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0. Introduction

THe study of H-enrichments of topologies arose as a spin-off of the
notion of minimal freeness in universal algebra [1], especially as it applies
to rings of continuous real-valued functions [2]: If (X, &} is a real-
compact topological space whose ring of continuous functions is mini-
mally free with pseudobasis of cardinality A, then we may view J as an
H-enrichment of the usual (product) topology %* on the cartesian power
R* of the real line. H-enrichments were recognized as interesting in their
own right, and their study was initiated properly in {3]. The present paper
is a continuation of that study.

Let & and &’ be two topologies on a set X, with F' an enrichment of
F,ie., T F'. J'is an H-enrichment of J if every homeomorphism on
{X, T is also a homeomorphism on (X, 7”). Letting H(J) denote the
group of all homeomorphisms on (X, J) (the underlying set X being
understood), this condition simply says that the group H(J) is a
subgroup of the group H(J'), in symbols, H(9)=H(J'). We are
interested here in part in how H(J"') sits between H(F) and the full
symmetric group Sym (X).

For a topological space {X, ), let HE(J) be the set of all
H-enrichments of 7. HE(J) is a complete lattice under intersection and
topological join; it is a bounded lattice, with & at the bottom and the
discrete topology (generically denoted &%)} at the top. We are also
interested in properties of the map H(-) from HE(Z) into the lattice of
subgroups of Sym (X).

Aithough certain of our results are stated in a general context, the
major applications concern spaces related to the real line R with its usual
topology ¥ (e.g., (R* %*), also the rational line (Q, %')). Our
notation is pretty standard regarding ordinal and cardinal numbers:
w:={0,1,...} is the first infinite ordinal (cardinal); each ordinal is the
set of its predecessors; k™ is the cardinal successor of the cardinal k; the
notation x*, when x and A are cardinals, indicates the set of functions
from A into k, as well as the cardinality of that set; k™*;=sup {k*: o<
A}; 1X] is the cardinality of the set X; ¢c:=|R|=2". A subset Y X is
small (tesp. co-small, a moiety) if |Y|<|X| (resp. |X\Y|<|X}|, |Y|=
IX\Y]). (The term “moiety™ is the coinage of P. M. Neumann.)

Quart. J. Math. Oxford (2), 43 (1992), 127-148 © 1992 Oxford University Press



128 PAUL BANKSTON

We first collect some results about H-enrichments proved in [3]. The
first one says they are easy to come by.

0.1 Tueorem ([3, Theorem 2.1]). If (X, F) has a nonclosed set that is
nowhere dense, then T has a proper nondiscrete H-enrichment.

A natural way to form H-enrichments of (X, 7) is to let o be any
family of subsets of X (in symbols, & ¢ (X)), and let 7, be the
smallest H-¢nrichment of J containing all the sets in &f. A typical basic
open set for F, looks like UNhy(A)N---Nh,(A,), where Ue J,
{hy,...,h,}cH(T), and {A,,...,A,} =« (Equivalently, JU
{h(A): he H(T), A € d} forms a subbasis for ¥,.}) When of = {A}, we
set T4 := T 4. One problem is controlling the behavior of F,, given &
and #.

0.2 Tueorem ([3, Theorem 2.4]). Suppose (X, T) is a space, and the
complement of every member of d < P(X) is T-nowhere dense. Then
every J-dense set in X is also T 4-dense. Thus if T is nondiscrete, so also
is Ty

0.3 ProrositioN ([3, Proposition 2.5]). Let AcR be U-closed but not
MU-open. Then Uy = 2.

Several of our main results involve Baire category arguments. Define a
space (X, J) to be k-Baire, where k is an infinite cardinal, if the
intersection of at most x dense open subsets of (X, ¥) isdense. Y X is
k-residual if Y contains such an intersection.

0.4 Tueorem ([3, Theorem 2.9]). Let {X, ) be an w-Baire space, with
o a family of T-w-residual sets. Then:

() If T is connected, so is T 4.

(i) If T, + T, then T4 is nonregular.

Preservation of regularity (complete regularity, normality, etc.) as one
passes from 7 to J' € HE(J) is an important issue that was addressed in

(31
0.5 Tueorem ([3, Theorem 2.12]). (Q, ¥') has no proper nondiscrete
regular H-enrichment.

On the other hand:

0.6 TueoreM ([3, Theorem 2.13]). (R, %) has proper nondiscrete com-
pletely regular H-enrichment.

The topology constructed for 0.6 by R. A. McCoy, using a rather
involved double induction on ¢, is nonconnected. A question left over
from that paper is whether there exists a proper connected completely
regular H-enrichment of .
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0.7 Tueorem ([3, Theorem 2.16]). Let T € HE(WU). Then either T is
totally disconnected or the J-connected subsets of R are precisely the
intervals. In the latter case, H{(9) = H(%U) = {the monotonic bijections on
R}.

0.8 Remark. 0.7 suggests the question: For 7,, 7, € HE(U), precisely
when is it true that H(7,) = H(J,)? We consider this question in Section
4. Part of the answer is: H(J) = H(¥) if and only if J is connected (see
Proposition 4.2); H(9)=H(Z)=Sym (R) if and only if ¥F=%. The
situation in the latter case is quite general (and easy). Let (X, &) be an
infinite space such that there is some moiety ¥ < X that is J-open, and
suppose H(J)=Sym (X). Let x € X be arbitrary, with R, S two disjoint
moieties on X\x}, and let g, h € Sym (X) take Yto R U {x} and S U {x}
respectively, Then {x} =(RU{x}})N{SU{x})e T, so T=9.

The last preliminary facts we mention concern H-enrichments of the
euclidean topologies ¥*, 1=n < w.

0.9 THEOREM ([3, Theorem 2.19]). Let 1=sn<w, with 5 a proper
H-enrichment of U". Then every J-convergent sequence (i.e., o-
sequence) in R" is eventually constant. (Consequently: R" has no infinite
T-compact subsets; no point of R” has a countable neighborhood basis,
unless F = @D; and every metrizable subset of (R", F) is discrete in the
subspace topology.)

0.10 TueoreM ([3, Theorem 2.21]). Ler 1<n <w, with T a nondiscrete
H-enrichment of U". Then every nonempty J-open set has cardinality c.

A quick summary of the four sections that make up the sequel is as
follows.

Section 1 uses a Baire category result from [4] to prove that, under
cetain conditions on (X, 7), we have that ““almost all” (read *residually
many”) A ¢ X give rise to H-enrichments 7, (or 74 x\4;) with a specific
property (Theorem 1.8). This theorem is applied repeatedly in the next
two sections, so can be fairly regarded as the “keystone” result of the
paper.

Section 2 consists almost entirely of direct applications of 1.8 in the
context of euclidean space. One such is a simple strengthening of 0.6 to
read that the usual topology J on R has a nondiscrete 0-dimensional
H-enrichment. The price to pay for avoiding a messy inductive argument,
however, is the assumption that c is a regular cardinal.

In Section 3, 1.8 is used to study H-enrichments of J that are maximal
(in the complete lattice HE{( 7)) with respect to having a given property.
Theorem 3.4 says that if ¢ is a regular cardinal, 1=n <, and
T e HE(%") is maximal connected, then & has no open basis of
cardinality c.
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Section 4 is concerned mainly with group-theoretic properties of H(9)
for ¥ e HE(A). For example, if  is nonconnected, then H(J) is
k-transitive for all k < w (Corollary 4.11) (H(%) is not 3-transitive). We
also consider the relative positioning of H(%) in H(F) and H(¥) in
Sym (R).
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1. H-enrichments via Baire category argnments

A very powerful, but highly nonconstructive, way of getting H-
enrichments is to use Baire category arguments applied to power sets
fitted out with appropriate topologies.

We first introduce an important mechanism (read ‘‘coreflection’) for
enriching topologies. Let (X, J) be a space, x an infinite cardinal.
Define the topology (7). to be the smallest enrichment 7' of 7 such that
intersections of <k '-open sets are still F'-open. (J), is called the
k-modification of &, and is a very special H-enrichment of J. If
¥:=(X, 7), we set (X):=(X, (7).

If X is an infinite set, we identify the power set (X'} with the cartesian
power 2% in the standard way: (subset) — (characteristic map). If k is an
infinite cardinal, P*(X) is the space (P(X), F), where T is the
“inclusion-exclusion’ topology basically generated by sets [F, G]:= {A <
X: FcAc X\G}, F, Gc X of cardinality <x. When x is a regular
cardinal, i.e., not the supremum of any increasing sequence (ay: £<A)
of ordinals where A < x and a; < x for all £ <A, then it is easy to see that
P*(X) is just (2¥), (2* being given the usual product topology).

The main results of this section are based on work of H. H. Hung and
S. Negrepontis [4].

1.1 TueoreM ([4, Theorem 15.8]). Let x be an infinite regular cardinal.
Then: (i) (2%), is a x-Baire space; and (ii) if x is not weakly compact, then
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any intersection of <k dense open subsets of (2*), is homeomorphic to
(2"

1.2 Remark. Weak compactness is a “large cardinal” property which is
larger than strong inaccessibility, and which we need not elaborate upon
here; except to say that w has the property and every other cardinal we
will be dealing with (e.g., @;, ws;, ) does not. It is proved in [4,
Corollary 15.7] that a cardinal x is weakly compact if and only if (2%),
and (x*), are nonhomeomorphic. Thus, when x is regular and not
weakly compact, (k*), is k-Baire. (This also holds when x = w, but in
this case complete metrizability is the reason.)

Let (X, ) be a topological space. As noted above, one can
parametrize all of HE(J) using P(P(X)), i.e., for of = P(X), we have
J4.€HE(J). Let x=2". Then appropriate basic open sets for
PH(P(X)) look like [F, 4], where F, b < P(X) are small. Recall that a
space is perfect if it has no isolated points.

1.3 Proposmion. Let (X, ) be an infinite topological space. Then
{dcP(X); T4 is nonperfect} is dense open in P*(P(X)), where
x=2%

Proof. Let [#, 4]+ be a basic open set in P*(#(X)). For any
infinite set §, there are 2" moieties on S. [Indeed, if |[{T cS: |T|<
|S|}| <2"', then the conclusion is immediate; if [{T = S: |T}<|S|}| =
251 then every such T can be expanded to a moiety on S in a one-one
fashion.] So let A <X be a moiety that is not in %. Fix a € A. Since
|X\A| = |X|, there are x sets B U {a}, where B < X\A. Find BcX\A
with BU{a}¢ ¥, and set of ;= FU{A, BU {a}}. Then & e [#, 9] and
T4 contains {a}. This establishes density.

Next suppose o < P(X) is such that J, is nonperfect. Then for some
Ued, hy,...,h, e H(T), and A, ..., A, e A, we have [UNh,(A)N
«++Mh,(A,) =1. If B contains {A,, ..., 4,}, then T has an isolated
point. Thus [{A4,,...,A,}, ] is an open neighborhood of 4 (in
P“(P(X)), in fact) such that for every member B, F5 has an isolated
point. This establishes openness.

If {X,J) is a homogeneous topological space (i.e., H(J) acts
transitively on X), then clearly every H-enrichment of J is also
homogeneous. In the context of homogeneity, e.g., when we are talking
about H-enrichments of %* or of 4, “perfect” is synonymous with
“nondiscrete.”

1.4 CoroLLARY. Let (X, T) be a homogeneous topological space. Then
{dc P(X): T4=D)} is dense open in P*(P(X)), where x = 2%,
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1.5 Prorosimion. Let (X, T) be a topological space, x :==|X|= w. Then
{Ac X:T, has a small nonempty set} is dense in P*(X).

Proof. Let [F, G]+#{J be a basic open set in ?*(X). If F #J, we have
Fe[F, G] and Jr contains the small set F. If F =(J, then since G is
small, we can find some x € X\G. Then {x} €[F, G] and T, contains
the small set {x}.

1.6 CoroLLaRrY. Let 1sn<w. Then {AcR™: W =9} is dense in
FYR").

Proof. Immediate from 1.5 and 0.10.

The main result of this section stands in contrast to 1.3—1.6. Define the
weight of a topological space (X, ) to be the least cardinal xk = w such
that J has an open basis of cardinality x; denote this number by w(J).
(So w(U)=w-A for A=1.) Let ¥<H(T), s{ cP(X). The partial
H-enrichment J% is the smallest enrichment of  in which each A €  is
open and such that each A € # is a homeomorphism. It is easy to see that
if B < 7 is an open basis for 7, then BU {(h(A): he ¥, Ae A} forms a
subbasis for 7%. When # = H(J), we have %= J, as above. (We will
have occasion to be given F and J,e HE(9), and need to find
F,e HE(T) with T, J,. F, will be constructed to be of the form
(9)%, where # = H(J).)

Define the space (X, J) to be even if: (i) |U|=|X| for every
nonempty U e J; and (ii) w(9) =< | X|.

1.7 Examriis. Let A=1. Then the generalized ecuclidean space
{R* @) is even. The space {Q, ') of rational numbers is also even.
The argument in {3] to prove 0.9 also shows that if 7 e HE(U') is
proper, then every F-convergent sequence in @ is eventually constant.
Thus if J is also nondiscrete (a possibility guaranteed by 0.1), then
w(J) = wy; hence {Q, F) is not even.

1.8 THEOREM. Assume k is an infinite regular cardinal, {X, J) is an even

space of cardinality x, and # < H(T) has cardinality <x.

(i) If T is a T, topology, then {Ac X: T¥ is perfect} is x-residual in
PHX).

(ii) If & is a connected topology, then {Ac X: T% is connected} is
k-residual in P(X).

(iii) If  is a Hausdorff topology, then {Ac X: T x4, is perfect} is
k-residual in P*(X).

Proof. Ad (i). Let B c J be an open basis of cardinality <x. A typical
basic open set for I% then looks like UN (M A(A), where U e B and
heH

Hc ¥ is finite. Let F={(U, H): Ue B\{D} and Hc ¥ is finite}.
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Define ¥y g:= {A cX: UnNnN h(A)#@} for (U, H) € #. By hypoth-
heH

esis, |#| = k. By 1.1(i) it remains to show that each &,  is dense open in
P*(X) and that {A = X: F7 is perfect} oM {Fu.: (U, H) € F}.

First let [F, G] # & be basic open in #“(X), so F, G c X are disjoint
and of cardinality <k. Set A := X\G. Then A €[F, G]. Because |U| =k,

we have UN ﬂ h(A)= U\(hUH h(G)) #@. Thus Ae€l[F, G]N Fu u,
and ¥y 5 is dens:a in P5(X). -

Next let A€ Py y, with relUnN hr-l'h(A). Let F:={h '(r): he H).
Then Fc A is finite, so Ae€[F, @i. Also if BelF, ] then clearly
reln hg{ h(B); whence B € ¥, ;. This says that &,  is open in 2*(X)

(even in 2*(X)).
Finally suppose A e {Fy u: (U, H) € F}. We must show that for

Ue B and H c ¥ finite, [UN (M A(A)| #1. If U=, the cardinality is

heH

0;if U#, then (U, H)e #. Let re UN () h(A). Then there is some
heH

Ve B\(D)}, V< U\(r}, since F is a T, topology. Then (V, H) e F, so
A € ¥y g This tells us that U N {7) A(A) contains elements other than r,
and is hence not a singleton.  *<¥

Ad(ii). Use the proof above to show that ¥  is dense open in *(X)
for (U, H) € #. Assuming 7 is connected and Ae N{Fy i (U, H) e
F}, let ¥ be a cover of X by 7 %-basic open sets, with a, b € X arbitrary
and V,, V,e? containing a and b respectively. It suffices to find
Vie.. W V¥ with Vi=V,, V.=V, and VNV, #0 for 1=<i=<
m — 1. For each ¥-basic open set V, let U, € B, H, c ¥ finite be such
that V=U, ﬂhr‘] h(A). Let V' ={U,:V e ¥%}. Then ¥’ is a J-open

eHy
cover of X. Since ¥ is a connected topology, there exist V|, ..., V,, e ¥
such that V=V, ¥V, =V,, and setting U, = Uy, H,=H,, l=i=m—-1,
we have U NU.,,#@. Now for each i, VNV, =UnNU,.)N

) h(A). Since U;N U, #4J, we know that A € Fyny,,, num,, for
heH;UH, .,

1<sis=m-1 Thus V;NV,,,#J, and 5 is therefore connected.
Ad(iii). Let B be as above. A typical basic open set for 774 x4y looks
like UN (M) k(AN [ A(X\A), where UeB and H,, H,c ¥ are
hEHz

hell
finite. T34, x4y is perfect if and only if no such set is a singleton.
Let #={(U,H,H,): Ue®B, H,, H,c 3 are finite, and there is
some rel with {h™'(r): he H}N{h Yr): he H,}) =@}. For each
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(U H, B e F, let Sy g i= {AQX: Un M k(A)N M) AX\A)#

@}. We know |F|=k, so it suffices to show that each such ¥y g 4,

is dense open in P*(X) and that {AcX: T§ xu, is perfect} o
(WS, b1t (U, Hy, H,) € #}.

First fix Py p, n, for (U, H,, H,) € %, and let [F, G]# & be basic open
in P(X). Let V:={relU: {h™'(r): he H}N{h™Yr): he H,} =)}.
Because ¥ is a Hausdorff topology and H,U H, is finite, there are
disjoint J-open sets Wy, 2 {h~'(r): he H} and W, {h™'(r): h € H,},
where reV is arbitrary. Let W= UﬂhﬂH (W) ﬂhq h(W,). Then

We T and re W c V; whence V € 9. By definition of %, V #{J; hence
W|=k. Letre V\( J r(GYu U h(F)). Then we have
heH,

(R r):heH}N{h (ryheH)}={h"'(r): he H}NG
={h"Yr) he H,} NF=.

Set A:=FU{h™'(r): heH,}. Then A€[F, G]. Also {h™'(r): heH,} c
X\A, so we have reUN M) A(A)N ) A(X\A). Thus A€ %y u, m,»
heH, heth

establishing density of ¥y, g, in P*(X).
Next suppose A € Fy y, g, where U € B and H,, H, c # are finite. Let
reUN M kAN M R(X\A), with F:={h"Y(r): heH}, G:=
heH, heth

{h~(r): heH,}). Then [F, G] is a basic open set in ?“(X), and
Ae[F, G). f Be|F, G], then we have re UN hoi A(B)N hq h(X\B),

s0 B € $y y, n,- This establishes openness of Fy, y, u,.
To finish, suppose A € ¥y y, g, for all {U, H,, H,) € . We need to
show that for all U € & and finite

H,H,c% |UN N hA)u M rEOA)| #1.
heH, heH,

So pick (U, H,, H,} arbitrary. If (U, H,, H,) € %, then let r,e UN
M A(A)N [ A(X\A). We know that
ke H, ket

Vi={reU: (W' (r): heH}N{h '(r): heH,) =T}

is nonempty and J-open. So let U’ € % be nonempty and contained in
V\{ro}. Then (U', H,, H,) € ¥, 50 A€ Sy y u, Thus UN (M) h(A)N

heH,

() h(X\A) contains elements other than 7,, and is hence not a singleton. If
heH:
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(U, H, H)¢ %, then for all rel, {h™'(r): heH}N{h™(r): he
H,} #. Thus foreach re U, r ¢ Q, h(A)N ) h(X\A); consequently
heH, heH,

UN M A(A)N () A(X\A)=¢J, and is not a singleton in this case
heH heH,

either.

2. Applications of 1.8

2.1 THEOREM. Assume K is an infinite regular cardinal, (X, F) an even

space of cardinality x, and |[H(T)| s k.

(i) If J is a connected topology, then there is a proper nonempty Ac X
such that both T, and T x4 are connected. If T is also a Hausdorff
topology, then A can be found as above so that T4 x\a, is perfect.

(ii) Under the hypothesis that x = 2%, the set A above may be taken to be
a moiety of X.

Proof. Ad(i). The map Bw X\B, complementation in P(X), is a
homeomorphism on #“(X) (taking [F, G] to [G, F]). Thus the sets
F:={AcX: F, is connected} and &% :={Ac X: T, is connected)
are k-residual in P*(X), by 1.8(ii). Thus $NFH={Ac X: both T,
and T4, are connected} is x-residual in ?*(X), hence infinite, and A
can be found as claimed so that &1 # A # X. If 7 is also Hausdorff, we set
Fi={AcX: T4 xu, is perfect}. &, is k-residual in P*(X) by 1.8(iii),
so 1N FH NS is k-residual. We then find A proper nonempty in this
intersection.

Ad(ii). Assume x =27, and set ¥:= {A c X: A is a moiety}. Then
|P(X )\, = k. For each pair F, G of small subsets of X, let $rs={Ac
X: F#A# X\G}. Itis easy to show each ¥ is dense open in 2~(X),
and &= {Frc: F, G small in X}. Because k¥ =2°%, &, is x-residual
by 1.1(i). Thus the set A we want comes from % N %N ¥, (or from
HANFHNFHNY,, depending).

2.2 TueoreM. Let A =1, and assume c* is a regular cardinal. Then there
is a proper nonempty subset A = R*, which can be taken to be a moiety if
either A< or c* satisfies 2% =k, such that U and Uk, are both
connected, and such that %Q‘A,R»\A} is perfect.

Proof. {R*, %*) is an even connected Hausdorff space, and
H(UY)| < (c*)* = c* (because w(¥"*) = w - A, so there is a dense subset of
cardinality « - 4). Thus 2.1 applies. This takes care of the theorem,
except for the case A < @ and we want A to be a moiety. But then 0.10 is
applicable: If A is not a moiety, then one of ¥4, %k, contains a small
nonempty open set, forcing discreteness.
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The following application of 1.8 shows that the map H(-) from HE(%)
to the subgroup lattice of Sym (R) is not join-preserving.

2.3 THEOREM. Assume C is a regular cardinal. There are H-enrichments
I, and T, of U such that H(T) v H(F,)= H(WU), but H(T, v T3)#
H(AU). Thus H(-) does not preserve lattice joins.

Proof. By 2.2 there is a moiety A c R such that both %, and ¥Up., are
connected. Let 7, =H,, J5= Up.. Then H(F))=H(F,)=H(U), by
0.7. Thus H(7,) v H(J,) = H(U). However, I, v 9> = U4 r\4 is non-
connected. Hence, by 4.2(i), H(F, v F5)# H(A). (Section 4 deals with
how much larger H(J) is than H(%) when J € H(%) is nonconnected.)

2.4 Remark. The hard work in proving 0.6 went in constructing a set
AcR such that %, mu; is nondiscrete (which one can do without
assuming ¢ is a regular cardinal). Showing complete regularity is easy.

2.5 ProposiTiON. Let T be a topology on a set X, let # < H(J), and
suppose s = P(X) is closed under complementation. If T is regular (resp.
completely regular, O-dimensional), then so is T 2.

Proof. Set 7':=J%, and let x € T € 7’ be given. Assume first that
is regular. Then we may assume that 7 is basic open, so that T = UM B,
where Ue 7 and B :=h,(A,)N---MNh,(A,) for some {h,,...,h,}c ¥
and {A,,..., A,} =« Since each A € & is T'-clopen, so is B. Since &
is regular, there is a J-open neighborhood V of x with clgz(V), the
F~closure of V, contained in UU. Then we have xe VN B ccly{V N
B)ccda(V)Ncdg(BY=cs(VINBcdy(V)NBcUNB=T. Thus J'
is regular.

Next let & be completely regular, x € T as above, and T=UNBA.
Then there is a continuous f: {X, )— (R, %) taking x to 0 and X\U
to {1}. Define g; X — R to agree with f on the J'-clopen set B and to be
constantly 1 on X\B. Then g: (X, 9’')— (R, U} is clearly continuous,
and takes x to ¢ and X\T to {1}.

Finally let 9 be O-dimensional, x € T = U N B. Let C be a -clopen set
withxeCcU. Then CNBisa T -clopen set withxe CNBcT.

2.6 THEOREM. Assume k is an infinite regular cardinal, (X, T) is an even
space of cardinality x, and |\H(9)| < k. If T is regular (resp. completely
regular, 0-dimensional} Hausdorff, then {Ac X: T4 xuay is perfect
regular (resp. perfect completely regular, perfect 0-dimensional)} is
k-residual in P(X).

Proof. Immediate from 1.8(iii} and 2.5.

2.7 CoroLLARY. Let A=1, and assume c* is a regular cardinal. Then

{A cRY U}, pway is a perfect completely regular topology} is c*-residual
F PRV

in P (R*.
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2.8 Remark. We have achieved in 2.7 a result with more generality than
that of 0.6, but at the cost of having to assume cardinal regularity. (It is
known that the regularity of ¢ is independent of the usual, i.e., ZFC,
axioms of set theory.) An honest improvement on 0.6 is given in 2.12
betow.

2.9 ProrosiTioN. Let T € HE(U) be nonconnected. For each x e R and
AU-neighborhood U of x, there is a T-clopen set T withxe T c U.

Proof. Suppose Ac R is a proper nonempty F-clopen set, a € R\A,
and that A’ := (a, ©) N A is nonempty. Then A’ =[a, ©) N A is F-clopen
and bounded below. Pick x e A" and let h: R—R take ye R to 2x — y.
Then k€ H(J), hence A(A') is F-clopen, contains x, and is bounded
above. Therefore A”:= A’ Nh(A") is a T-clopen neighborhood of x that
is bounded. We can shrink A" as small as we like, while keeping x fixed,
using affine maps. This gives us the set T that we want.

2.10 CoroLLARY. Let sl « P(R) be closed under complementation,
where I\U # . Then Uy is 0-dimensional.

Proof. Let :=%,, and suppose x € T € F is given. As in the proof
of 2.5, T=UNB, where Ue U and B is T-clopen. Because S\%U #J,
T is nonconnected. Thus, by 2.9, there is a T-clopen T' withxe T’ c U.
Consequently, T’ N B is a J-clopen neighborhood of x contained in T,

2.11 CoroLLARY. Assume ¢ is a regular cardinal. Then {AcR: Uy, gay
is a perfect O-dimensional topology} is c-residual in P°(R).

Proof. Immediate from 1.8(iii) and 2.10.

The following is an immediate consequence of 2.10 and the proof of 0.6
in [3].

2,12 CoroLLARY. U has a nondiscrete O-dimensional H-enrichment.

An interesting consequence of 0.5 and 2.5, concerning the rational line
(Q, U’'), is the following.

2.13 CoroLLARY. Let of ¢ P(Q) be closed under complementation,
where d\U' # . Then U= 9.

2.14 Remark. A question remaining from [3] is whether € HE(%) can
be both connected and (completely) regular. One easy fact, proved (in
more generality) in [3], is that if A ¢ % is either residual or co-small, then
%, is both connected and nonregular. One might try to prove a version
of “almost every %, is connected and nonregular” by showing that
{AcR: A is residual} is c-residual in P°(R). But this is false, since
otherwise we would also have the same for {A cR: R\A is residual}; so
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@={AcR: both A and R\A are residual} would be c-residual in
P“(R), an impossibility. The problem looks quite difficult, and at this
point we cannot even guess as to the outcome.

3. Maximal H-enrichments

Another way of obtaining H-enrichments is via Zorn’s lemma. Let P be
any topological property. Call P inductive if whenever each member of a
chain of topologies on a set X satisfiles P, then the join of those
topologies satisfies P as well. Clearly the conjunction of any number of
inductive properties is inductive; examples of inductive properties in-
clude: perfect; T,; Hausdorff; (completely) regular; totally disconnected;
0-dimensional.

Let {X, ) be a topological space. Then, because of Zorn’s lemma
and the fact that the partially ordered set HE(J) is closed under
topological joins, every member of HE(Y) satisfying the inductive
property P can be enriched to a member of HE(J) that is H-maximal P;
i.e. maximal in HE(J) with respect to satisfying P.

3.1 Remark. Obvious examples of noninductive properties include: non-
discrete; compact; non-Hausdorff. Less obvious is the property of
connectedness. J. A. Guthrie and H. E. Stone have shown (see [6]) that
there are connected topologies that cannot be enriched to maximal
connected topologies. However, as is shown in [6] via two (nonconstruc-
tive) methods (one due to Guthrie—Stone, the other to M. Wage), % can
be so enriched. Wage's enrichment i1s not an H-enrichment since it
contains countably infinite open sets (viz. 0.10). It does not appear that
an H-enrichment can be obtained using the Guthrie-Stone method
either, so it seems to be an open question whether the euclidean
topologies have H-maximal connected H-enrichments,

3.2 Prorosition. Let 1sn<w, with T e HE(U") either H-maximal
connected or H-maximal nondiscrete. (N.B.: In this instance,
“nondiscrete” is synonymous with “perfect,” since U" is homogeneous.)
Then every small subset of R" is T-closed.

Proof. Suppose J is an H-maximal connected H-enrichment of %",
and let 9' e HE(%U") be obtained from ¥ by adding in all co-small
subsets of R". Because nonempty F-open sets are not small, 7’ must be
connected. (Use an argument similar to that in 1.8(ii).) By maximality of
F, we have § = F'. Similarly we have the assertion for ¥ H-maximal
nondiscrete.

The next results concern w(J) when 9 € HE(%"), 1=n <w. By 0.9
we know that w(J) = w, when 7 is proper. By putting conditions on 7,
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and perhaps on the set-theoretic universe, we can improve this lower
bound. It is well known that the hypothesis 27 < 2 is a consequence of
Martin’s Axiom, and is hence strictly weaker than the Continuum
Hypothesis.

3.3 THEOREM. Assume C is a regular cardinal and 2=° <2 If 1sn<w
and e HE(U") is H-maximal regular nondiscrete (resp. completely
regular nondiscrete, O-dimensional nondiscrete), then w{(7) = .

Proof. Suppose  is H-maximal regular nondiscrete (resp. completely
regular nondiscrete, 0-dimensional nondiscrete), and assume w(J) <c.
By 0.10, {R", J) is even. By 1.8(iii), then, with 3% = H(%"), we have
that &#:={A cR": T4 pmay is nondiscrete} is c-residual in P(R"). By
1.1(ii), |¥| =2 Since w(9)<c and 2% <2 we know |F} <2 hence
there is some A € $\T, and T 75 gmay is a nondiscrete H-enrichment of
U™ properly containing J. By 2.5, 4 pma) is regular (resp. completely
regular, 0-dimensional). This contradicts the maximality of 7.

Under other maximality assumptions, we can get better bounds, as well
as dispense with the hypothesis 2¢ < 2°.

3.4 TuEOREM. Assume C is a regular cardinal, l<n<w. If 7 € HE(%")
is H-maximal connected, then w(J)=c™.

Proof. Assume w(J)<c and J is H-maximal connected. {R", T} is
even by 0.10; so by 1.8(ii), with & = H(%"), there is a set A = R” such
that both I% and %, are connected. (A is, of course, a moiety, by
0.10.) Each of these topologies is in HE(%"); so since J is maximal
connected in HE(%"), we have ¥ = J% and 7 = T¥«4. This means that
the moiety A is clopen in &, a contradiction. Thus w(J)=c".

3.5 CoRrROLLARY. Assume C is a regular cardinal, 1 =n < w. If o < P(R")
has cardinality <c, then U7 is not H-maximal connected.

Aside from 0.7, we know very little about homeomorphism groups of
H-enrichments. As we see in the sequel, one way of specifying
J'-homeomorphisms when 5’ e HE(J) is via piecewise definition. Let
(X, ) be a topological space, with ' ¢ HE(J). Define h € Sym (X) to
be a J’'/T-homeomorphism if there exists a family {{(T;, h;): iel}
where {T;: iel} is a T'-open cover of X and {h;: i €l} is a family of
F-homeomorphisms such that for each icl, k | Ti=h | T.. The family
{{T;, h;}: iel} is said to be a witness for h; the set of 9'/F-
homeomorphisms is denoted H(F'/T).

In the case X =R and & = %, homeomorphisms in H{(F' /%) may be
appropriately described as “piecewise monotonic.”




140 PAUL BANKSTON

3.6 ProrosiTion. Let (X, T) be a topological space, with T' € HE(T).
Then H(T) < H(T'|Ty< H(T").

Proof. If h € H(J), then {{X, h})} is a witness for h; so h e H(T'/ T).
If he H(T'/T) has witness {(T;, h;): iel} and Te 3", then A(T)=
UAT NT)=U{TNT)eT". Also h™" is witnessed by {(h(T)), h;"):
iel iel

iel}, so h™Y(T)e F' as well. Thus h e H(T").

We must show H(F'/J) is a group. From the last paragraph, we know
H(J'/J) is closed under inverses; so let g, h e H(T'/F), say g (resp. h)
is witnessed by {(5, g;): iel} (resp. {{T, h;): jeJ}). Then g h is
witnessed by {(h;'(S)NT, gioh;): (i, jyelxJ}.

3.7 CoroLLARY. Suppose {X, T) is a space with J,, € HE(J) and
e . Then H(T,/ T)< H(T/ T).

Proof. 1t suffices to show H{J,/J) < H(J,), in view of 3.6 and the
hypothesis that &, c F,. Let h e H(F,/9) be witnessed by {(T;, h,): i€
I}. Then A(T)=\Jh(T NT)e F, whenever T € 7,. Similarly 2~ '(T) ¢

ief

T, so he H(T,).

3.8 Remark. 3.7 says that the operator H(-/7) is order-preserving as a
mapping between lattices; 2.3 says that H(-) is not join-preserving. In
fact, if one picks I, =%, and J,= Uz, as in 2.3, then clearly
H(T,/%) v H(T,/%) = H(¥). However, by 4.2(i), H(J,v T,/U)+
H(%). Thus H(-/J) is not generally join-preserving. The question of
whether H(-) is generally order-preserving is more difficult and remains
open.

Our next result concerns the cardinality of H(J/%) in O-dimensional
H-enrichments.

Call a set A c R symmetric if —x € A whenever x € A. Clearly the set
of symmetric subsets of R is a complete Boolean subalgebra of P(R). If
AcR, then we set —A:={—x: xe A}, and observe that AU (—A) is
symmetric. The operation A — A U (—A) is not one-one in general, but is
so once we restrict attention to sets lying in [0, =} (or in (=2, 0]).

Let A c R be symmetric, and define the function A, on R to fix x € A
and to take x € R\A to —x. Then clearly #, € Sym (R). Also, if A, BcR
arc symmetric sets and A\{0} # B\{0}, then h, #hg. Finally, if e
HE(%) and T = R is a symmetric J-clopen set, then hy € H(F/U).

The character of a topology, x(9), is defined to be the smallest
cardinality of a I-neighborhood basis of a point. If (X, 7) is topological
space, then y(F)=w(J)=<x(7)-|X|. Because of 2.11, the hypothesis
of the next result is reasonably general.
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3.9 Proposimion, Assume F € HE(U) is 0-dimensional. Then x(9) <
[H(T/U).

Proof. Let ¥(J) = k. Because of homogeneity of % and the fact that
T is O-dimensional, there is a family {Ti: § <k} of distinct J-clopen
sets, each lying in the interval (0, 1). Let Tt:=T. U(—T;). Then T; is
symmetric J-clopen, and the sets Ty, £< k are all distinct. Thus the
T { U-homeomorphisms A4, are all distinct, so |H(T/U)| = k.

The following result is a companion to 3.3 and 3.4.

3.10 THEOREM. Assume ¢ is a regular cardinal and that x is any regular
cardinal with c* < x <2 If § € HE(U) is H-maximal regular nondiscrete
(resp. completely regular nondiscrete, 0-dimensional nondiscrete) and
w(T) =c, then |H(T/U)| = k.

Proof. Assume w(J)<c and J € HE(%) is H-maximal regular non-
discrete (resp. completely regular nondiscrete, O-dimensional nondiscr-
ete). By 1.8(iii), with # = H(%), and 0.10, we have that ¥:={Ac
R: I mu; is nondiscrete} is c-residual in #“(R). By 2.5, each T4 g4y
is regular (resp. completely regular, O-dimensional); whence by maxi-
mality of 7, we have T =97 4 for all Ae ¥ Thus T contains a
c-residual family of clopen sets. By 1.1, |¥]=2% so there is a family
{T:: £€<2%} of distinct J-clopen sets. Now |H(%)| =c, hence we may
assume that for § < v <2°, there is no h € H(%) taking T; to T,; i.e., the
sets T are all in distinct H(%)-orbits. We may also assume, by 0.10, that
each T is a moiety in R. For each § < 2%, there is a linear shift s; (i.e., of
the form x+—x + b) taking T; to a J-clopen set that does not contain 0.
All the sets s¢(7;) are distinct since the sets 7; lie in distinct H(%)-orbits.

Thus, without loss of generality, we may assume each T; is a ¥-clopen
moiety that does not contain 0, all the sets T; being distinct, £ <2*, Let
T{:=T:N(0, =) and Tg:=T,N(—%,0). Then T{=T; N[0, %) and
Ty =T. N (=, 0], so the sets T;, Tz are all T-clopen. Now suppose
that [{T%: & <2}| <k, where k is any regular cardinal with ¢* < k<2,
Then there is a set X <2, |X|=«k, such that for §, veX, T{=T;3.
Since for all § # v in X we know T; # T,, it follows that the sets T are
all distinct for § € X. These observations allow us to assume without loss
of generality that there is a family {7T;: § <k} of distinct F-clopen
moieties, each lying in the interval (0, «). From this we conclude that the
symmetric F-clopen moieties T;:= T, U (—T;) are also distinct. Thus the
corresponding 7/ %-homeomorphisms hTs’ are distinct as well, and we
conclude |H(T /)| = k.

3.11 CoroLLARY. Assume C is a regular cardinal. If 7 € HE(U) contains
an H-maximal O-dimensional nondiscrete H-enrichment of U, then
|H(F /%) =c*.
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Proof. Assume first that J' itself is an H-maximal 0-dimensional
nondiscrete H-enrichment of %. If w(J')<c, we infer |[H(T'/A)| =c*
by 3.10. If w(9")=c*, then x(I")=c"; so |[H(T'/U)|=c* by 3.9. If
J € HE(%U) contains J' as above, then |H(T/U)| =c*, by 3.7.

4. Permutations of the Real Line

In this section we concern ourselves with properties of the various
homeomorphism groups H(J) and H(T /%), for T € HE(%), and their
interrelationships.

For h € Sym (X), we let supp (h):= {x € X: h(x)#x}, the support of
h. Note that if (X, S) and (Y, J) are topological spaces, J is a
Hausdorff topology, and f, g: (X, ¥)— (Y, J) are continuous, then
{xreX: f(x)#g(x)} is #-open. In particular, we have:

4,1 Prorosirion. Let (X, §) be a Hausdorff space, he H(F). Then
supp (h) is T-open.

Let e HE(%). By 0.7, H(T)=H(U) if J is connected; by 0.8,
H(F)=Sym (R) if and only if ¥ =%. To answer further the question
(raised in 0.8) of exactly when H{(F}=H(J,) is true for JF,, T, ¢
HE(%U), we offer the following.

4.2 PROPOSITION.
(1) Let T e HE(U). Then H(9)=H(%U) if and only if H(T/U) =
H(U), if and only if T is connected.
(ii) Let 7y, J, € HE(U), where T is O-dimensional and J, ¢ 7,. Then
H(T\/ %) ¢ H(T).

Proof. Ad(1). If F is connected, then H(J) = H(F /W)= H(%), by
0.7. Suppose 7 is nonconnected. It suffices to show H{T/U) + H(%). By
2.9, there is a J-clopen moiety T <= (0, 1). As in the proof of 3.9,
T':=TU(~T) is a symmetric J-clopen moiety, and A€ H(T/U)\
H(%U).

Ad(ii). Suppose J,, I € HE(¥), 7, is O-dimensional, and F; ¢ 7.
Since the bounded i -clopen sets form a basis for 7, there is a
Fi-clopen set Tc(0,1) with T¢ J,. Then T':=TU(-T) is also
Fclopen. However, if T' e &,, then T=T'N(0, 1) e J, also. Conse-
quently T' ¢ 9. However, if h = —hp, ie.,

—x ifxeT’

h(x)z{ x fxeR\T’
then h € H(F,/%U). But supp (h)=T"'¢ I, so h ¢ H(J>), by 4.1.

One can improve on 4.2(i) to show that when € HE(%) is not
connected, H(F /%) is “significantly larger” than H(%). By way of
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notation, if H is a subgroup of the group G, then |G : H| is the index of H
in G.

4.3 TueoreM. Let T € HE(%). Then there is a subgroup K of H(F %)
such that:
(i} K has exponent 2 (i.e., K consists of involutions), so is abelian.
(i) 1K NH(W)|=2.
(iii) No H(U)-coset in H(F [U) contains more than 2 elements from K.
(iv) If 7 is nonconnected, then |K| = c; hence |H(T[U): H(¥Y)| = c.

Proof. For A c R symmetric, define k, € Sym (R) as before:

x ifxeAd

h"(")={—x if x e R\A

Clearly A, is an involution on R, so has order 2 in Sym (R). Also note
that if min {|A[, |R\A|} =2, then h, is nonmonotonic, hence not in
H(%). Also hR\A = _hA, and hA °hB = h(AﬁB)U(R\(AUB)) whenever A, B [
R are both symmetric.

Suppose F € HE(%) is nondiscrete. Then every nonempty proper
T-clopen set is a moiety by 0.10. Define K:={hy: T is a symmetric
J-clopen set}.Then clearly KN H(U) = {idr, —idg}. K is a subgroup
since if §, T are symmetric and J-clopen, then so is (SN T)U(R\(S U
T)). Also X clearly has exponent 2. This establishes (i) and (ii) above. To
establish (iii), suppose hs, A € K are distinct. Then S # T. kg and Ay lie
in the same H(%)-coset if and only if hgohz'=hsohr=
hsamumysury € H(%), if and only if (SNT)U(RMSUT)) e {R, &}, if
and only if § =T or § =R\7. Thus no H(%)-coset in H(F /) contains
more than two elements of K.

Now suppose 7 is nonconnected, and let n e {1,2, ... }. By 2.9 there
is a J-clopen neighborhood S, of n diameter <3. Let 7, :=S, U (—S,).
For each Xc{1,2,...}, let Ty =I|J T,. Then Ty is a symmeiric

neXx

T -clopen moiety. Of course if X and Y are distinct subsets of {1,2,...},
then Ty # Ty, hence hr, # hy,. Thus |K|=c. Since no H(%)-coset in
H(F/%) can contain more than two elements of K, we infer that
|H(T /%) H{(Y)| = c.

In the event F is discrete, we replace 9 with a nondiscrete H-
enrichment of WU. Of course, in this case |H(J/%)| =|H(I)| =25
consequently |H(T/Uy: H(U)| =2~

4.4 Remarks.
(i) Of course, under the hypothesis of 311, we have
[H(T/U): H(U)| =c*. Thus the problem of when one can improve
the lower bound in 4.3(iv) is inevitable.
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(ii) Let Sym* (X) denote Sym (X) viewed as a subspace of (X*),. It is
easy to show that H(%) is closed in Sym® (R), as well as nowhere
dense in Sym° (R). For a subgroup G of Sym (X), to be closed in
Sym® (X) means that there is a first order relational structure & on
X such that G = Aut (X, &), the group of &-automorphisms.

In the particular instance of %, the structure # is the ternary
relation of betweenness.

(iii) The subgroup G of Sym (X) is a-transitive, for « a cardinal, if
whenever f e Sym (X) and F ¢ X has cardinality «, there is some
g € G such that g | F =f | F. So to say that G is dense in Sym* (X),
for x an infinite cardinal, is to say G is a-transitive for all o <k.
H(%) is 2-transitive but not 3-transitive. By contrast, H(%"), n =2,
is k-transitive for all k<w; i.e., H(U") is “highly transitive.”
Equivalently, H(%") is dense in Sym*® (R™).

4.5 ProrosiTioN. Suppose T € HE(¥) is nonconnected. Then H(U) is
closed nowhere dense in H(J /) = Sym” (R).

Proof. H(%) is closed in Sym® (R), so it is closed in the subspace
H(T/%). To show H(%) is nowhere dense, it suffices to show H(F/U)N\
H(%) is dense in H(F/%). Let he H(U), with FcR finite. Let
N:={geH(J/U): g| F=h|F}. We show NN (H(T/U\H(U))+D.
By the argument in 4.3 (iv) there is a F-clopen symmetric moiety T with
FcT. Let g=hohy. Since H(J /%) is a group (by 3.6), g € H{T/%). If
xeF, then we have g(x)=h(x), so geN. T is a moiety, and g is
monotonic in opposite directions on T and R\T. Thus g ¢ H(%).

Another way of showing H(T /) is “significantly larger” than H(%)
for 9 € HE(U) nonconnected is to show H(%) to be nonmaximal in
H{T /%), i.e., there is some h € H(F/UNH(U) such that the subgroup
of H(F /%) generated by H(U) U {k} is a proper subgroup.

4.6 TueoreM. Suppose T € HE(U) is nonconnected. Then H(U) is not
maximal in H{(T [U).

Proof. Define g€ H(F /%) to be pleasant if: (i) for all AcR, A is
bounded if and only if g(A) is bounded; and (ii) there is a bounded set R,
and a cobounded set R, such that R, NR, = and g is monotonic on
both R, and R,, but with opposite parity (e.g., g is increasing on R, and
decreasing on R,). Let P:={g e H(F/U); g is pleasant}.

LemMa. P is a subgroup of H(J [ %) that contains H{U).

Proof (Lemma). Clearly H(¥)c P. If geP then obviously g!
satisfies (i) above. Suppose g is increasing on R; (bounded) and de-
creasing on R, (cobounded). Then g™ ! is increasing on g(R,) (bounded)
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and decreasing on g(R,) (cobounded). Also g(R,)Ng(R,)=g(R,N
R,)=g() =. The other cases are treated similarly, and we conclude
P is closed under inverses,

Now suppose g, & € P. Then clearly goh satisfies (i) above. Suppose g
is increasing on R; {bounded), decreasing on R, {cobounded), R;NR, =
J; and suppose k is increasing on S5, (cobounded), decreasing on S,
(bounded), $; N S, ={J. Then goh is increasing on §;, NA™(R,) as well as
on $Nh™Y(R,); geh is decreasing on S;NA '(R,;), as well as on
S,NA~'(R,). Thus goh is increasing on S;NA (R,) (bounded) and
decreasing on §,NA7'(R,) (cobounded). These two sets have empty
intersection, so we infer that gok € P. The remaining cases are treated
similarly, so we conclude that P is a subgroup of H(J/4). (Lemma)

Suppose T is a symmetric F-clopen set. Then for any AcR,
hr(A)=hr((ANTYU(A\T) =R (ANTYUR{(A\T}=(ANTYU(—(A\T))
{where hy is defined as in 4.3). Thus /4, satisfies clause (i) in the definition
of “pleasant.” Suppose now T is a bounded symmetric -clopen set that
is also a moiety. Then h; € P\H{%). By 2.9 we know such sets T are in
abundance; in particular P # H(%). We can also find symmetric 7-
clopen sets T such that both T and R\T are unbounded. For such a T,
hr ¢ P. Thus H(%U) fails (quite dramatically) to be maximal in H(JF /%).

The results 4.3, 4.5 and 4.6 discuss ways in which we can say H(9) is
“small” (or at least “not very large™) in H(J /%) whenever € HE(%)
is nonconnected. Now we shift perspective and look at how H(J) sits in
Sym (R). In one sense, that of index, we show that H(J) is “small”
whenever F # 9. We first cite an obvious consequence of the Lemma on
p. 581 in [5].

4.7 TueoreM ([5, Lemma for Theorem 2]). Let X be an infinite set of
cardinality k, with G <8ym (X) a subgroup of index <2* (i.e., of “small
index”). Then there is a set Mc X, with | X\M|=x, such that if
g €Sym (X) and g | M = id,,, then g € G.

4.8 TueoreMm. Let (X, T) be a Hausdorff space such that |Sym (X):
H(T)| <2¥\. Then T has |X| isolated points.

Proof. If X is finite, then & = & immediately. So assume X is infinite.
By 4.7 there is a subset M c X, with |[X\M|=|X|, such that every
h & Sym (X) that fixes the points of M is a J-homeomorphism. So let
x,y € X\M be distinct, and let & € Sym (X) exchange x and y, leaving
everything else fixed. Then A € H(J), and hence {x, y} =supp (h) € 7 by
4.1 (since J is Hausdorff). Thus x is an isolated point. Since x was chosen
arbitrarily from X\M, a set of cardinality |X|, there are |X| J-isolated
points.
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4.9 CoroLLARY. Let 1=<A, with I e HE(U" nondiscrete. Then
[Sym (R*): H(T)| = 2°"

Proof. J is homogeneous and Hausdorff. Use 4.8.

In another sense, H(J) is “large” in Sym (R) whenever 5 € HE(%U) is
nonconnected. We show that H(F /%) is dense in Sym® (R), i.e., that
H(T /%) is highly transitive.

4.10 TueoreM. Let § € HE(U) be nonconnected, and let AcR be a
Y-closed U-discrete set. Then every permutation on A extends to a
T | H-homeomorphism.

Proof. Let s eSym(A). We need to find ke H(F/%) such that
h|A=s Now symmetric groups are well known to be generated by
involutions (i.e., elements of order 2), so we may as well assume s = id,,.
Then we have a partition A = A,U A, U A,, where 5 takes A, to A; and
vice versa, and fixes A,. A is %U-discrete, hence countable since
w(9) = w. Because ¥ is also a regular topology, there exist sets [,, U,,
for a€ A, such that: (i) I, is a closed interval containing a in its
M-interior, (ii) I, c U, € U; and (iii) for each a, b € A distinct, U,N [, =
(. Since A is U-closed, so is B:= |_J I,. For each a € A, pick, using 2.9,

acA

a J-clopen neighborhood T, of a, with T, c I,, and let h, € H{%) take I,
monotonic increasingly onto I,,, with &,(a) =s(a). Define

h(x) ifxeT,acA,
h(x)=14 h;'(x) ifxeh, (T), acA,
X otherwise.

The sets {T,, h,(T,): a e Ay} are pairwise disjoint and F-clopen, so A
is well defined. # is clearly a bijection on R extending s. To show
h € H(F /%) it remains to prove that T = ) (T, Uh,(T})) is T-closed.

deAy

Then k and 2~ will have been shown to be 2%-continuous when restricted
to the elements of a F-clopen partition.

So suppose x € B\T, say x € ,. Then U,\T, is a J-open neighborhood
of x missing 7, hence T is F-closed in B. Since B is ¥-closed in R, we
infer that 7 is indeed a &-clopen set.

4.11 CororLArY. Let T e HE(%) be nonconnected. Then H(T[U) is
highly transitive, thus dense in Sym® (R).

Proof. Let 1=k<w, a;<<---<a, by,..., b, distinct. Let s be a
permutation on {1,...,k} such that b, ,<---<b,yu). Let ge H(%)
take a; to by, 1=<i<k; and, by 4.10, let h € H(T/%U) take b, to b,
1<i<k Then h™'oge H(F/%) takes a, to b;, 1si=<k.



H-ENRICHMENTS AND THEIR HOMEOMORPHISM GROUPS 147

Another way in which H(J /%) is “like” Sym (R) when J € HE(®¥) is
0-dimensional is that elements of H(J /%) need not respect boundedness
in R.

4.12 TuEOREM. Let & € HE(A) be 0-dimensional. Then there is some
h € H(F/U) and a bounded set A c R such that h(A) is unbounded.

1
Proof. Let A={n+2: n<w}, B={n+2: n<w}. We find he

H(T{U) taking to n+2 for each n <w. Now the sequence

n+2

1
( n 2) cannot J-converge, by 0.9, so there is a T € & with 0e T and
n

TNA=. By 2.9 we can arrange that T < (-1, 1). Since J is assumed
to be O-dimensional, we can arrange for T to be J-closed as well. For
each a € AU B choose I,, U, as in the proof of 4.10. Then B:= {0} U
1
U I, is ¥-closed. For each —e A, let h, take [,,, monotonic increas-
acAUB

1
ingly onto I,, with hn(;)=n, and let T,cF,\T be a J-clopen

1
neighborhood of e Define

h,(x) ifxeT, 2=n<w
h(x)=9h,'(x) ifxeh,(T), 2<=n<w
x otherwise.

Then h takes A to B as advertised. That A € H(F /%) is proved as in

the proof of 4.10; one needs to check that 7'= |J (7, Uh.(T.)) is
2=n=Cw

J-closed. But T’ is J-closed in B (T is a J-neighborhood of 0 missing

T’), which in turn is ¥%-ciosed in K.
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