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Abstract. A continuous surjection between compacta is called co-existential
if it is the second of two maps whose composition is a standard ultracopower
projection. A continuum is called co-existentially closed if it is only a co-
existential image of other continua. This notion is not only an exact dual of
Abraham Robinson’s existentially closed structures in model theory, it also
parallels the definition of other classes of continua defined by what kinds of
continuous images they can be. In this paper we continue our study of co-
existentially closed continua, especially how they (and related continua) behave
in certain mapping situations.

1. introduction

By a compactum we mean a compact Hausdorff space, a continuum is a con-
nected compactum. A subcompactum (resp., subcontinuum) of a space is just
a subspace that is itself a compactum (resp., continuum).

Given a compactum X and an ultrafilter D on an index set I (i.e., D is a maximal
filter in the Boolean power set algebra of I), the ultracopower of X via D is
denoted XI \ D. One easy way to describe this construction is to regard I as a
discrete space, letting p : X× I → X and q : X× I → I be the standard projection
maps. Applying the Stone-Čech compactification functor β( ) (see, e.g., [23, 24]),
we regard D as a point in β(I) and define the ultracopower to be the inverse image
of D under qβ . We denote by pX,D the restriction of pβ to XI \ D. It is the
standard ultracopower (codiagonal) projection, a continuous surjection to
X .

The construction of ultracopowers (and, more generally, of ultracoproducts) of
compacta first appeared in [1]; and in [10] R. Gurevič further exploited the connec-
tion between ultracoproducts of compacta and ultraproducts of lattices to settle
some questions raised in [1]. Ultracopowers of arcs (i.e., homeomorphic copies of
the closed unit interval) also figured prominently in the independent work of J.
Mioduszewski [17] to study the Stone-Čech compactification of the half-open unit
interval. (See [11, 21, 22, 25] for further work along these lines.)

A continuous surjective mapping f : X → Y between compacta is called a map

of level ≥ 0. Given n < ω, f is called a map of level ≥ n + 1 if there is
an ultracopower Y I \ D and a map g : Y I \ D → X of level ≥ n such that the
composition f ◦g equals pY,D. This defines inductively an ordinal-indexed hierarchy
of maps between compacta (the co-elementary hierarchy); for any limit ordinal
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α, f is of level ≥ α if f is of level ≥ β for all β < α. By Theorem 2.10 in [5],
the hierarchy ends at level ≥ ω, at which point we have the co-elementary maps
(i.e., maps f : X → Y for which there exists a homeomorphism of ultracopowers
h : XI\D → Y J\E such that pY,E ◦h = f ◦ pX,D). Because of this, we will consider
only ordinal levels up to and including ω in the sequel. Terms like α±1 are defined
to be α, if α is infinite, and are defined as usual otherwise.

Maps of level ≥ 1 are referred to as co-existential. These mappings were
introduced in [5] as topological analogues (in a category dual sense, see [16]) of
existential embeddings in model theory (see [12, 15, 20]); they also arise naturally
from existential embeddings, giving us more than just an analogue. Suppose X

and Y are compacta with lattice bases BX and BY , respectively. (This means
they are closed-set bases that are bounded lattices under union and intersection.)
If f : BY → BX is an existential embedding (think of one field being algebraically
closed relative to a larger field), and if f∗ : X → Y is the natural continuous
surjection induced by f , then f∗ is co-existential.

Here is a summary of what is already known about co-existential maps. (See,
e.g., [19] for definitions of continuum-theoretic notions.)

Theorem 1.1. (1) (Theorems 2.4 and 2.7 in [6]) Co-existential maps are weakly
confluent; in the case of locally connected range, they are monotone.

(2) (Proposition 2.5 in [6] and Theorem 7.1 in [7]) Co-existential maps preserve
the topological properties of: being infinite, being disconnected, being totally
disconnected, being an indecomposable continuum, being a hereditarily in-
decomposable continuum, and being a hereditarily decomposable continuum.

(3) (Theorem 2.6 in [6] and Theorem 2.5 in [7]) Co-existential maps (resp.,
maps of level ≥ 2) preserve or lower (resp., preserve) covering dimension.

(4) (Corollaries 5.4 and 5.6 in [8]) Co-existential maps (resp., maps of level ≥ 2)
preserve or lower (resp., preserve) the multicoherence degree of continua.

(5) (Proposition 2.7 in [4] and Theorem 2.7 in [6]) A function from an arc to
a compactum is a co-existential (equivalently, a co-elementary) map if and
only if the range is an arc and the map is a continuous monotone surjection.

In analogy with the model-theoretic notion of a relational structure being exis-
tentially closed relative to a class of structures of which it is a member (again, see
[12, 15, 20]) we define a co-existentially closed continuum to be a continuum
that can be only a co-existential image under maps whose domains are continua.
Co-existentially closed continua were first introduced in [6] (which was written be-
fore [5], despite appearing later). There are other well-known classes of continua
defined in a similar fashion; most notably we have Class(C) (resp., Class(W )), the
class of metrizable continua that can be only confluent (resp., weakly confluent) im-
ages under maps whose domains are metrizable continua. These two classes were
first studied by A. Lelek; one of the most interesting results being that Class(C)
consists precisely of the hereditarily indecomposable metrizable continua. (See [19]
for details.)
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The following is a summary of what is already known about co-existentially
closed continua.

Theorem 1.2. (1) (Theorem 6.1 in [6]) Every nondegenerate continuum is a
continuous image of a co-existentially closed continuum of the same weight.

(2) (Theorem 2.7 in [7]) A co-existential image of a co-existentially closed con-
tinuum is a co-existentially closed continuum.

(3) (Corollary 4.13 in [8]) Every co-existentially closed continuum is a heredi-
tarily indecomposable continuum of covering dimension one.

(4) (Theorem 4.1 in [7]) There are at least two topologically distinct metrizable
co-existentially closed continua.

Remark 1.3. We could just as easily have defined the notion of co-existentially
closed compactum; in this setting, however, there is a simple charactization. By
Theorem 3.1 in [5], the co-existentially closed compacta are precisely the Boolean

spaces (i.e., totally disconnected compacta) without isolated points. So in partic-
ular, if compactum is substituted for continuum in Theorem 1.2 (and infinite is
substituted for nondegenerate), then clauses 1 and 2 are true, and clauses 3 and 4
are false (no matter how one defines hereditarily indecomposable compactum).

A class of compacta closed under co-elementary images, as well as the taking of
ultracoproducts (like the class of co-existentially closed compacta) is called a co-

elementary class.

We end this and succeeding sections with relevant (annotated) open questions.

Open Questions 1.4. (1) Is the pseudo-arc a co-existentially closed contin-
uum? [See, e.g., [14] and [19] for extensive discussions on this very inter-
esting space, characterized as the unique metrizable hereditarily indecom-
posable arc-like continuum. By Theorem 1.2(3), the answer would be yes if
we could show the existence of a metrizable co-existentially closed contin-
uum that is arc-like. By Theorem 1.2(4), there must be a co-existentially
closed continuum that is not arc-like, hence not a pseudo-arc.]

(2) Is the class of co-existentially closed continua co-elementary? [This would
provide a “Nullstellensatz” for the class of continua. Since the class is
already closed under co-elementary (indeed, co-existential) images, all we
need to do is show it closed under the taking of ultracoproducts.]

2. terminal wedges of maps

Define a terminal wedge of maps to be a diagram X
f
→ Z

g
← Y , where X ,

Y and Z are compacta and f : X → Z, g : Y → Z are continuous maps. An
initial wedge is defined similarly, with the only difference being that the domains
and ranges are reversed. Z is called the base of the wedge (whether terminal or

initial). A terminal wedge X
f
→ Z

g
← Y and an initial wedge U

r
← W

s
→ V are

commutators of one another if:

(i) X = U and Y = V ; and
(ii) f ◦ r = g ◦ s (i.e., the obvious mapping square commutes).

Remark 2.1. Every terminal wedge X
f
→ Z

g
← Y of maps has a commutator,

X
r
← W

s
→ Y namely the fiber product (or pullback), where W = {(x, y) ∈

X × Y : f(x) = g(y)}, and r and s are the restricted coordinate projections. If the
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maps f and g are of level ≥ 0, then so are the maps r and s. In the setting of
continua this construction need not be connected, however. For instance, if X, Y ,
and Z are all simple closed curves; i.e., homeomorphs of (and represented by)
the standard unit circle consisting of complex numbers of norm 1, and f = g is the
squaring map, then the components of W are the two sets {(x, y) ∈ X×X : x = y}
and {(x, y) ∈ X ×X : x = −y}.

Let α ≤ ω. A compactum (resp., continuum) Z is a level ≥ α base compactum

(resp., continuum) if for every terminal wedge X
f
→ Z

g
← Y of maps of level ≥ α,

where X and Y are compacta (resp., continua) there is a commutator X
r
←W

s
→ Y ,

where W is a compactum (resp., continuum) and r and s are maps of level ≥ α.
(This is a topological analogue of the notion of amalgamation base in model theory;
see, e.g., [12].) By Remark 2.1, every compactum is a level ≥ 0 base compactum;
by Theorem 1.1(2), if α ≥ 1, then a continuum is a level ≥ α base continuum if
and only if it is a level ≥ α base compactum. One goal of this section is to show
that every co-existentially closed continuum is a level ≥ 0 base continuum.

Theorem 2.2. Let X
f
→ Z

g
← Y be a terminal wedge of maps, where f and g are

maps of levels ≥ α and ≥ β, respectively, α, β ≤ ω.

(1) If α is positive, the wedge has a commutator X
r
← W

s
→ Y , where r and s

are maps of levels ≥ min{α− 1, β} and ≥ ω, respectively. Furthermore, if
Y is a continuum, then so is W .

(2) If both α and β are positive, the wedge has a commutator X
r
← W

s
→

Y , where r and s are maps of levels ≥ α − 1 and ≥ β − 1, respectively.
Furthermore, if Z is a continuum, then so is W .

Proof. Ad (1): Let X
f
→ Z

g
← Y be the given terminal wedge, where f and g

are maps of levels ≥ α ≥ 1 and ≥ β, respectively. Then there is an ultracopower
map h : ZI\D → X , of level ≥ α − 1, such that f ◦ h = pZ,D. Using the func-
toriality of ( )I\D, we set W := Y I\D and r := h ◦ (gI\D). By Corollary 2.4 in
[5], the ultracopower map gI\D is of level ≥ β. Also we have the commutativity
pZ,D ◦ (gI\D) = g ◦ pY,D. By Proposition 2.5 in [5], the composition of two maps
of level ≥ λ is again a map of level ≥ λ; hence r is a map of level ≥ min{α− 1, β}.
Setting s := pY,D, we have our advertised map of level ≥ ω, and f ◦ r = g ◦ s. By
Theorem 1.1(2), W is a continuum if Y is.

Ad (2): Now assume both α and β are positive. Then there are:

(i) compacta U , V ; maps h : U → X , j : V → Y , of levels ≥ α−1 and ≥ β−1,
respectively; and

(ii) maps p : U → Z, q : V → Z, both of level ≥ ω, where f ◦ h = p and
g ◦ j = q.

By the argument in the last paragraph, there is a compactum W and maps m :
W → U , n : W → V , both of level ≥ ω, such that p ◦m = q ◦n. Set r := h ◦m and
s := j ◦n. Then, again by Proposition 2.5 in [5], r and s are maps of levels ≥ α− 1
and ≥ β − 1, respectively, and f ◦ r = g ◦ s. Finally, if Z is a continuum, then so
are U and V ; hence so is W (again by Theorem 1.1(2)). �

The following is now an immediate consequence of Theorem 2.2.
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Corollary 2.3. (1) Every co-existentially closed continuum is a level ≥ 0 base
continuum.

(2) Every compactum (resp.,continuum) is a level ≥ ω base compactum (resp.,continuum).

The next result summarizes what we know about level ≥ α base compacta, for
α ≤ ω.

Corollary 2.4. All compacta are level ≥ α base compacta for α ∈ {0, ω}; all
Boolean spaces without isolated points are level ≥ α base compacta for α ≥ 2.

Proof. The first clause of the assertion follows from Remark 2.1 and Corollary
2.3(2). From Remark 1.3, the class of co-existentially closed compacta is closed
under the taking of ultracoproducts. It is not hard to show, then, that continuous
surjections between co-existentially closed compacta are maps of level ≥ ω. (This
actually follows from closure under ultracopowers.) Now the property of being a
co-existentially closed compactum is preserved by inverse images of maps of level

≥ 2. Consequently if X
f
→ Z

g
← Y is any terminal wedge of maps of level ≥ α, for

α ≥ 2, and if Z is a co-existentially closed compactum, then so are X and Y ; and
f and g are maps of level ≥ ω. We finish by applying Theorem 2.2. �

We turn now to strengthening the notion of level ≥ α base compactum/continuum.
Among several possibilities, the most obvious is to allow more than just two maps
in the definition. A generalized terminal wedge of maps is an indexed diagram

〈Xi
fi

→ Z : i ∈ I〉, where each fi is a continuous map from the compactum Xi to
the compactum Z (the base of the generalized wedge). A commutator for the

generalized terminal wedge is just a generalized initial wedge 〈Xi
ri← W : i ∈ I〉,

where W is a compactum and each ri : W → Xi is a map such that whenever i

and j are in I, we have fi ◦ ri = fj ◦ rj .
Let α ≤ ω. We define a compactum (resp., continuum) Z to be a generalized

level ≥ α base compactum (resp., continuum) if for every generalized terminal

wedge 〈Xi
fi

→ Z : i ∈ I〉 of maps of level ≥ α, where each Xi is a compactum (resp.,

continuum), there is a commutator 〈Xi
ri← W : i ∈ I〉, where W is a compactum

(resp., continuum) and each ri is a map of level ≥ α. In [13] J. Krasinkiewicz
proved the (surprisingly difficult) result that any arc is a generalized level ≥ 0 base
continuum. It turns out that the use of the adjective generalized, as it applies to
level ≥ α base compacta/continua, is redundant.

Theorem 2.5. Let α ≤ ω. Then every level ≥ α base compactum (resp., contin-
uum) is a generalized level ≥ α base compactum (resp., continuum).

Proof. Fix α ≤ ω and assume Z is a level ≥ α base continuum. Let I be any
set (which we may as well assume to have cardinality ≥ 2), and fix a generalized

terminal wedge 〈Xi
fi

→ Z : i ∈ I〉, with base Z, where each fi is a map of level ≥ α.

In order to obtain the desired commutator 〈Xi
ri← W : i ∈ I〉 such that each ri is

also a map of level ≥ α, we first assign a well ordering < to I, letting i0 denote the
<-first element.

Next we construct inductively an inverse system 〈Ui, gij : i ≤ j ∈ I〉 of compacta
and bonding maps of level ≥ α (i.e., each gij : Uj → Ui, i ≤ j ∈ I, is a map of level
≥ α, each gii is the identity map on Ui, and, for i ≤ j ≤ k ∈ I, gik = gij ◦ gjk), as
well as maps hi : Ui → Xi, i ∈ I, also of level ≥ α, in such a way that:
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(i) hi0 is the identity map witnessing that Ui0 = Xi0 ; and
(ii) for each i ≤ j ∈ I, we have fj ◦ hj = fi ◦ (hi ◦ gij).

For the moment let us assume such a construction possible. Then we set the
compactum W to be the limit of the inverse system 〈Ui, gij : i ≤ j ∈ I〉, with
projection maps gi : W → Ui, i ∈ I. Then, by Theorem 3.4 in [5] (the α-chains
theorem), each gi is a map of level ≥ α. Set ri := hi◦gi : W → Xi, i ∈ I. Then each
ri is a map of level ≥ α (Proposition 2.5 in [5]). To show commutativity, if i, j ∈ I,
say i ≤ j, we have fi ◦ri = fi ◦ (hi ◦gi) = fi ◦ (hi ◦ (gij ◦gj)) = fj ◦ (hj ◦gj) = fj ◦rj .

The actual construction is easy: at successor levels use the fact that Z is a level
≥ α base compactum; at limit levels use inverse limits and argue as in the last
paragraph.

Finally the argument above works equally well with compactum replaced with
continuum. �

We do not yet know whether the arc is a level ≥ α base continuum for α ≥ 1,
but there is a small amount we can say on the subject nonetheless. First we define
a generalized terminal wedge to be jointly injective if for any point in the base,
at most one inverse image of that point has more than one element.

Theorem 2.6. Let V := 〈Xi
fi

→ Z : i ∈ I〉 be a generalized terminal wedge con-

sisting of arcs and maps of level ≥ 1, with 〈Xi
ri← W : i ∈ I〉 the associated fiber

product.

(1) If V is not jointly injective, then W is a continuum that is not an arc and
no projection ri is a map of level ≥ 2.

(2) If V is jointly injective and the index set I is at most countable, then W is
an arc and each projection ri is a map of level ≥ ω.

Proof. Ad (1): By Theorem 1.1(1), all the maps fi are monotone surjections. So
let i0 ∈ I and x ∈ Xi0 be fixed. Then r−1

i0
[{x}] is the product

∏
i∈I Fi, where Fi

is {x} if i = i0, and is f−1

i [{fi0(x)}] otherwise. Since each fi is monotone, each ri

must be monotone too, and W is therefore a continuum.
Now suppose V is not jointly injective. Then there is some z ∈ Z and two distinct

i0, i1 ∈ I such that f−1

i0
[{z}] and f−1

i1
[{z}] are subarcs of Xi0 and Xi1 , respectively.

So
∏

i∈I f−1

i [{z}] is a subcontinuum of W that contains a homeomorphic copy of
the closed unit square; hence, by elementary dimension theory, the covering dimen-
sion of W is at least 2. Thus W is a continuum that is not an arc. Furthermore,
by Theorem 1.1(3), no projection ri can be a map of level ≥ 2.

Ad (2): Next suppose V is jointly injective and that I is at most countable. We

lose no generality in assuming I = ω, and we write V = 〈Xn
fn

→ Z : n < ω〉. By
Theorem 1.1(5), since the projections rn are monotone surjective maps, all we need
to show is that W is an arc. And for this, since our index set is countable and
therefore W is a metrizable continuum, it suffices to show (by a classic result of
R. L. Moore, see Theorem 6.17 in [19]) that W has just two noncut points (the
minimum number allowed for any nondegenerate continuum, see Theorem 6.6 in
[19]).

To set things up, assume each arc Xn is the standard unit interval [0, 1]. For
each n < ω we may order Xn via the usual ordering or its reverse, depending upon
whether or not fn is ≤-preserving with respect to the usual ordering. For this



CO-EXISTENTIALLY CLOSED CONTINUA 7

reason, we are safe in the assumption that each fn is ≤-preserving. Denote points
in W as sequences x = 〈x0, x1, . . . 〉, and define x < y in W to hold just in case
x 6= y, and if n is the first index where xn 6= yn, then xn < yn. (This is just the
lexicographic ordering restricted to W .) Since each fn(0) is 0 and each fn(1) is 1,
the points p := 〈0, 0, . . . 〉 and q := 〈1, 1, . . . 〉 are respectively the minimal and the
maximal elements in this linear ordering on W . We show that every other point of
W is a cut point.

Fix a ∈W \{p, q}. We endeavor to show that the “half-open” intervals [p, a) and
(a, q] (necessarily forming a cover of W \ {a} by nonempty disjoint sets) are open
sets in W . For each m < ω, set Um := W ∩ (

∏
n<ω Bn) and Vm := W ∩ (

∏
n<ω Cn),

where, for n < ω, Bn (resp., Cn) is [0, an) (resp., (an, 1]) if n = m, and is [0, 1]
otherwise. Then Um and Vm are disjoint open subsets of W , each contained in
W \ {a}; a point x ∈ W is in Um (resp., Vm) if and only if xm < am (resp.,
xm > am). We are done once we show that, for some m < ω, [p, a) = Um and
(a, q] = Vm. Indeed, equality will follow once we show [p, a) ⊆ Um and (a, q] ⊆ Vm.

We start by noticing that, since the maps fn are ≤-preserving, there must be
some entry, say am, of a that is neither 0 nor 1. Since all the compositions fn ◦ rn

are equal, we may fix a single b ∈ Z that is equal to fn(an) for each n. If it
happens that b = 0, then, by joint injectivity, it must be the case that an = 0 for
all n 6= m. Suppose x < a. Then xn < an for some n < ω; hence xm < am. Thus
[p, a) ⊆ Um. If now x > a and it is not the case that xm > am, then (because
each fn is ≤-preserving) fm(xm) ≤ fm(am) = 0. By joint injectivity we know that
xn = 0 for n 6= m. But xn > an for some n < ω, and no such n can equal m. This
contradiction tells us that (a, q] ⊆ Vm.

In the event b = 1 we argue much as we did above, so suppose 0 < b < 1.
Then 0 < an < 1 for every entry an of a. Pick (the unique) m such that f−1

m [{b}]
is nondegenerate, if there is one; otherwise let m be arbitrary. The argument is
now similar to that in the last paragraph: If x < a, but xm ≥ am, then for some
n 6= m we have xn < an. By joint injectivity, fn(an) < b; hence fm(xm) < b.
Since xm ≥ am and fm is ≤-preserving, we have a contradiction. Thus [p, a) ⊆ Um;
similarly we conclude (a, q] ⊆ Vm, and the proof is complete. �

Remark 2.7. Define a continuum to be a generalized arc if it has exactly two
noncut points (like an arc, but not necessarily metrizable). From the proof of The-
orem 2.6(2) it is easy to show that the fiber product of a terminal wedge of gen-
eralized arcs and monotone continuous surjections is again a generalized arc, no
matter what the size of the index set. (Of course a suitable lexicographic order on
the fiber product depends on a well ordering of that index set.)

Open Questions 2.8. (1) Is the pseudo-arc a level ≥ 0 base continuum? [Clearly
yes if Open Question 1.4(1) has an affirmative answer, because of Corollary
2.3(1).]

(2) Which compacta are level ≥ 1 base compacta?
(3) Give nondegenerate examples of continua that are level ≥ α base continua,

1 ≤ α < ω. For example, is the arc a level ≥ 1 base continuum? [If
Open Question 1.4(2) had an affirmative answer; indeed if the class of
co-existentially closed continua were closed under the formation of ultra-
copowers, we could conclude, as in Corollary 2.4, that the co-existentially
closed continua are level ≥ α base continua for α ≥ 2.]
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(4) Find examples (if such exist) of continua that are not level ≥ α base con-
tinua, for α < ω.

3. α-equivalence

In this section we show that the co-existientially closed compacta (resp., continua)
share much in common with one another. Let 1 ≤ α ≤ ω. For compacta X and Y ,
we say X is α-dominated by Y (and write X ≤α Y ) whenever there is an initial

wedge X
f
← Z

g
→ Y , where f and g are maps of level ≥ α−1 and ≥ ω, respectively.

Remark 3.1. (1) The model-theoretic analogue of X ≤α Y may be written the
same way, A ≤α B, and interpreted to mean that every Π0

α sentence true
in B is also true in A. This is equivalent to there being an embedding of
level ≥ α− 1 from A into an ultrapower of B (see, e.g., [9]).

(2) Clearly saying X ≤α Y is weaker than having X be an image of Y under a
map of level ≥ α− 1.

(3) If X ≤1 Y and Y is connected (resp., discrete with ≤ n points), then so is
X.

(4) In the definition of X ≤α Y above, the map g may be taken to be of level
≥ α. For in that case, we may construct an ultracopower triangle over g

and use the fact that the class of maps of any fixed level ≥ β is closed under
composition.

Proposition 3.2. (1) The relations ≤α, 1 ≤ α ≤ ω, are transitive.
(2) If 2 ≤ α ≤ ω and X ≤α Y , then Y ≤α−1 X.

Proof. Ad (1): Suppose X ≤α Y ≤α Z; say we have initial wedges X
f
← U

g
→ Y

and Y
h
← V

j
→ Z, where f and h are maps of level ≥ α− 1, and g and j are maps

of level ≥ ω. Using Theorem 2.2(1), we have a commutator U
r
← W

s
→ V for the

terminal wedge U
g
→ Y

h
← V , where r and s are maps of levels ≥ α − 1 and ≥ ω,

respectively. Because mapping composition preserves level (Proposition 2.5 in [5]),
f ◦ r and j ◦ s now witness that X ≤α Z holds.

Ad (2): Suppose X ≤α Y ; say we have the initial wedge X
f
← U

g
→ Y , where f

and g are maps of levels ≥ α − 1 and ≥ ω, respectively. Since α − 1 ≥ 1, we have

an initial wedge X
k
← Z

h
→ U , where k is a map of level ≥ ω, h is a map of level

≥ α − 2, and k = f ◦ h. Then the initial wedge X
k
← Z

g◦h
→ Y witnesses the fact

that Y ≤α−1 X . �

We now define two compacta X and Z to be α-equivalent, 1 ≤ α ≤ ω (in
symbols, X ≡α Y ), if each is α-dominated by the another. By Proposition 3.2(1),
≡α is a genuine equivalence relation; by Proposition 3.2(2), ω-dominance and ω-
equivalence are the same relation.

Remark 3.3. In [1] the notion of co-elementary equivalence was introduced: two
compacta X and Y are co-elementarily equivalent if an ultracopower of one is
homeomorphic to an ultracopower of the other. This is the topological version of
elementary equivalence in model theory, thanks to the ultrapower theorem of Keisler
and Shelah (see [9]). Indeed, two Boolean spaces are co-elementarily equivalent if
and only if their Boolean lattices of closed-open sets are elementarily equivalent;
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moreover, two compacta are co-elementarily equivalent if some lattice base of one
is elementarily equivalent to some lattice base of the other. It is not hard to show
that co-elementary equivalence and ω-equivalence are the same relation. [Given

a witness X
f
← Z

g
→ Y for the ω-equivalence of X and Y ; i.e., both f and g

are co-elementary maps, use the definition, plus the fact that compositions of co-
elementary maps are co-elementary, to justify the assertion that we may take g to be
a standard ultracopower projection map. Now apply the definition of co-elementary
map to f , and use the fact (see [1]) that an ultracopower of an ultracopower of a
compactum is itself an ultracopower of that compactum.]

Proposition 3.4. (1) Any continuum is 1-dominated by any co-existentially
closed continuum.

(2) Any two co-existentially closed continua are 2-equivalent.
(3) Any continuous map from one co-existentially closed continuum onto an-

other is a map of level ≥ 2.
(4) Any two co-existentially closed continua that are continuous images of each

other are 3-equivalent.

Proof. Ad (1): Given continua X and Y , where Y is co-existentially closed, we let

X
p
← X × Y

q
→ Y be the standard projection maps from the topological product,

also a continuum. Thus q is a map of level ≥ 1. By Remark 3.1 (4), this suffices to
conclude that X ≤1 Y .

Ad (2): Given co-existentially closed continua X and Y , we consider again the

initial wedge X
p
← X × Y

q
→ Y . We infer X ≤2 Y using the facts that q is a map

of level ≥ 1 and X is a co-existentially closed continuum. By the symmetry of the
situation, Y ≤2 X .

Ad (3): Let f : X → Y be a continuous surjection, where both X and Y are
co-existentially closed continua. Then, because Y is co-existentially closed, we have
a continuum Z, a map g : Z → Y , of level ≥ ω, and a map h : Z → X , of level ≥ 0,
such that f ◦ h = g. Because X is co-existentially closed, however, h is actually of
level ≥ 1; hence f is a map of level ≥ 2.

Ad (4): This follows quickly from 3.4 (3) above. If f : Y → X is a continuous
surjection between co-existentially closed continua, then f is a map of level ≥ 2;
hence X ≤3 Y . �

Remark 3.5. Two compacta that are 2-equivalent either both share or both fail to
share any topological property of compacta that is preserved by both ultracopowers
and images of maps of level ≥ 1. Indeed, if X ≤2 Y and Y is a Boolean space
(resp., an indecomposable continuum, a hereditarily indecomposable continuum, a
compactum of covering dimension ≤ n, a continuum of multicoherence degree ≤
n), then so is X (see [5, 6, 7, 8]). It is possible for X to be an indecomposable
continuum when Y is a decomposable one; in fact, maps of level ≥ 1 do not preserve
decomposability in continua. However, if X ≡2 Y , then one is a decomposable
continuum if and only if the other is.

If we are willing to restrict our domain of discourse to Peano compacta (i.e.,
compacta that are both metrizable and locally connected), then we can also add
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being an arc (or a simple closed curve) to the list of properties mentioned in Remark
3.5. The following strengthens the main result (Theorem 0.6) of [2].

Theorem 3.6. Let X be a Peano compactum.

(1) If X is 2-dominated by an arc, then X is an arc.
(2) If X is 2-dominated by a simple closed curve, then X is a simple closed

curve.

Proof. Ad (1): Suppose X ≤2 Y , where Y is an arc. Then there is an ultrafilter D
and a co-existential map f : Y I\D → X witnessing this. We assume, for the sake
of obtaining a reductio ad absurdum, that X is a Peano compactum that is not an
arc.

We begin by noting that, since Y I\D is a continuum, so is X . Next we cite
Theorem 1.1(4) twice: first to infer that Y I\D is unicoherent (i.e., incapable
of decomposition into a union of two subcontinua with disconnected intersection);
second to infer that X is unicoherent as well.

Now we cite another classic theorem of R. L. Moore (see [18], also Exercise
8.40 in [19]), used extensively in [2], to the effect that any Peano continuum that
is neither an arc nor a simple closed curve must contain a simple triod (i.e., a
homeomorphic copy of the letter T, the cone over a three-point discrete space).
Since X is a unicoherent continuum, it cannot be a simple closed curve; hence, by
the above-cited theorem of Moore, it contains a simple triod.

Using the local connectedness of X , we argue as in Lemma 1.3 in [2] to construct
subcontinua K, L1, L2, L3 of X such that:

(i) K intersects each Lj , 1 ≤ j ≤ 3;
(ii) all of K \ (L1 ∪ L2 ∪ L3), Lj \K, 1 ≤ j ≤ 3, have nonempty interiors; and
(ii) the subcontinua L1, L2, L3 are pairwise disjoint.

In the terminology of [2], the collection {K, L1, L2, L3} constitutes a fat 3-wheel

in X (the word fat referring to the various nonempty interiors). Since (by Theorem
1.1(1)) f is monotone, the inverse images of these subcontinua constitute a fat
3-wheel in Y I\D.

The point of making sure sets have nonempty interiors (rather than being merely
nonempty) is to enable the construction (see the proof of Lemma 1.3 in [2]) of a
3-wheel {

∑
D

Ki,
∑

D
L1,i,

∑
D

L2,i,
∑

D
L3,i}, consisting of ultracoproduct subcon-

tinua, where
∑

D
Ki ⊇ f−1[K], etc. Then, for almost every index i (modulo D),

{Ki, L1,i, L2,i, L3,i} constitutes a 3-wheel in the arc Y . This is impossible; hence
X must indeed be an arc.

Ad (2): Retaining the notation of the argument above, but taking Y now to be a
simple closed curve, assume X is a Peano compactum 2-dominated by Y . Then X

is a Peano continuum. And, because simple closed curves cannot contain 3-wheels,
X is either an arc or a simple closed curve. Now suppose X is an arc. Then X

contains a fat 2-wheel {K, L1, L2} (like a fat 3-wheel, but with one less “spoke”)
such that X = K ∪L1 ∪L2. Arguing as above, we may cover Y I\D with a 2-wheel
{
∑

D
Ki,

∑
D

L1,i,
∑

D
L2,i}. This gives rise to the existence of a 2-wheel cover of

the simple closed curve Y , an impossibility. �

Remark 3.7. The condition of local connectedness cannot be removed from The-
orem 3.6. This follows from Theorem 2.10 in [3]: Every infinite compactum is
ω-equivalent to a compactum of the same weight, which is not locally connected.
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With the aid of Theorem 3.6(1), we can immediately obtain a variation on Theo-
rem 2.6 by weakening the hypothesis that all spaces involved are arcs and strength-
ening the hypothesis that all maps involved are of level ≥ 1.

Corollary 3.8. Let V := 〈Xi
fi

→ Z : i ∈ I〉 be a generalized terminal wedge
consisting of Peano compacta, where Z is an arc and the fi are maps of level ≥ 2.

Let 〈Xi
ri←W : i ∈ I〉 be the associated fiber product.

(1) If V is not jointly injective, then W a continuum that is not an arc and no
projection ri is a map of level ≥ 2.

(2) If V is jointly injective and the index set I is at most countable, then W is
an arc and each projection ri is a map of level ≥ ω.

Proof. In light of Theorem 2.6, all we need to do is show that the spaces Xi are
arcs. But if the arc Z is a level ≥ 2 image of the Peano compactum Xi, then
Z ≤3 Xi; hence, by Proposition 3.2(2), Xi ≤2 Z. Now apply Theorem 3.6(1). �

There is also an analogue of Theorem 3.6 for the pseudo-arc. Recall that a
compactum X is arc-like if for any open cover U of X , there exists a continuous
map from X onto an arc such that each point-inverse under that map is contained
in a member of U . Of course every arc-like compactum is connected; moreover it
has covering dimension one.

Theorem 3.9. Let X be a metrizable arc-like compactum that is 2-dominated by
a pseudo-arc. Then X is a pseudo-arc.

Proof. Suppose X ≤2 Y , where Y is a pseudo-arc. Then there is an ultrafilter D
and a co-existential map f : Y I\D → X , as per the definition. By Corollary 4.10 in
[8], Y I\D is a hereditarily indecomposable continuum because Y is. By Theorem
1.1(2) above, then, X is now a hereditarily indecomposable metrizable continuum
that is also arc-like. This (see [14]) characterizes X as a pseudo-arc. �

Open Questions 3.10. (1) Can we remove the assumption of being arc-like
from Theorem 3.9? [The answer is no if the pseudo-arc is a co-existentially
closed continuum. For, by Theorem 1.2(4), we may choose X to be a co-
existentially closed continuum that is not arc-like. If Y is a pseudo-arc,
assumed to be co-existentially closed, then Proposition 3.4(2) tells us that
X ≤2 Y .]

(2) Is the image of a pseudo-arc under a map of level ≥ 1 again a pseudo-
arc? [The nondegenerate image of a pseudo-arc under a continuous map
is a pseudo-arc if the map is either open or monotone; it is still an open
question whether the map may be taken to be merely confluent (see Theorem
4.15 and Question 4.17 in [14]).]

(3) How large a family of pairwise non–3-equivalent co-existentially closed con-
tinua is it possible to have? [This number could conceivably be the power
of the continuum. On the other hand, if the class of co-existentially closed
continua is co-elementary (even closed under ultracopowers), then all of its
members are ω-equivalent to one another (as in the case with the class of
co-existentially closed compacta).]
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4. inverse limits

Theorem 1.2(2) above states that the class of co-existentially closed continua is
closed under images of maps of level ≥ 1; here we show the class to be closed
also under limits of inverse systems in which the bonding maps are continuous
surjections. We first recall an earlier result.

Lemma 4.1 (Lemma 3.1 in [5]). Let α ≤ ω, let h : Y → X be a function between
compacta, and let A be a lattice base for X. Suppose that for each finite δ ⊆ A
there is a map gδ : X → Zδ, of level ≥ α, such that:

(i) gδ ◦ h is a map of level ≥ α; and
(ii) for each A ∈ δ, g−1

δ [gδ[A]] = A.

Then h is a map of level ≥ α.

Theorem 4.2. Let α ≤ ω, and let 〈I,≤〉 be a directed set, with 〈Xi, fij : i ≤ j ∈ I〉
an inverse system of compacta and continuous bonding maps. Suppose further that
there is a compactum Y and, for each i ∈ I, a map hi : Y → Xi of level ≥ α such
that fij ◦ hj = hi, for i ≤ j in I. If X is the limit of the system, with projection
maps gi : X → Xi, i ∈ I, and if h : Y → X is the limit of the maps hi (i.e.,
gi ◦ h = hi, i ∈ I), then h is a map of level ≥ α.

Proof. For any topological space Z, define F (Z) to be the bounded lattice of closed
subsets of Z. F ( ) is a contravariant functor, converting continuous surjections to
lattice embeddings. So, applying F ( ) to the inverse system in question, we obtain
a directed system 〈F (Xi), f

F
ij : i ≤ j ∈ I〉 of closed-set lattices and lattice homo-

morphisms. Each hi is a continuous surjection; hence so is each fij . Consequently
the functions fF

ij are lattice embeddings. Let A be the limit of this directed system

of lattices. Then (see, e.g., [5]) A is isomorphic to a lattice base A for the inverse
limit X above, so we may view the two lattices as the same . For each i ∈ I, let
ri : F (Xi) → A be the limit embedding. for each finite δ ⊆ A, fix iδ ∈ I so that
riδ

includes δ in its image. Then the maps giδ
: X → Xiδ

satisfy condition (ii) of
Lemma 4.1; they also satisfy condition (i) because giδ

◦ h = hiδ
. Thus h is a map

of level ≥ α. �

Corollary 4.3. The class of co-existentially closed continua is closed under limits
of inverse systems with surjective bonding maps.

Proof. Let 〈I,≤〉 be a directed set, with 〈Xi, fij : i ≤ j ∈ I〉 an inverse system of
co-existentially closed continua and continuous surjective bonding maps. If X is
the limit of the system, with projection maps gi : X → Xi, i ∈ I, and if h : Y → X

is a surjective map between continua, let hi := gi ◦ h, i ∈ I. Then each hi is a map
of level ≥ 1 because each Xi is co-existentially closed. By Theorem 4.2, h is of level
≥ 1 as well; hence X is a co-existentially closed continuum. �
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