-odic, so 
X cannot be a s.c.c. X is a nondegenerate Peano continuum which is not a s.c.c. 
Hence, by Theorem 0.3, all we need to show is that X contains no simple triod. 
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Suppose the contrary. Since simple triods are 3-odic, X contains a 3-wheel. By 
Lemma 1.3, so does I. This is a clear contradiction, and we are done. The argument 
in which S replaces I, and vice versa, is similar. 

1.4 REMARKS AND QUESTIONS. (i) Theorem 0.6 is a characterization theorem 
in which a space X is characterized within a class K of spaces via -. (Equivalently, 
via the C-taxonomy described earlier. This topic is more fully explored in [5].) 
The definition of EDXi makes sense for arbitrary Tichonov spaces, and in [3] it 
is proved that EDXi and ED3(Xi) are naturally homeomorphic. Thus every finite 
space is characterized within the class of Tichonov spaces via _ (where the relevant 
taxonomy is now the C*-taxonomy in which only bounded continuous functions are 
considered). Clearly no infinite space can be so characterized, but there are many 
interesting variations on the question. For example, since every Tichonov space is 
co-elementarily equivalent with a compact metrizable space [4, 8], it follows that no 
noncompact Tichonov X can be characterized via _ in a class K of Tichonov spaces 
which contains X as well as all compact metrizable spaces. Is every Tichonov space 
co-elementarily equivalent with a noncompact metrizable space? A positive answer 
to this would yield a host of negative results about characterizability. In particular, 
it would be interesting to see whether compactness is an essential hypothesis in 
Theorem 0.6. 

(ii) We would like to broaden our inventory of locally connected compact metriz- 
able spaces M that can be substituted for I and S in Theorem 0.6. This can easily 
be done to a small extent; M can be any finite disjoint union of points, arcs and 
simple closed curves. Beyond this trivial generalization, however, it seems that 
new techniques are called for. At present we do not even know whether M can 
be a simple triod, let alone a finite 1-complex. As for higher dimensional Peano 
continua, there are well-known analogues of Theorems 0.1 and 0.2 characterizing 
2-cells and 2-spheres, enabling Theorem 0.4 to be broadened to include 2-complexes 
[5]. However, these analogues seem to suffer from the same lack of applicability 
in our situation because they involve cut (and noncut) points. (See, e.g., Remark 
3.2.11 in [3].) 

(iii) While it is relatively easy to construct pairs of nonhomeomorphic metrizable 
continua that are co-elementarily equivalent, the problem becomes more difficult 
(and as yet unsolved) when we further require local connectedness. Especially in 
light of Theorem 0.6, it is a natural (and indeed inevitable) question whether there 
are any Peano continua that cannot be characterized via _ within the class of 
locally connected compact metrizable spaces. 
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