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Abstract

Bankston, P. and R.A. McCoy, H-enrichments of topologies, Topology and its Applications 42
(1991) 37-55.

An H-enrichment of a topology & on a set X is a topology ¥ on X such that ¥= 7 and every
homeomorphism from X to itself with respect to F is also a homeomorphism with respect to &.
An H-enrichment is a C-enrichment if “homeomorphism™ can be replaced by ‘‘continuous
function” above. Generally in ““nice” spaces, there is a scarcity of C-enrichments and an abundance
of H-enrichments. We capitalize on the scarcity of C-enrichments to prove classification theorems
for minimally free rings of continuous real-valued functions; with H-enrichments in general, we
focus on separation and connectedness axioms.
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Introduction

The notion *H-enrichment of a topology™ came about during the investigation
of minimally free rings of continuous real-valued functions (see [3, 4]), and was
found to be of independent interest. Thus, although this notion has its origins firmly
in algebra (see also [1, 2, 6]), our approach in this paper is altogether topological.

Given two topologies & and 7 on a set X, say & is an enrichment of T if 7 &.
Whenever f: X - X is continuous as a function from (X, &) to (X, 9), we say f is
(¥, I)-continuous. (Other related notions, e.g., “{¥, F)-homeomorphism™, ** F-open
set”, are defined as one might expect.)
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Let & be an enrichment of & on the set X, with F a family of functions from X
to itself. We say & is an F-enrichment of T if every member of F is (¥, ¥)-continuous.
Three successively stronger instances of this notion are as follows: (1) H-enrichment,
in which F is the family of {J, F)-homeomorphisms; (ii) C-enrichment, in which
F is the family of {(J, 7)-continuous functions; and (iii) coreflective enrichment, in
which F is the family of (¥, )-continuous functions.

Historically, coreflective enrichments were the first F-enrichments to come to our
attention [4], and are what arise when one applies a coreflective functor from the
category of spaces and continuous functions to itself. We found in [4] that the
“k-free” unital (i.e., with a 1) rings of continuous real-valued functions on a
topological space, i.e., those rings C(Z) possessing a subset P (a “‘pseudobasis”)
of cardinality x such that every function from P into C(%) extends uniquely to a
(1-preserving) ring endomorphism on C(Z), are precisely those rings of the form
C((R*, 7)), where R is the set of real numbers, and 7 is a realcompact coreflective
enrichment of the x-fold Tichonov power %" of the usual topology ¥ on R. (N.b.
here we depart slightly from the terminology of [3, 4] by insisting that realcompact
spaces automatically be completely regular (=Tichonov). Also, our separation
axioms always assume the T, axiom without further comment.) A ring (or any
algebraic system) that is «-free for some cardinal « is termed “minimally free”. In
[3] a complete classification of the k-free unital rings C(%) is given for countable
«; namely they are the rings C({R", %4"}) and C(({R", @)} (where & refers to the
discrete topology on the appropriate underlying set). We are interested, inter alia,
in the classification problem for uncountable « in this paper. We present some
partial results, but the issue is far from resolved.

0.1. Examples. (i) Let G be a coreflective functor on the category of topological
spaces and continuous functions (so the image of G is a subcategory, and G is
right-adjoint to the inclusion functor). Then for any space # =({X, ), we may view
G(Z) as a space (X, ¥) where ¥ is a coreflective enrichment of . This phentomenon
is very special; its best-known manifestations are: discretization, in which ¥ =%,
x-modification (x an infinite cardinal), in which ¥ =(9),, the smallest topology
that includes all intersections of fewer than « J-open sets; k-space modification, in
which ¥=k({(F)={A< X: An K is open in K for each J-compact K < X}, and
sequential modification, in which ¥ =o(J)={A < X: whenever (x,) is a sequence
in X that converges to a point in A, then (x,) is eventually in A}.

(ii) Let {X, ) be a topological space, ¥ a collection of subsets of X. Define Tz
to be the topology on X with subbasis JU{h(S): S€¢%F and h is a (T, T)-
homeomorphismy}. It is trivial to show that F is always an H-enrichment of 7,
and every H-enrichment of J may be obtained in this fashion. (A similar mechanism
may be used to obtain the C-enrichments of 7: just adjoin the inverse images of
members of F under (F, 7)-continuous functions. However, coreflective enrich-
ments require a more complicated process involving transfinite induction.) Perhaps
the most familiar example of this construction is the following: X =R, § = %, and
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F ={A=R: R\ A is countable}. Typical basic open sets in ¥4 are of the form (open
interval)\{countable set). ({R, ¥3} is hereditarily Lindeldf and nonseparable, but
fails to be an L-space since it is not regular.)

The sequel is divided into two sections. Section 1 is about C-enrichments and
gives conditions under which topologies have no proper nondiscrete C-enrichments.
These topological results have direct applications to the classification problem for
minimally free rings of continuous real-valued functions. Section 2 deals with
H-enrichments in generai. Usually a topology has many H-enrichments; we focus
on conditions that permit or prohibit the existence of H-enrichments that satisfy
certain separation and connectedness axioms.

1. C-enrichments

The main result of [3] is the classification theorem: Let 1 < x < w (where o always
stands for the first infinite cardinal). A unital ring C(%) is x-free if and only if
C (%) is of the form C({{R", %"})) or C({R, 9)). The topological lemma that powers
this theorem is the following [3, Theorem 1.1]: Let & be a normed linear space over
the real field. Then any proper C-enrichment of the norm topology is discrete.

This lemma has gone through several stages of generalization (with the same
basic idea of proof). Originally proved by the second author for the case £ = (R, %),
we soon realized that the argument goes through for the Euclidean topologies
A" 1= n< w;thence to the form that appears in [3]. The next stage of generalization
was the locally convex metrizable topological vector space topologies; finaily, in a
private communication [8], Sanderson saw that the original argument could be
adapted to work for all normal locally path-connected first countable topologies.
This section is devoted to that generalization, as well as to related results.

Let (X, &) be a topological space, with F a family of functions from X to itself.
Define (X, ) to be F-filled provided that for any nonisolated point x € X and each
nonclosed S < X there exists a finite subset {f;, ..., f,} = Fsuchthat f; '(S)u -+ U
£21(8)= N\{x}, where N is a neighborhood of x (i.e.,, xe U< N for some U/ 7).
The family F is called monoidal if: (i) every member of F is (7, 7)-continuous;
(ii) F contains the identity function idx on X; and (iii) F is closed under function
composition. (F-enrichments for F monoidal include both C-enrichments and
H-enrichments.)

Our first result is a characterization of when the topology & on X has a proper
nondiscrete F-enrichment when F is monoidal.

1.1. Theorem. Let ¥ =(X, J) be a topological space, F a monoidal family. Then &
has a proper nondiscrete F-enrichment if and only if & is not F-filled.

Proof. First suppose & is F-filled, and suppose & is a proper F-enrichment of 7.
Then there exists a subset S< X that is -closed but not J-closed. Let x be any
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nonisolated point of #. Then thereis a finite { f;, ..., f,} € Fsuchthat {7 (S)u -+ - u
f'(8)= N\{x} for some J-neighborhood of x. By definition, each f, is (&, &)-
continuous, so N\{x} is ¥-closed. Thus there is an ¥-neighborhood M of x such
that M n N = {x}; whence x is an P-isolated point. Since x was arbitrarily chosen,
we infer that & is discrete.

For the converse, suppose & is not F-filled. Then there is a nonisolated xe X
and a nonclosed S< X such that for every finite subset {f;,..., f,} of F, f7(S)u
-+ W f(S) cannot be of the form N\{x} for some neighborhood N of x. Let &
be the union of J with the family of all sets of the form U f; {(X\S)n - n
FH{X\S),where Ue T and f,, ..., f, € F. B, being closed under finite intersections,
is a basis for some topology ¥ = 7. To show & is an F-enrichment of 7, let fe F
and B=Unfi{(X\S)n- - nf,}(X\S)e B. Then

FTB =W SfieH)HX\S) - n(fuo f)THX\S) e B

Thus f is (¥, ¥)-continuous. Since idy € F, we have X\Se% But § is not
F-closed, so ¥ is a proper F-enrichment of &, It remains to show % is nondiscrete;
we show x is not ¥-isolated. Suppose to the contrary that {x}c ¥. Then we can
write {x}=Unfi"(X\S)n - nf,;(X\S) for some Ue T and f,,...,f,eF
Then  X\{x}=(X\U)uf'(S)u - -uf(8), so that U\x}=Un
(TS Uf Y (8). Let N={x}ufi'(8)u - Uf7(8). Then xe Uc N, so
N is a neighborhood of x; moreover N\{x}=f;"'(§)u - - - uf,'(S), a contradiction.
Thus & is a proper nondiscrete F-enrichment of . O

1.2. Theorem. Every normal, locally path-connected, first countable space is C-filled.

Proof. Suppose (X, ) satisfies the hypothesis, and let x € X be nonisolated, S< X
be nonclosed. Let x, be an accumulation point of S that is not in S. Since the space
is locally path-connected and first countable, one can easily construct by induction
a basis {V,: 1=n<w} at x, consisting of path-connected open sets, such that
Va1 € V, for each n. Let {U,: 1< n<w} be a basis at x consisting of open sets,
such that U,., < U, for each n (where overbar indicates topological closure). This
we can do because the space is normal. We may assume U, = X for each n define
the “annulus” A, = U\U,,,. Also for each n, let x, € V, S,and let p,:[0,1] > V,
be a (continuous) path starting at x, and ending at x,,,,.

Since (X, &) is normal, there is for each n, a continuous g, : Us,—;\ Uzns2—~> [0, 1]
and h, U_2n\ Uzne3 >0, 1] such that g,{A;,_,}={0}, g.{Az,.1) ={1}, h,(A;,)={0},
and h,(Ay,+2)={1}. Then define continuous f,, f> on {X, J) by:

W (8. (1)) if ye U, |\ Us,.2 for some n,
fl(y)={P (ga(y ifye U N\ zniz

X ify=x,

a(ha(3))  if y € Uz \ U, for some n,
fz(J’)={p ¥ Hye o\ Uonss

Xy ify=x



H-enrichments of topologies 41

Note that for each n, f;(As._,) ={x,}and fo(4;,) ={x,}. Thus | J {A;,_: 1sn<w}u
U{Aw:1sn<w}lcfi(S)ufi'(S); whence f1'(S)ufy'(8)=X\{x}, so (X, T)
is C-filled. O

As mentioned earlier Theorems 1.1 and 1.2 are considerably more than adequate
to establish the classification theorem for x-free unital rings of continuous real-
valued functions where 1 <« < @ (the x =0 case being trivial). The possibility of a
complete classification when « = w, (where @, always stands for the first uncountable
cardinal) seems remote, however we are able to give a continuum hypothesis
(CH: w, =2 =the power |R| of the continuum) classification for the w,-free rings
C(&) that are not connected.

Recall that a unital ring is connected just in case its only idempotents are ¢ and
1. Thus C{%) is a connected ring if and only if & is a connected space. In order
to prove our CH-dependent classification results, we need two preliminary theorems.
The first is similar in form to Theorem 1.2.

1.3. Theorem. If (X, I} is either zero-dimensional and first countable or regular and
of character k = @, such that (J), = T, then & is C-filled.

Proof. Assume first that (X, 7} is zero-dimensional and first countable, and let xe X
be a nonisolated point, S< X nonclosed. Let {U,:1=<n<w} be a basis at x
consisting of clopen sets such that U,,, < U, for each n. We may assume U, = X.
For each n, let A, = U\ U,,,, with (x,) a sequence in S converging to some x, £ S.
Define f: X » X by

x, ifye A, forsome n,

fn= {xo ify=x
Then f is continuous and f~'(8) = X\{x}. Thus {X, 9) is C-filled.

Now assume (X, J) is regular and of character x = w,, such that (F),, = 7. Then
it is an easy exercise to show that (X, 7 is zero-dimensional. One can now mimic
the proof in the first paragraph. We have a basis {U,: 1< ¢ <«} at x consisting of
clopen sets such that U, € U, for each £ and a x-indexed sequence (x,) converging
to some x,£€ 5. O

The second theorem is an improvement upon Theorem 2.6 in [3].

1.4. Theorem. Let F be a C-enrichment of U". Then the following are equivalent:
() (U<,
(b) T is not a connected topology;
(¢} T is not a path-connected topology;
(d) there exists a U"-convergent sequence in R* that is not T-convergent,
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Proof. The implications (a)=>(b) and (b)=>(¢) are immediate.

For the implication {¢)=>(d), assume (c). Then there are points x, yeR" such
that the affine line segment A with endpoints x and y is not a path in (R*, 7). Thus
there exists a V€ J such that V ~ A is not open in A with respect to the topology
%" | A inherited from %*. This means that there is a point a € V ~ A and a sequence
(a.) in A\V such that (a,) %"*-converges to a. Such a sequence cannot J-converge.

We note in passing that the chain of implications {a)=>(b)=>(c¢)=>(d) uses nothing
more than the fact that %" £ J. None of the implications can be reversed, however,
without the assumption of C-enrichment.

The implication (d)=>(a) can be proved in a manner similar to the way we proved
Theorem 1.2; except that %" is not a normal topology for uncountable «, so the
proof has to be modified. Assuming {d), let (x,), 1 = n < w, be a sequence in R* that
U"-converges to x, but does not F-converge. Let S={x,:1<n<w}. Then S is
F-closed.

Let U, =R",and for n=2,3,...1let U, =[[ocn I, where I, =(—1/n,1/n)ifa<n
and I,=R if a>n Also for each n=1, define A,=U,\U,,, (where overbar
indicates %"-closure). Finally let G=("\,_, U,. Given any G; set B and x € B, there
isa G' with xe G'c B and a {(¥", %")-homeomorphism taking G onto G’. Con-
sequently, if any H-enrichment & of %* contains G, then (%"),, < &. It remains,
then, to show Ge 7.

For each 1< n<w, define g,: Us,_\Us,.,>[0,1] and h, : U5\ Usnis = [0, 1] as
follows. First let m:R* > R*"** be the projection of R* onto the product of the first
2n+5 factors of R* (starting with the Oth factor). Now #(A,,_,) and w(A,,.,) are
disjoint closed subsets of R*"°, as are w(A,,) and #(A,,.,). So there exist con-
tinuous g : 7w (Uon_\Usnsz)>[0,1] and A, :7(T,\Uzn.3)>[0,1] such that
gnlm(Azn_1)) ={0}, gnlm( Az, 1)) ={1}, ho(m(A2,))={0}, and h(7w(As2))={1}
Then define g, =g, ° 7|(Uznei\ Uzasr) and b, = hlo | (Ven\ Uzny3).

For each 1=n<w, let p,:[0,1]>R" be the function defined by p,{t)=
X, +(1—t)x,. Now define f, and f; on R* by:

£ = {Pn(gn(x)) if x € Top 1\ Uy for some n,
' Xg ifxe G,
Pa(Ba(x)) if x € U\ Uy s for some n,
Hlx) =4 x, ifxe G,
Xy if xeR"“\U,.

The functions f, and f; are (%", %"})-continuous, hence they are (J, 9)-continuous.
Since f7'(S)u f5'(8) =R*\G and S is T-closed, we have G ¢ 7. Therefore (%), c
g. 0O

The version of Theorem 1.4 proved in [3] is the equivalence (a)& (c). Just that
and Theorem 1.3 can be used to get the desired classification. (The full strength of
Thecrem 1.4 comes into play later on.)
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L.5. Corollary. (CH) Every w,-free nonconnected ring C(%) is of the form
C{R™, (U*),,)) or C((R™1, D)).

Proof. We know from [4] that every w,-free ring C(¥) is isomorphic to C{((R“, FY),
where & is a coreflective enrichment of %*: that is realcompact. Since C(Z) is a
nonconnected ring, J is not a connected topology; hence by Theorem 1.4, 7=
(U*™),,. Now the weight of (%“),, can be easily shown to lie between «, and 2.
By the CH, the weight, hence the character, is exactly ,. By Theorem 1.3, then,
(R*1, (U*1},,) is C-filled; by Theorem 1.1 there can be no proper nondiscrete
C-enrichment. The topologies (%*),, and @ are well known to be realcompact
coreflective enrichments of U1 (see [5, 11]), and the proof is compiete. [

For k < w, the only connected x-free ring C(&)} is C((R", U"}). We conjecture
that this is the case for all , and the remainder of this section is devoted to developing
some evidence for our conjecture.

As pointed out in Examples 0.1(i), k(%"*) and o(%") are both coreflective
enrichments of %~ (see, e.g., [9, 10] for more detailed discussions of this fact); they
are connected, and A", k(%"), and o(%U") are distinct for >« (as we show
presently). We do not know whether they, or any other connected coreflective
enrichments of %", are realcompact, or even regular.

The following theorem collects what we know about k(%") and o(%"), and
makes strong use of Theorem 1.4.

1.6. Theorem. (i) k(") and a(U") are connected coreflective enrichments of U".
(i) Every connected C-enrichment of U" is contained in o(U").
(iii} If 9 is any C-enrichment of U", then either T < a(U") or T 2 (U").,,.
(iv) Let x > w. Then the connected spaces (R*, U*), (R", k(U*}), and (R, o(U"))
are topologically distinct.

Proof. (i) As noted above, k(F)} and o(F) are well known to be coreflective
enrichments of & for any topology 7. If J is path-connected, then so is k() since
both topologies share the same compact subsets (hence paths). o(%"} is connected
by Theorem 1.4: Both o{¥") and %" share the same convergent sequences.

(ii) Suppose J is a connected C-enrichment of %", with Ve J and (x,) a
sequence in R* that % “-converges to x,€ V. By Theorem 1.4, (x,) also J-converges
to x4; hence (x,) is eventually in° V. Thus Ve o(U").

{iii) This is immediate from Theorem 1.4 and (ii) above.

(iv) Let k> w, It is well known (see [10, Exercise 43H]) that (R”, %") is not a
k-space; hence (R, %") and (R", k{(U"}) are nonhomeomorphic. (R, ") is not a
sequential space either, because otherwise U“ = o(U"), hence U = k(%"). There-
fore (R, U*) and (R", o(U")} are nonhomeomorphic. To show that (R", k(%")) and
(R, o(U")) are nonhomeomorphic, it suffices to show k(%") is not a sequential
topology.
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If xeR" and o <k, we let x, abbreviate 7,(x), the image of x under the ath
projection map. Let A={xeR": for some a<x,x;=0 for <& and x; =1 for
a<pB<k)

Let K =[0,1]" Then K is a %"-compact subset of R* containing A. Now A is
not ¥"-closed in A, since 0 2 A is an accumulation point. Thus A is not k(% *)-closed.
But when «>w, no sequence in A can %"-converge without being eventually
constant. Thus A is trivially o(¥%")-closed. O

One way to show that C{{R", %*)} is the only connected k-free ring of continuous
functions is to show that no proper connected C-enrichment of %" is regular.
Toward this end, we define an enrichment & of a topology & on X to be thick if
whenever U € #is J-dense, then U is also $-dense. Clearly if # is a thick enrichment
of J and J” is any topology with F< J’'< &, then T’ is also a thick enrichment
of 7. We show presently that no proper thick C-enrichment of %" can be regular.
This fact, together with the conjecture that o(%*) is a thick enrichment of A",
would gain us the desired result {in light of Theorem 1.6).

1.7. Examples. (i) For any « >0, (%"),, is not a thick enrichment of %*. Thus any
enrichment of %" that contains (%"),, fails to be thick.

(ii) Let X be an uncountable set, with J the cofinite topology on X. The
cocountable topology & on X is just (¥),,. Every nonempty U € & is &-dense, so
& is a thick coreflective enrichment of the T, topology 7.

1.8. Remarks. (i) If & contains J as a w-basis (i.e., every nonempty member of &
contains a nonempty member of ), then & is clearly a thick enrichment of . The
converse holds if & happens to be regular, but not in general (see Examples 1.7(ii)).

(ii) The standard ways of constructing sets in k(%“N\ %" for x> (see [10,
Exercise 43H]) fuel the belief that k(%") may contain %" as a =-basis. Typically,
a k (U~ )-open set not already in %" can be found by adjoining a single accumulation
point to a U“-open set.

(iii) We do not know whether o (%") is a thick enrichment of %*. o(%") does
not contain %" as a 7-basis, however; forlet A ={x e R": x, =0 for all but countably
many indices a}. Then A is o(%*)-closed and %“-dense.

In order to prove no proper thick C-enrichment of %" is regular, we first need
a lemma. By way of notation, if (X, ) is a space and A< X, let Cl5(A) (respectively
Intz(A)) denote the J-closure (respectively J-interior) of A in X.

1.9. Lemma. Let & be a thick enrichment of F on the set X. Then for each Ve &,
Int#(Cl,(V}) is a T-dense subset of Cl, (V).

Proof. Suppose otherwise. Then there is a nonempty V € & such that Ints(Cle(V))
is not J-dense in Cl,(V), so the set W= V\Clg{Ints(Cly(V))) is a nonempty



H-enrichments of topologies ' 45

member of ¥ Let C=Cly(V)n Cle(X\Cly(Inty(Cle{V)))). Then it is easy to
show that Int,(C)=0. Cla(W) < C, so W= X\Clyu{W) is a T-dense F-open set.
Since & is a thick enrichment of F, W’ is %-dense as well. But W W=¢, a
contradiction, O

1.10. Theorem. For every cardinal x, %" has no proper regular thick C-enrichment.

Proof. Suppose 7 is a proper regular thick C-enrichment of %", We derive a
contradiction by showing 7 2 (%"}, and appealing to Examples 1.7(i). By Theorem
1.4, it suffices to find a ¥"-convergent sequence in R* that does not J-converge.

Let Ve J\U" Since (R", %") is (point-)homogeneous, we may assume without
loss of generality that 0c V'\Intg«( V). Since 7 is a regular topology, there is some
We T with 0e W Cly(W)c V. Set W= X\Cl;(W’). By Lemma 1.9, we know
that U = Inty~(Clz(W")) is U"-dense in Cl,(W’). Since 0 € Cla«(X\ V) and X\ V
W', we have 0 € Clg~( W’). But then 0 Clg~(Cly( W) so 0€ Clg-{L)).

Using Zorn's lemma, let 8 be a maximal family of pairwise disjoint % *-basic
open subsets of U. Then |_) 8 is %*-dense in U, so 0¢ Cla<(|_ B). Now U* satisfies
the countable chain condition, so 8 must be countable, say B={B,: 1sn<w).
Each B, is %"-basic open, so we write B, =( {7, (U,.): @€ A,}, where A, <«
is finite and U, , is a ¥U-open subset of R. Set A=Uf1°=1 A,, a countable set, let
7 :R*>R* be the natural projection map, and define ¢« :R*—R* to be the natural
injection that turns an A-sequence into a x-sequence by filling in the missing
codrdinates with zeros. Let %* = %" |R*, and let U*=#( B). U*e U* since =
is a (", U*)-open map; O Cly2(U™) since o is (A", %*)-continuous and 7(0) = 0.
Because %“ is a first countable topology, there is a sequence (x2) in U* that
%*-converges to 0 in R*. For each n, let x, = ¢«(x2). Then (x,) is a sequence in U
that %"-converges to 0 in R*. But W is a J-open neighborhood of 0 that is disjoint
from U. Thus (x,) fails to F-converge. This establishes the contradiction, and hence
the theorem. O

2. H-enrichments

In [3], as well as in the last section, we traded on the paucity of C-enrichments
to obtain classification theorems for minimally free rings of continuous real-valued
functions. With H-enrichments, however, the emphasis is on abundance.

2.1. Theorem. If & =(X, F) has a nonclosed set that is nowhere dense, then ¥ is not
H-filled. Hence J has proper nondiscrete H-enrichments,

Proof. Let S< X be a nonclosed nowhere dense subset. Then X is nondiscrete, so
we pick xe X a nonisolated point. Let {h,,..., h,} be any finite set of (F, -
homeomorphisms. Then A;'(S)uU - -+ w h,;'(S) is nowhere dense in & Let N be
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any neighborhood of x. Then x¢ N\{x], so Nc N\[x}. Thus N\{x} fails to be
nowhere dense in &, and so h;'(S)u - - Uh,'(8)# N\{x}. Therefore & is not
H-filled, and, by Theorem 1.1,  has a proper nondiscrete H-enrichment. [J

2.2. Corollary. If & is any first countable Hausdorff space whose derived set (=set of
nonisolated points) is nondiscrete, then & is not H-filled.

Proof, Let X' be the derived set of . By hypothesis, we have in X' a sequence
(x,) converging to some x € X' with x # x, for all n. Let § ={x,: n<w}, a nonclosed
subset of X whose closure, because of the Hausdorff axiom, is § U {x}. § thus does
not contain any nonempty open subset of X, so S is a nonclosed nowhere dense
subset of X. By Theorem 2.1, ¥ is not H-filled. O

2.3. Examples. (i) Let X ={0}u{1/n: 0<n < w}< Rinherit the usual topology 7 =
9| X. Then 7 is a nondiscrete metrizable topology that is H-filled.

(ii) Let X be countably infinite, with F the cofinite topology on X. Then & is a
first countable T, topology with no isolated points that is H-filled.

Recall the notation of Examples 0.1(ii). 7 is a topology on X, # is a collection
of subsets of X, and gz is the H-enrichment of J with subbasis T {h(S}): S F
and & is a {7, I)-homeomorphism}.

2.4. Theorem. Suppose (X, T is a space and the complement of every member of F
is T -nowhere dense. Then every J-dense subset of X is also T g-dense. Thus, if T is
nondiscrete, so also is Tz.

Proof. Let D < X be any J-dense subset of X, and let T be any nonempty 7 z-open
set, Since (F, )-homeomorphic images of F-nowhere dense sets are F-nowhere
dense, and finite unions of F-nowhere dense sets are F-nowhere dense, T is of the
form U\A where Uc J and A is J-nowhere dense. Since T#§, T must contain
a nonempty F-open set. Thus T D #@. If J is nondiscrete, there is a F-dense
set D# X. Thus & is also nondiscrete. O

One way to construct “minimal”’ H-enrichments of 7 on a set X is to take I3
where F consists of just one F-nonopen set. Lack of care in the choice of this set
can result in the discrete topology.

2.5, Proposition. Let AcR be U-closed but not U-open. Then U4, is discrete.

Proof. Since A is %-closed and not ¥-open, A is not #-dense. Let < be the natural
ordering on the real line, with a < b< ¢ such that An(a, c}=@. Then either An
(—co, b)# % or An (b, ) #@. Suppose An(—c0, b)#@. Then B=An(-c0, b) is
%Y, 4y-open. Also B=An (-, b], so B is ¥-closed. Let d be the least upper bound



H-enrichments of topologies 47

of B. Then d € B. Let h:R-> R be reflection through d. Then h is a (¥, %)-homeo-
morphism, hence a 9 4-homeomorphism, and h{B)e€ %, ,,. But then {d}=Bn
h(B)e U4 . It is a triviality that an H-enrichment of a homogeneous topology is
also homogeneous. Thus every point of R is % 4;-isolated. O

The remainder of this paper is concerned with how separation and connectedness
axioms tie in with H-enrichments. We begin with a well-known class of spaces
which have all but one point isolated. Let X be an uncountable set, x,€ X, and «
a cardinal such that o =<« <{X|. The topology J(x,,«) has as open basis all
singleton sets {x} for x € X\{x,} and all sets U containing X, such that | X\ U|=<«.
Clearly J(xy, k) is a zero-dimensional Hausdorff topology, hence regular, and x;
is the only nonisolated point of X. The following useful fact is trivial to show.

2.6, Lemma. A bijection {: X > X is a F(x,, x)-homeomorphism if and only if
f(xo0) =x,.

2.7. Proposition. Let X, x;,, and k be as above. The following are equivalent:
(a) There is a cardinal A with k < <|X|;
{(b) F(x;, x) has a proper nondiscrete regular H-enrichment,
(¢} T(xo, x) has a proper nondiscrete H-enrichment.

Proof. (a)=>(b) Let x <A <|X|. Then J(x,, A) is a proper nondiscrete regular
H-enrichment of J{x,, «).

{b)=>{c) Trivial.

{(c}=(a) Suppose T is a proper nondiscrete H-enrichment of F(xg, x). Let
Ue T\T(xp, «). Then x,€ U and | X\ U|> . Let A =|X\ U|. Suppose, by way of
contradiction, that A =!X|, and let A< X\ U have cardinality |U|. Let f: X > X be
any bijection such that f(x,) =x, and f{A)= U\{x,}. Then, by Lemma 2.6, f is a
T (xo, x)-homeomorphism, hence a F-homeomorphism. Thus Au {x.}=f""(U)e
T, s0 {xg}=(Au{x})nUed, and T is discrete. O

2.8. Remark. Note that the hypothesis of Theorem 2.1 is never satisfied for the
spaces (X, F(x,, x)). However, the question of whether {X, T(x,, )} is H-filled is
equivalent to that of whether the cardinal interval (x, | X|) is empty.

The following result illustrates how attempts to preserve connectedness in passing
to H-enrichments by adding “large’ sets can preclude regularity. Recall that a space
is Baire if countable intersections of dense open sets are dense; a subset of a Baire
space is residual if it contains such a countable intersection. In Baire spaces, the
family of all residual subsets forms a countably complete filter of sets.

2.9. Theorem. Ler (X, 7) be a Baire space with F a family of F-residual subsets. Then:
(i} If & is connected, so is Tz
(i} If T is proper, then if is nonregular,
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Proof. (i) Let ¥ be a Jz-open cover of X, which we may take to be basic; set
€={U,nA,: a <k}, whereeach U, is F-open and each A, is F-residual. Suppose
xeU.nA,, yeUsnAg. (X, J) is connected and €'={U,: a <«x} is a J-open
cover of X, sa there is a finite “chain” U,,..., U, from €' such that U,=U,,
U=Us,andforl<i<n Un U, #0. Let A,,..., A, be chosen such that A, =
Ay, Ap=Ag,andeach UimAiisin €. Thenforl<i<n (UnA)In(U.anA,)=
(Ui U (A ALy) is clearly nonempty. Thus 9 is a connected topology.

(ii) Assume Tz # 7. Then there is some A¢ F\TZ, Let xe AnClz(X\A). We
show x cannot be separated via Jg from the Jg-closed set X\ A. For choose any
F g-basic open U n B containing x (where U< 7 and B is J-residual), and let W
contain X\ A and be Jz-open. Let ye U (X\A), with Tz-basic open V~ C in
W containing y. Then (UnB)n W2 (UnBYn (VA C)=(UnN V)N (BN C) =8,
since ye Un V and Bn C is J-residual. [

Let @< R be the set of rational numbers, with %'= % |Q, the usual topology on
R restricted to @ {well known to be the order topology on Q). We prove below that
%' has no proper nondiscrete regular H-enrichments {(hence, because of Corollary
2.2, %' has proper nondiscrete H-enrichments, but they must all be nonregular).
We first need two lemmas.

2.10. Lemma. Let J be a nondiscrete H-enrichment of U'. If Te T and I is an open
interval in R such that T~ I is nonempty, then (Q\T) I is not U’'-dense in I

Proof. Suppose-that (Q\T)~ I is %'-dense in I, with xe T [. Write (Q\T)n 1=
A B, where A and B are disjoint %U’-dense subsets of [, and set C=Au (T I),
D=Bu{x}. Then C and D are countable ¥’'-dense subsets of I having only x in
common, Cu D=QnI We obtain an increasing bijection (hence a (%', U')-
homeomorphism) h:Q->Q fixing x and all elements of @\ 7, and interchanging C
and D by use of a simple “back-and-forth” order-theoretic construction. & is thus
a (7, 9)-homeomorphism, and {x}=h(T~IA(TnI)ed. Since (Q,TF) is
homogeneous, 7 must be discrete. We have a contradiction, therefore (Q\T) I
cannot be #'-dense in . O

2.11. Lemma. Let J be a nondiscrete H-enrichment of U'. If Te I and I is an open
interval in R such that T I is U’-dense in I, then (Q\T) I is U'-nowhere dense
in L

Proof. Suppose, to the contrary, that there is a nonempty open interval J = R such
that J= I and (Q\T)nJ is %’ dense in J By Lemma 2.10, TnJ=0; so TnI
cannot be ¥’-dense in L. O

2.12. Theorem. %' has no proper nondiscrete regular H-enrichment.

Proof. Suppose that 7 is a proper nondiscrete regular H-enrichment of %', and let
Te 3 \%U' Then there is an x T and a sequence (x,) in @\ T that %’-converges



H-enrichments of topologies 49

to x. We may assume that x,> x,> - - -, and we let { p,) be a sequence of irrational
numbers such that x,., < p.+; <x,<p, for each n. Also for each n, let I, be the
inter\:al (Pas1, Pn). Since T is regular, there is an S€ J such that xeSc §=
Clg{8)cs T

Suppose, for the sake of contradiction, that for each n, § I, is not ¥%'-dense in
I.. Then for each n there is a nonempty open interval J, = I, such that S~ J, = 4.
Each J, may be chosen to be of the form (q.,, ¢:,—1) Where (g, ) is a decreasing
sequence of irrational numbers. Let J = (x, r), and for each n, let K, = (gopn+1, 2n)-
Then there is a (%', %"y-homeomorphism h such that hA(z) =1t for each t2J and
h(K,)=J,,, foreach n. Let R=h(S)nS~(2x—r,r). Re J since h is a (F, F)-
homeomorphism. Now let f be the reflection t—2x — ¢ about x in (. Then f is also
a {7, 7)-homeomorphism, and {x} = f(R) n R € 7. This contradicts the assumption
F is nondiscrete, so in fact there exists some » such that S~ [, is #%'-dense in I,,.

By Lemma 2.11, then, (@\S) I, is %'-nowhere dense in I,. But (Q\S) I, is
also U'-nowhere dense in I, ; whence S~ I, is %'-densein I,. Now S~ I, = T I,,
so that x, € (Q\§8)~ I,. Therefore, by Lemma 2.10, S§~ I, is not %'-dense in I,.
This contradiction establishes the theorem. [

We next turn to H-enrichments of Euclidean topologies (i.e., the topologies
U", 1= n < w). Our next result stands in contrast with Theorem 2.12.

2.13, Theorem. The usual topology U on R has a proper nondiscrete completely regular
H-enrichment.

Proof. We define atopology 7 = ¥, 4 5}, where A and B are complementary %-dense
subsets of R. 7 is prima facie a proper H-enrichment of % it remains to define the
sets A, B judiciously so that & is nondiscrete and completely regular.

Let & be the (%, %)-homeomorphisms, with #* the set of finite subsets of #.
Both # and 7* have continuum cardinality c, and we let ¢ : c—> U\{B}, ¢ :c—> F*
be bijections.

Define {A, @ <c¢} and {B,: a <c¢} by induction on ¢ as follows. First choose
distinct points a, b from ¢(0} and define A,={a}, B,={b}. Next suppose 0 <a <,
and that {Ag: B <a} and {Bg: 8 < a} have been defined. Then define A, and B,
as follows.

First define {C: B < a} and {Ds: 8 < a} by induction. Let 8 <a. If 8 =0, then
take Co=\J{A,: y<a} and Dy={J{B,: y<a}. If 8>0, then, assuming that
{C,: y<pB} and {D,: y<pB} have been defined, let C=J{C,: y<B} and D=
(J{D,: y<pB}. Define Cy and D, as follows.

Now §(8)={h;: i <n} for some n <w. If there are i, j < n with i #j and ¢(a)n
{xeR: h;*(x)=h;'(x)} is M-somewhere dense, then take Dy,=D and Cz=C.
Otherwise, let £:2" - e(a)\|J {h;(C v D): i < n} be an injection such that for each
te2", {h7'(£(1)): i<n} consists of n distinct points. Then define Co=Cu
{h (&) i<n te2" 1(i)=0} and Dy =D U{h; (g(t)): i<n, te2", t(i)=1}.
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This completes the inner induction and defines {Cy: 8 <a} and {Dg: B <a}.
Now define A, =\ {Cys: B<e}and B, =|_J{Dg: B <a}. This completes the outer
induction and defines {A,:a<c¢} and {B,:a<c} Finally, define A=
{J{A.: @a<c} and B=R\A,

Now define F to be U4 ;. The fact that F is nondiscrete follows from the lemma
below.

Lemma. Let X =h(A)~ - -~ h, (A By (BY~ - - ~h,(B), where h,,..., h, €
#. If x € X, then there exists a U-open neighborhood U of x such that U n X is U-dense
in U.

Proof. Define U=R\{UJ{{yeR: h;'(y)=h;(y)}: 1<ism, m+1=<j<n}, which
is a %-open neighborhood of x. To show that U/ n X is ¥-dense in U, let V be a
nonempty %-open subset of U

If m>1,let {py,...,p.} be an ordering of {(i,j): 1=sism, 1sj=m, i#j}; and
for each p,={(i,j) let C,={yeR: h;'(y)=h;"'(y)}. Likewise if n>m+1, let
{g1,...,q.} be an ordering of {{i, j): m+1<i<n m+1<j=n,i#j}; and for each
g =, J), let D={yeR: h;'(y)=h;'(y)}

Define V' as follows. If m =1, then take V'= V. If m>1, then since Cy,..., C,
are %-closed subsets of R, there exists a nonempty %U-open subset V' of V such
that for each 1= k=g, either V' C, or V'n C,=0.

Likewise define W as follows. If n=m+1, then take W= V' If n>> m+1, then
choose W to be a nonempty U-open subset of V' such that for each 1 < k <, either
WeD,or WnD,. =0

Now take H to be a subset of 7 having the following properties.

(1) If m=1, then h,c H.

(2) If n=m+1, then h,c H.

(3) If m>1 and W< G, where p, ={i,j}, then H contains exactly one of h;
or h;.

(4) If m>1 and W~ G =0, where p; = (i, j), then H contains both h; and h;.

(5) If n>m+1 and W< D, where g, ={j, j), then H contains exactly one of h
or k;.

(6) If n>m+1and Wn D, =@, where g; = (i, j}, then H contains both h; and h;.

{7) H contains no other members of  besides those listed in properties (1)-(6).

To be specific, let H={h{,..., hl, hhry,..., h}}, where for 1=<i=aq, hi€
{h,...,h,}, and for a+1<j=<b, hje{hyi1,..., h,}. Now H=4¢(B) for some
B <c Choose some a > 8 such that ¢(a) < W. Tt follows from the construction of
Aand Bthat o(a)nhi(A) - - - hL(AY A kL (B) A -+ - - BL(B) # 0. Since the only
h; which are not in H come from the pairs of the form p; = (i, j) where W C, or
W< D, we have ¢(a)}n X # @ as desired. This establishes the Lemma.

To show that 7 is completely regular,let x e I/ » X, where U e % and X = h,(A)
coonh, (AYA By (BY - - - 0 h,{B). Now X is both open and closed in (R, 7).
Choose f: (R, %) (R, %) to be continuous so that f(x} =0 and f(R\ ) = {1}. Now
define g: (R, 7= (R, A by g(¥)=f(p) if ye X and g(3) =1 if ye R\ X. Clearly
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g{x)=0and g(R\{(U n X))={1}. To see that g is continuous, let Ve . If 1V,
then g {(V)=fYV)nXed. If 1€V, then g (V)=R\g '(R\V)=
R\(fT(R\WVInX)ed. O

2.14. Question. Is the topology constructed in Theorem 2.13 normal? If not, is there
a proper nondiscrete normal H-enrichment of % ? (Nb.: The Sorgenfrey (or half-open
interval) topology on R is well known to be a normal enrichment of %. It is not an
H-enrichment, however, since —idg is not a Sorgenfrey homeomorphism.)

The topology constructed in Theorem 2.13 is totally disconnected. This suggests
the following.

2.15. Question. Is there a proper regular connected H-enrichment of % on R?

2.16. Theorem. Let J be an H-enrichment of U. Then either T is totally disconnected
or the J-connected subsets of R are precisely the intervals. In the laiter case, the
(T, T)-homeomorphisms coincide with the (U, U)-homeomorphisms (ie., the
monotonic bijections).

Proof. Clearly if AR is not an interval then A is %-disconnected, hence -
disconnected. Thus the only F-connected subsets lie among the intervals of R.
Suppose C <R is a nontrivial F-connected set. We specify the type of the interval
C in the usual way: if bounded, how many included endpoints; if unbounded,
whether it is a ray and, if so, whether it includes its endpoint. Clearly, given any
two intervals of the same type, there is a (¥, ¥)-homeomorphism taking the first
to the second. Thus every interval of the same type as C is J-connected. Since R
is a chain union of intervals of the same type as C, we see that J is a connected
topology. Now let [a, b] be any closed bounded interval. If {U, V}is a -disconnec-
tion of [a, ], then U and V are both F-closed sets. Suppose ac U and be V. Then
{{—o0, alu U, Vu[b, )} is a T-disconnection of R, a contradiction. (If both a and
b are in U, say, then we use {{—co, a]uw [b, 0} U, V}.) Thus [a, b] is T-connected.
Since every interval is a chain union of closed bounded intervals, we have our result.
The classic intermediate value theorem then tells us that the (F, 7)-homeomorph-
isms and the (%, U)-homeomorphisms are precisely the monotonic bijections. O

2.17. Corollary. There is no proper nondiscrete locally connected H-enrichment of .

Proof. If & is a proper locally connected H-enrichment of % with a basis of
connected open sets, then this basis must consist of intervals by Theorem 2.16. Since
T is proper, some of these intervals must have endpoints. Reflection about such an
endpoint gives rise to two F-open sets with a single point in common. By
homogeneity, & must be discrete. O
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We do not see how to extend Theorem 2.16 and Corollary 2.17 to higher powers
of %. The following lemma allows us to lift certain other arguments about H-
enrichments of % to higher finite dimensions.

2.18. Lemma. Let (x,,) and (y,) be two sequences in R", n =2, that U"-coverge to
x and y respectively. Suppose further that the distances {|x,,—~x| and ||y, —y| are
strictly decreasing with increasing m. Then there is a (U", U™ )-homeomorphism taking
X, 10 y,, for each m.

Proof. This assertion is false for n=1 without a monotonicity assumption. We
sketch a proof to show that if {x,,) is a sequence satisfying the hypothesis of the
lemma, then (x,) can be moved to a monotonic sequence (x;,) on the (positive)
first axis. We can then homeomorph one monotonic sequence to another on that
axis and extend to a homeomorphism on all of R" by crossing with the identity
map on the orthogonal complement of the axis.

Without loss of generality, we may assume the sequence x,, X,, ... converges to
0 in R", with ||x||=||x2]|> - -. For m=1,2,..., let S,, be the (n—1)-sphere of
radivs  ||x,|| centered at 0, with A, ={x:{x||=|x} and A,=
{x: ||xn] = [|x]| = || Xn-1 |}, m > 1. For each m, let x}, be the point of intersection of
S,» with the positive first axis, and let r,,: S,, » S,, be a rotation of S,, which takes
X, to x,,. One extends r, to a rotation h, on A, in the obvious way. Also in a
straightforward manner one extends the rotations r,, and r,,,,, t0 a homeomorphism
B 0n A, ., in such a way that ||h,..(x)|| = ||x| for all x € A,,+;. (R. Mullins has
written a proof in which each h,, is a linear map on R" restricted to A,,.) We then
define h:R" > R" as the obvious extension of the maps h,,, h(0)=0; and it is a
triviality to show h is a suitable homeomorphism. [0

2.19. Theorem. Let J be a proper H-enrichment of U", 1<n<w. Then every J-
convergent sequence in R” is eventually constant.

Proof. First assume n=1, and suppose (x,,} is a sequence of distinct terms that
F-converges to x. Then there is a monotonic subsequence (x,, ) also J-converging
to x. Assume & # 9. By homogeneity, the open intervals about x do not form a
F-neighborhood basis at x, so let Te I\¥ be such that xe T and for 1=1,2,...
there is some y; € (x— 1/ x+1/\T. The sequence ( ;) is not eventually constant,
so there is a monotonic subsequence (y, ). This subsequence %-converges, thus
there is a monotonic bijection f on R taking x,, to y,,k=1,2,.... However, (y,)
does not 7-converge. Because f is a (7, 9)-homeomorphism, (x,, )} cannot J-
converge either, a contradiction. Thus our original F-convergent sequence must be
eventually constant.

Now assume n=2. We argue as above using Lemma 2.18. The only change we
make is in the subsequences (x,,,) and ( y,,): instead of monotonicity, we may assume
monotonically decreasing distances to the points of %"-convergence. O

"
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2.20. Corollary. Let 1sn<w, with  a proper H-enrichment of 4", Then:
(i) R" has no infinite T-compact subsets (i.e., (R", I) is “anticompact”, or a
“cf-space”).
(ii} If T is nondiscrete, no point af R" has a countable T-neighborhood basis.
(iii) If J is nondiscrete, {R", ) is not locally compact.
(iv) Every metrizable subset of {R", F) is discrete in the subspace topology.

Proof. (i) Let C<R" If C is J-compact, then C is ¥"-compact. Since 2 U",
and both topologies, when restricted to C, are compact Hausdorff, they must agree
on C. But infinite compact subsets of (R", %") contain convergent sequences that
are not eventually constant. This contradicts Theorem 2.19, so C must be finite.

(ii) If & is nondiscrete, then no point of R is isolated. A countable F-neighbor-
hood basis at x would give rise to a sequence of distinct terms F-converging to x,
contrary to Theorem 2.19.

(iii) This is an immediate consequence of (i) above.

(iv) This follows immediately from Theorem 2.19. O

2.21. Theorem. Let § be a nondiscrete H-enrichment of U",1<n <. Then every
nonempty J-open set has cardinality continuum,

Proof. Fix n>0, suppose T < J is nonempty and of cardinality <c. Without loss
of generality, we may assume 0 T. For each nonsingular n X n matrix H over R,
let I'y ={(v, H,): veR"}. Then I'y, is an n-dimensional vector subspace of R*". Now
one can find ¢ such matrices H such that any n+1 subspaces I'y; have trivial
intersection. Since |T X T|<c, there is some such H with I'y n (T x T)={(0, 0}}.
Let h be the {F, ¥)-homeomorphism whose graph is I'y. Then h({T) n T ={0}. Since
h(T)e T, we have {0} F; hence T is discrete. O

Our last topic concerns whether certain well-known homogeneous enrichments
of U* are H-enrichments, The following lemma is taken from [3].

2.22. Lemma [3, Proposition 2.5(ii}]. If 7 is an H-enrichment of U, then all straight
lines in R* (viewed as an affine space) are equivalent via {J, T)-homeomorphisms
on R“

2.23. Theorem. The following homogeneous enrichments of U™ are not H-enrichments:
(i} the box topology;
(ii} the uniform topology; and
(iii) @*, the w-fold power of the discrete topology,

Proof. (i) In this topology, each axis in R* inherits the usual topology. However,
the diagonal in R* inherits the discrete topology. By Lemma 2.22, the box topology
cannot be an H-enrichment of %",
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(ii) If p(x,¥)=min{|x—y|, 1} denotes the truncated usual metric on R, then
(s, t) =sup,p(s{n), t(n)) gives a metric for the uniform topology on R*. Two
points s, teR” lie in the same (connectedness) component of R” relative to the
uniform topology if and only if the sequence (s(n) —t(n)) is bounded in R. Thus,
if s and ¢ lie in different components, then the line connecting s and ¢ inherits a
disconnected topology. But, as in (i} above, each axis in R inherits the usual
topology. Again we resort to Lemma 2.22.

(iii) As for @, all straight lines in R* inherit the discrete topology, so Lemma
2.22 is useless here. Let h:R” - R” be defined by its co6rdinate functions:

S 1 |s(m)
(e sy =1 " O* 27 THsm]
s(k) if k> 0.

if k=0,

Clearly h is a bijection; its inverse is given by:

21 stm) ..
s(O)—n=12,, T+]s(m)] if k=0,

s(k) if k>0

(meeh™')(s)=

The functions # and h~" are (U*, U")-continuous since their codrdinate functions
are continuous onto (R, %). Thus, assuming @ is an H-enrichment of %, we infer
that h is a (2", 2”)-homeomorphism; hence that f=m,°ch:R* >R is (2", D)-
continuous. However, f takes the zero sequence to 0, and {0} is a Z-open set. If U
is a typical &*-basic open neighborhood of 0, then U is of the form [[;_, U,, where
U, ={0} for finitely many indices n, and U, =R for the remaining indices. Thus
F(U)z {0}, and f is not (2%, D)-continuous at 0, a contradiction. [

2.24. Corollary. The relation of H-enrichment between topologies is not preserved
under the taking of countable Tichonov powers.

Proof. & is an H-enrichment of %, but 9“ is not an H-enrichment of #%“ by
Theorem 2.23(iii). O
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