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CLOPEN SETS IN HYPERSPACES1 

PAUL BANKSTON 

ABSTRACT. Let X be a space and let H(X) denote its hyperspace (= all 
nonempty closed subsets of X topologized via the Vietoris topology). Then X 
is Boolean (= totally disconnected compact Hausdorfl) iff H(X) is Boolean; 
and if B denotes the characteristic algebra of clopen sets in X then the 
corresponding algebra for H(X) is the free algebra generated by B modulo 
the ideal which "remembers" the upper semilattice structure of B. 

0. Introduction. This note concerns the algebraic topology of the hyperspace 
H(X) of a compact Hausdorff space X. Two antithetical situations immediate- 
ly arise, namely when X is connected (i.e., a continuum) and when X is totally 
disconnected (i.e., a Boolean space). In the first situation one can study the 
homotopy of H(X). Indeed, in 1931 Borsuk and Mazurkiewicz [2] showed that 
H(X) is path connected if X is metric; and in an unpublished paper, 
Banaschewski was able to remove the metrizability condition. Although the 
calculation of homotopy for H(X) is still an open problem when X is a general 
continuum (even a metric continuum), the question has long been settled for 
X a Peano space (= locally connected metric continuum). In this case there 
is a beautiful succession of increasingly stronger results: H(X) is Peano 
(Vietoris, 1923); H(X) is contractible (Woydyslawski, 1938); H(X) is an AR 
(Woydyslawski, 1939); and H(X) is the Hilbert cube (Curtis and Schori, 
1974). The historical details up to 1939 are in [2]; the last result is in [1]. 
Needless to say H(X) has uninteresting homotopy when X is Peano. 

Our interest here lies in the second of the above situations, that is where X 
is Boolean; and the algebraic object we study is the characteristic Boolean 
algebra x(X) of clopen subsets of X. We then have a computational result 
which takes the following form: Let B = x(X). Then X(H(X)) is the quotient 
of the free algebra generated by B divided by the ideal which "remembers" 
the upper semilattice structure of B. Although the theorem makes sense 
without requiring that H(X) be Boolean, the proof we present requires this 
property; and in fact it is easy to show (modulo classical results) that X is 
Boolean if H(X) is Boolean as well. 
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1. Preliminaries on hyperspaces. 
1.1 DEFINITION. Let X be a space, S C X. Define S1 = {C: C C X closed 

nonempty, C C S}, and S2 = {C: C C X closed nonempty, C n S # 0). 
The hyperspace H(X) of X consists of all closed nonempty subsets of X 
topologized by taking subbasic sets of the form U1, U2 for U C X open. The 
resulting topology is called the Vietoris topology. 

An interesting and helpful fact is the following: 

1.2 LEMMA. Let r = {U1, . . ., Un) be a finite set of open subsets of X and 
denote by r# the set {C E H(X): C C U1 U * U U,n, andfor I k ?m, 
C n Uk # 0). Then the collection of all such sets r# forms a basis for the 
Vietoris topology. 

PROOF. Let r = {U, ...,Um}, S = {J, . V..,JV,}, with U = U r, V = U s; 
and let t be the set {U n v, ul n v, . . ., um n v, u n , . . ., u n vn}. 
Then t # = r # n s #, so the collection forms a basis for some topology T. 

Now if U C X is open then U1 = {U} #, U2 = {U,X} #, whence T contains 
the Vietoris topology. On the other hand if r = {U1, . . ., Um) then r # 
= (Ul u ... u Um)1 n U12 n ...n Um2, soTisinfactthe Vietoris topology 
itself. El 

REMARKS. (i) For metrizable X, say with metric d, H(X) is metrizable as well 
via the well-known Hausdorff metric over d; and the Vietoris topology is 
precisely the derived metric topology. 

(ii) Let f: X -> Y be a continuous closed map and define H(f ): H(X) 
H(Y) in the obvious way, i.e. H(f )(C) = f"C = {f(x): x C). Then 

H(f ) is continuous, indeed 

H(f ) ({U,... Ur} #) = { f -1(U1), .. ,f 1(U)} WM - 

H(f ) need not be a closed map, however. 
Assume all spaces henceforth to be T,. Then for each X there is a natural 

injection i: X -> H(X) taking x E X to its singleton {x}. i is evidently a 
topological embedding (and in the metric case an isometry). Moreover, if X is 
Hausdorff then i is closed as well. For suppose C E H(X) - i "X, with 
a, b E C distinct. Let U = U(a), V = V(b) be a disjoint pair of open sets. 
Then {U, V,X} # is a nbd of C missing i"X. 

Now a standard result of Vietoris (see [4]) is that X is compact Hausdorff if 
H(X) is compact Hausdorff. By extending this theorem we can easily prove 
that X is Boolean iff H(X) is Boolean. To see this, assume H(X) is Boolean. 
Then, since X embeds via i as a closed subset of H(X), X is Boolean as well. 
Conversely if X is Boolean then X has a basis of clopen sets so that if 
C1, C2 E H(X) are distinct with, say, a E C1 - C2, then there is a clopen U 
containing a and missing C2. Thus {U, X} # is a clopen nbd of C1 missing C2, 
proving that H(X) is "ultra-Hausdorff' hence (in view of compactness) 
Boolean. 

An alternative description of H(X) for X Boolean goes as follows (the 
straightforward details being left to the reader): Let B be the algebra of clopen 
sets in X and let a* (B) be the set of proper filters in B. For s = {bl, . . . , bnj 
C B let s # = {p E a*(B): bV ... V bn E p and for _ k 'n, b E p, 
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bk A b = 0). Then the sets s# form a topological basis; and the resulting 
space is precisely H(X). The proof of this fact hinges upon the Stone duality 
between the closed nonempty subsets of a Boolean space and the proper filters 
of the corresponding Boolean algebra. 

2. The main theorem. Let BTop denote the category of Boolean spaces and 
continuous maps with Boo the category of Boolean algebras and homomor- 
phisms. Let 

x 
BTop = Boo 

a 

be tLhe statement of Stone duality; where x(X) is the characteristic algebra of 
clopen subsets of X, and a(B) is the Stone space of ultrafilters of B topologized 
by taking as basis sets all sets of the form b? = {u E a(B): b E u} as b ranges 
over B. The Stone Duality Theorem says that X and a are contravariant 
natural equivalences. Now if X is compact, Y is Hausdorff and f: X -> Y 
continuous then f is automatically a closed map. Thus in particular the 
hyperspace operator H: BTop -> BTop is functorial. A corollary of our theo- 
rem will be that there is an (algebraically defined) endofunctor H': Boo 

> Boo which makes the category-theoretic diagram 

BTop A BTop 

x4ta xl To 
Boo Hl> Boo 

commutative. 
We now define H'. Let B be a Boolean algebra. For ease of notation we will 

assume B to be a field of sets and so use the usual set-theoretic notation for 
the Boolean algebraic operations. Now let F(B) denote the free Boolean 
algebra generated by the elements of B. In this context we will use the 
connectives of elementary logic to denote the operations in F(B) and use 
square brackets to distinguish the set U in B from its "name" [U] in F(B). So 
if B = x(X) for some X E BTop then {u, n, x - (), 0, X} denote the Bool- 
ean operations in B, whereas { v, A, ,- 0, 1) denote the corresponding "for- 
mal" operations in F(B). Typical elements of F(B) include words of the form 
[X], [0], [U], [U n (x - V)] v -[w], etc. 

Given B = x(X) we define the ideals II, I2 in F(B) as follows: 
I1 is generated by the words {[U] A -4V]: U C Vin B) U {([U] A [V]) 

A AU n V]: U, V E B) U {[0], -[X]}. I2 is generated by the words 
{[U] A -i[V]: U C Vin B} [U [ UU V] A -([U] V [V]): U, V E B) U 
{[Z], A[X]). 

Intuitively I, (resp. I2) "remembers" the lower (resp. upper) semilattice 
structure of B so that F(B)/I1, say, "believes" that [U] ' [V] whenever U 
C V, and that [U] A [V] = [U n V]. 

Now define the homomorphisms hl, h2 from F(X(X)) to X(H(X)) as fol- 
lows: Let U E x(X). Then we set f1(U) = Ul,f2(U) = U2. (Note. U1, U2 
are clopen in H(X) since H(X) - Ul = (X - U)2 , etc.) Since F(X(X)) is 
free, fi, f2 extend uniquely to homomorphisms hl, h2 . We can now state our 
main theorem thusly: 
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2.1 THEOREM. Let X E BTop with hl, h2: F(x(X)) X-> (H(X)) given as 
above. Then: 

(i) Both hl, h2 are epimorphisms. 
(ii) Ker h, = II, Ker h2 = I2 whence 

X(H(X )) _ F(X(X ))/II F(X(X ))/I2 . 

Thus if B is any Boolean algebra, if we let H'(B) be either of the above 
quotients, and if g: B1 -> B2 is a homomorphism, let H'(g) be the obvious quotient 
homomorphism. Then 

(iii) The diagram 

BTop H)4 BTop 

x ITa xITa 
Boo H > Boo 

commutes (up to natural equivalences). 
(iv) Let j: F(X(X)) -> X(X ) be the natural projection. Then Ker j = I1 V I2 

= the ideal generated by I, U I2. 

PROOF. (i) We show that the algebra A generated by the sets U1, U 
E x(X), is all of X(H(X)). Indeed by compactness the sets s# form a basis for 
H(X) as s ranges over the finite subsets of X(X). Also since 

s # = fui,..., Um) # = (Ul u . u UJ n (u12 n . n un2 

we have that the U1 's generate a basis for the Vietoris topology. Since every 
clopen set in H(X) is compact and is a union of elements from A, it is a union 
of finitely many elements from A and is thus itself in A. Thus A = X(H(X)). 

(ii) Since 01 = 0, X1 = X, U1 C V1 for U C V, and (U n V)1 = Ul 
n V1 for all U, V E X(X), we have Ker h1 ? II. Similarly Ker h2 D I2. Let 
w E F(X(X)) and assume w is represented as a disjunction of conjunctions of 
generators and complements of generators. Such a conjunction we refer to as 
a minterm. If w = w1 V ... V wn is a disjunction of minterms, and if the 
minterms of Ker h1 are in 1, then Ker h1 C II. For w E Ker h1 => wk 
E Ker hl, each 1 _ k < n. Thus w E II. So it suffices to prove the inclusion 
for minterms, of which there are three kinds: positive (only unnegated 
generators occur), negative, and mixed. 

Positive. w = IU1] A .. A [Um] E Kerhl. Then U1 n n Un = 

(U1n ..n Um) =0iff Uimn nUm=0. Now 

([U I] A A [Um]) A -[U1 n .n Um] 

= [Ul] A .. A [Um] A -1[01 E II. 

But [0] E II, so [ U1 ] A ... A [ Um] E I, as well. 
Negative. w = V,[I] A A A VnI E- Ker h. Then (X-J)2 n... 

n (x-n)2 = 0iff some Vk = X. But -[X] E sow E I, too. 
Mixed. w = [U] A ...A [Um] A -[V] A ...A -[Vn E Kerh.Then 

(Ul n n Um) n (X- V)2 n .n (x- Vn)2 = 0 
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whence U1 n * r n Um C K for some I_ I 'U n. Thus [ U n n U, 
A i[JV] E I, so ([U1] A A [Umr]) A --[V] C I, and therefore w E I,. 
The proof that Ker h2 = I2 is similar. 

(iii) This follows straightforwardly from (ii). 
(iv) This is proved in the same way as (ii). El 
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