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Abstract. H-enrichments of topologies are larger (i.e., inclusive) topologies that also have
larger homeomorphism groups. In this paper we continue our study of H-enrichments of the
euclidean and rational topologies via generalized Baire category arguments. New results concern
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0. INTRODUCTION. This paper seeks to shed further light on the use of Baire
category arguments in the study of H-enrichments of topologies, and is a continuation of [7]
(whose notation and terminology we follow). To recall the basic definition: Let 7 and 7' be
two topologies on a set X, 7 C 7' (i.e.,, 7' is an enrichment of 7). 7" is an H-enrichment of
T if every homeomorphism on (X, 7) is also a homeomorphism on (X, 7"). In the language of
groups, this condition may be phrased H(7) < H(T"), where H(T) := H(X,T) is the group of
homeomorphisms on the space (X, 7).

The study of H-enrichments arose as an off-shoot of the question of which rings of continuous
real-valued functions possess “pseudobases.” (Gillman-Jerison [10] is still the main source on
the subject of such rings.) Recall [3] that a pseudobasis in an abstract algebra A is a subset
P such that every function from P into A extends uniquely to an endomorphism on A. Pseu-
dobases that generate an algebra are free bases in the usual sense; however in the case of function
rings, pseudobases never generate. A principal result of [1] is that a function ring C(X) has a
pseudobasis of cardinality x (finite or infinite) just in case X may be taken to be of the form
(R*,T), where T is a realcompact topology that is a special kind of H-enrichment (called a
“coreflective” enrichment) of the usual product topology U*. This result was later used [3] to
give a complete classification of those function rings that possess countable pseudobases. (There
is a more streamlined proof of the classification theorem in [4]. See also [2, 5, 6, 12], as well as
their references, for more information on pseudobases and how they tie in with other algebraic
work, e.g., the theories of E-rings and of endomorphism-rigid abstract algebras.)



Although certain of our results are quite general, their more interesting applications concern
familiar spaces; e.g., the euclidean spaces (R",U"), 0 < n < w, and the rational line (Q,U’).
We thus phrase our guiding questions in terms of these spaces. In particular, the following three
problems remain unsolved.

0.1 QUESTION. Is there a proper H-enrichment of U/ that is both connected and regular?
0.2 QUESTION. How many H-enrichments does U have?

0.3 QUESTION. Given an H-enrichment 7 of the rational topology U’', when is H(U') a
proper subgroup of H(T)?

The results presented in the sequel address these (as well as other) questions. Section 1 sum-
marizes the main tool of the paper, a Baire category result due to Hung-Negrepontis [9]. Section
2 gives the most general applications of this result to H-enrichment problems, and Sections 3, 4
carry these applications into the very special realm of euclidean spaces. In Section 5 we consider
the situation as regards the rational line, and show that the Baire category approach cannot be
used to obtain H-enrichments in the same way as before.

1. THE MAIN BAIRE CATEGORY LEMMA. If X is an infinite set, we

identify the power set P(X) naturally with the cartesian power 2¥. When we equip the latter
with the usual product topology (where 2 is given the discrete topology), the result is the space
which we denote P¥(X). This space is compact Hausdorff (even compact metrizable when X is
countable), and thus satisfies the Baire category theorem: The intersection of countably many
dense open sets is dense. This theorem, especially in the context of completely metrizable spaces
of sets, functions, or other structures, has been used repeatedly by combinatorialists (and others,
see, e.g., [8, 17]) to prove the existence (and abundance) of interesting objects.

When X is of uncountable cardinality , the usual Baire category theorem is of limited use,
because a particular intersection we may wish to be nonempty typically involves | X| factors.
However, if |X| is regular (so X cannot be expressed as a union of fewer than |X| subsets,
each of cardinality less than | X|), a higher cardinal version of the theorem is available, thanks
to work of Hung-Negrepontis [9]. We first recall notation from [7]. For any set X and cardi-
nal x, let P*(X) be the space (P(X),7), where T is basically generated by sets of the form
[F,G] ={ACX:FCACX\G} F and G being subsets of X of cardinality < x. When
X is infinite and & is a regular cardinal, then P*(X) is canonically homeomorphic to (2%, 7),
where 7 is the “x- modification” of the product topology; i.e., new open sets are basically gen-
erated by < k intersections of old open sets. (The k-modification is an example of a coreflective
enrichment.) The Main Lemma is now the following.

1.1 LEMMA ([9, Theorem 15.8]). Let X be of infinite regular cardinality . Then:



(1) PE(X) is a “k-Baire” space (i.e., the intersection of x dense open sets is dense); and

(7) if K is not weakly compact, then any intersection of x dense open subsets of P*(X) is
homeomorphic to P*(X). O

In a k-Baire space, any set that contains an intersection of k dense open sets is termed k-residual;
complements of k-residual sets are called k-meager. 1.1 (ii) says that if x is not too “large” (see
[13]), then the k-residual sets in P* (X) have maximal cardinality. This fact was used twice in
[7], in the proofs of Theorems 3.3 and 3.10. In Section 3 we improve on those results, obviating
the need for 1.1 (4¢) in the process.

2. GENERAL APPLICATIONS. Our main goal in this section is to show how
a small generalization of Theorem 1.8 in [7] can greatly extend its applicability. Let (X,7T)
be a topological space, with A C P(X) and H < H(T). We denote by 7 the smallest en-
richment 7" of T such that: (i) A C 7'; and (ii) X < H(T'). This new topology is called a
“partial H-enrichment” of 7, and we drop the superscript entirely when H = H(T). Also we
set T4* := T4y The following is easy to prove.

2.1 PROPOSITION. Let (X,7), A and H be as above, with B an open basis for 7. Then
an open basis for T}* consists of sets of the form U N Nycy h(A), where U € B, A € A, and H
is a finite subset of H. O

A little more notation and terminology: x* is the cardinal successor of k; k™ is A if Kk = AT
for some A, and is k otherwise. The weight w(7T) of a topology T is the smallest cardinality
of a possible open basis for 7. Define a space (X,7T) to be even if: (i) w(7) < |X|; and (ii)
\U| = |X]| for every nonempty U € T. A subset A of X is small if |A| < |X|, cosmall if
X \ A is small, and a moiety otherwise. In this section, “s-residual” abbreviates “x-residual in
Pr(X).” Our generalization of Theorem 1.8 in [7] is the following (and the proof is quite similar).

2.2 THEOREM. Let £ be an infinite regular cardinal, (X,7) an even space of cardinality &,
and #H a subgroup of H(T) of cardinality < k. Then:

(1) R:={AC X : for all nonempty U € T and all finite H C H, |[U NNpeg h(A)| > £~} is
k-residual.

(27) If T is a Hausdorff topology and S C X is either 7T-open or cosmall, then § :== {4 C X :
for all U € T and all finite Hy, Hy CH, UNNpen, M(A) N Nrem, RS\ A) is either empty
or infinite } is k-residual.

PROOF. Ad (i). Fix an open basis B for T, |B| < k, nonempty U € B, finite H C H, and
ordinal 0 < a < k. Let Ry mo := {A C X : there is a one-one map from « into U NNpex h(A)}-
There are < k such sets Ry,u,o, and R clearly contains their intersection. In view of 1.1, it
remains to show each such set is dense open in P*(X).



Ad “dense.” Fix small disjoint sets F,G C X, and set A := X \ G. Then A € [F,G]. Also
A is cosmall; whence so is Ny h(A). Since |U| = k, we have that |U N Npen h(A4)| = &, so
A€ RU,H,Q.

Ad “open.” Suppose A € Ry g,q, and let f map « one-one into U NNyeqy h(A). Let R be the
image of f (so |R| < k). Set F := Upeg h™'(R). Then F is small and a subset of A. Moreover,
if B is any subset of X containing F', then R C U NNeg h(B), so we have A € [F,0] C Ry u.a-

Ad (4i). Fix an open basis B for 7 as above, and set F := {(U, Hy, Hy) : U € B, H,; and H,
are finite subsets of #, and there is some r € U with {h™! (r) : h € Hy} C S\{h~*(r) : h € H,}}.
For each (U, Hy, Hy) € F, let Sy, i, ' ={A C X : UNNhen, P(A) N Npem, M(S\ A)
is nonempty }. Now there are < k such sets Sy g, m,, S0 it remains to show that each of them
is dense open in P, (X), and that S contains their intersection. So fix Sy m, u,-

Ad “dense.” Fix small disjoint sets F,G C X, and let V:={re U :{h'(r): h € Hy} C
S\{h'(r): h € Hi}}. V is nonempty because (U, H,, Hy) € F, so let r € V be arbitrary.
Since 7 is Hausdorff, there are disjoint 7-open sets W; D {h~!(r) : h € H;},i = 1,2. Let
W = U N Nher, PW1) O Npe, RW2 N S). Then r € W C V. If S is T-open (empty or
nonempty; if empty, then H, is empty as well), then so is W; hence V is T-open also. Thus
|V| = k. If S is cosmall, then W is easily seen to be an intersection of a nonempty 7-open set
and a cosmall set. Thus |V| = & in this case too. Now fix r € V' \ (Upen, M(G) U Unen, h(F))
and set A := FU{h™'(r) : h € Hi}. Then A € [F,G]. We proceed to show A € Sy, u,.
Indeed r € U; if h € Hy, then h™(r) € A, so r € h(A). Finally, if h € Hy, then h7(r) € S
since 7 € V. Thus r € h(S). Now suppose r € h(A). Then, since r ¢ h(F), it follows that there
is some g € Hy with h(g~*(r)) =r, or h=* (r) = g~'(r). This contradicts the fact that r € V;
hence we conclude r € (S \ A).

Ad “open.” Suppose A € Sym, m,- Let v € U N Nper, R(A) N Nper, (S \ A), and set
F:={h'(r): h € H},G:={h7'(r) : h € Hy}. Then [F,G] is a basic open set in P*(X),
and A € [F,G]. If B € [F, G], then we have r € UNNyepy, A(B)NNpen, H(S\B), so B € Sy u, 1, -

Ad “containment.” Suppose A is in Sy u, u, for all (U, Hy, Hy) € F. Fix U € B and finite
Hy,Hy CH. We need to show that U N Npeq, A(A) N Naem, M(S \ A) is either empty or infinite.
Suppose first that (U, Hy, Hy) ¢ F. Then for any r € Npeq, A(A) N Npem, (S \ A), we have
{h7'(r) : h € Hi} C Aand {h7'(r) : h € Hy} C S\ AC S\ {h(r) : h € Hi}. Thus
r & U, so UN Npew, R(A) N Npem, R(S \ A) is empty. Next suppose that (U, Hy, Hy) € F,
and 79 € U N Nper, M(A) N Npem, R(S \ A). The set V' defined above is infinite, so there is
some Uy C U\ {ro},U; € B, and Uy NV # 0. Thus (U, H;, H;) € F, so we may pick
r1 € U N Nper, P(A) N Nper, (S \ A). By induction on w, we can therefore find distinct
T0,71,T2, - . 0 U N Npem, P(A) N Nper, A(S \ A), and the proof is complete. O

2.3 REMARK. In 2.2 (ii) we tried without success to prove a version in which “infinite” is



replaced with “of cardinality > x~,” a la 2.2(i).

2.4 COROLLARY. Let (X,7) be an even space of infinite regular cardinality x. Then
{AC X :both A and X \ A are T-dense } is k-residual. Consequently 7 is x-meager.

PROOF. In 2.2 (i), let H be the trivial subgroup. Then {A C X : A is T-dense } is x-residual
since it contains R. Now the operation of set complementation is a homeomorphism on P*(X);
hence {A C X : X\ Ais T-dense } is k-residual. Consequently, the intersection of the two sets,
a set that is disjoint from 7, is k-residual as well. O

The following helps to bridge the gap between the combinatorial conditions in 2.2 and the
issues of connectedness and separation.

2.5 PROPOSITION. Suppose (X,7) is any topological space and C C P(X). Let 7' be the
topology generated by 7 U C. Then:

(¢) If every finite intersection of members of C is 7-dense and 7T is a connected topology, then
T is connected also.

(77) If every finite intersection of members of C is T-dense and 7' # T, then 7" is nonregular.

(73) If C is closed under complementation and 7 is a regular (resp. completely regular, 0-
dimensional) topology, then 7" is regular (resp. completely regular, 0-dimensional) also.

PROOF. Let (X,T),C, and T’ be as in the hypothesis.

Ad (i). Use the “chain-connectedness” criterion with respect to any basic open cover (see
Theorem 25.15 in [19] or the proof of Theorem 1.8 (i) in [7]).

Ad (ii). Let B be a T'-closed set that is not 7-closed. Let a € clr(B)\ B, and pick 7T'-open
sets V, W such that B C V and a € W. It suffices to show V N W is nonempty. We may
assume W is basic open, so there is some U; € 7 and finite C; C C such that W = U; NN C;.
Let b € Uy N B, and find Uy € T and finite Co C C such that b € UyNnNCy € V. Then
VAW DU NU;NN(CLUCs) # 0 since b € Uy N Uy and N(Cy U Cy) is T -dense.

Ad (#47). This is essentially Proposition 2.5 in [7], and is straightforward to prove. The thing
to note is that members of C are 7'-clopen. O

A strengthened version of Theorem 1.8 in [7] that is closer in spirit to the original can now
be stated; its proof is an easy application of 2.1-2.5.

2.6 THEOREM. Let (X,7) be an even space of infinite regular cardinality x, H a subgroup
of H(T) of cardinality < k. Then:



(i) {A € X : T} is nonregular and every nonempty 7]*-open set has cardinality > x~} is
k-residual.

(i1) If T is a connected topology, then {4 C X : T} is nonregular and connected } is -
residual.

(73) If T is a Hausdorff topology and S C X is either 7-open or cosmall, then {A C X : every
nonempty 774 ¢\ 4y-open set is infinite } is x-residual.

(v) In (iii) above, in the case S := X, preservation of the separation properties regularity,
complete regularity, and O-dimensionality is also assured. O

The general results above can help to answer Guiding Question 0.2 by giving us lower bounds
on the number of H-enrichments a given topology may have. For a topology 7 on a set X, let
HE(T) be the complete lattice of H-enrichments of 7. Recall that a cardinal & is called weakly
inaccessible if: (i) k is regular; and (7¢)  is a limit cardinal (i.e., Kk = k7). Weak inaccessibility
is a very “small” large cardinal axiom (smaller than, say, weak compactness, see [13]).

2.7 THEOREM. Let (X,7T) be an even space of weakly inaccessible cardinality x, and sup-
pose |H(T)| < k. Then there is a chain in HE(T) of order type k' consisting of even nonregular
topologies. If T is connected, we can obtain a chain in HE(T) of order type w consisting of
even nonregular connected topologies; we can also obtain a family in HE(T) consisting of £
even nonregular connected topologies.

PROOF. We build the chain C by induction on x*. Since s is weakly inaccessible, we may
replace £~ with x in 2.6; we apply 2.6 with H := H(T).

Using 2.6 (i), find A C X so that Ty := 7] is nonregular and every nonempty 7;-open set
has cardinality x. By 2.4, we can ensure that Ty # 7. Since both w(7) and |H| are < &, we
have w(7) < k too. Thus 7; is an even topology. Now fix ordinal @ < k' and assume, by
way of induction, that C, is an a-indexed chain in HE(T) such that for each 8 < «, T3 € C,
is nonregular and even. Let 7' be the join of the topologies 75. Since |o| < &, 7' is an even
H-enrichment of 7, so we may invoke 2.6 (i) and 2.4 to find 7, using 7' in the same way we
found 7, using 7. If 7 is connected, we use 2.6 (i7) in conjunction with 2.6 (i) and 2.4. Since
infinite chain joins of connected topologies are not necessarily connected, we are able to perform
only a finite induction in this case.

To obtain k' even nonregular connected topologies in HE(T), let S := {A C X : Ty
is nonregular connected and every nonempty 74-open set has cardinality x}. By 2.6 (i,17),
S is k-residual. For each A € &, T4 is also even, hence xk-meager by 2.4. For A € §, let
[A] .= {B € S : Tg = Ta}. Then [A] C Ta, so [A] too is k-meager. The equivalence classes
[A] cover the k-residual set S, so there must be more than x such classes. Our desired family is
then obtained by picking sets from S from different equivalence classes. O



Antichains in HE(T) seem harder to find than chains. However, using 2.6, we can obtain
pairs of perfect (i.e., having no isolated points) H-enrichments that have nonperfect topological
joins.

2.8 THEOREM. Let (X,7) be an even space of infinite regular cardinality x, and suppose
|H(T)| < k. Then there exists a pair of nonregular perfect H-enrichments of 7 whose join is
nonperfect; if 7 is connected, these H-enrichments may be taken to be connected too. If T is
regular (resp. completely regular, 0-dimensional), the H-enrichments may also be taken to be
regular (resp. completely regular, 0-dimensional).

PROOF. Foreach z € X, let h, : P(X) — P(X) be given by h,(A) :== (A\ (X \{z}))U((X\
{z})\ A) (i.e., the symmetric difference of A with X \ {z}).

CLAIM. Each h; is an involutive homeomorphism on P*(X).

PROOF OF CLAIM. Fix z € X and set h := h,. h is clearly an involution, so it suffices
to show h is an open map. For each A C X, we have

h(A)=(ANn{z}h) U (X \(Au{z})) = { 4{)?{%,4(‘5};}% i i;ﬁ

To show h is open, let F,G C X have cardinality < k, and assume A € [F,G]. We require
F',G'" C X, also of cardinality < x, such that h(A) € [F',G'] C h([F, G]).
CASE 1. z € A. Then h(A) = {z} U (X \ A). Since A € [F,G], we have F C A C X \ G,
so G CX\ACX\F. Thus GU{z} C h(A) C (X \ F)U{z} = X\ (F\ {=z}), so
h(A) € [GU{z}, F\{z}]. Set F' := GU{z}, G' := F\{z}, and assume F C B C X \G". Since
h is an involution, it suffices to show F' C h(B) C X \G. Now z € B, so h(B) = {z} U (X \ B).
Since GU {z} C B, we have X \ B C (X \ G) \ {z}, so {z} U(X \ B) C (X \ G) U{z}. But
z€ACX\G,s0h(B) CX\G. Finallyy BC X \ (F\{z}), so F\ {z} C X \ B, hence
FU{z} C h(B). Thus F C h(B).
CASE 2. z ¢ A. Then h(A) = X \ (AU {z}). Again we have G C X \ A C X \ F, so
G\ {z} Ch(A) C (X \F)\{z}, hence h(A) € [G\ {z}, FU{z}]. Set F' := G\ {z}, G’ :=
F U {z}, and assume F' C B C X \ G'. We need to show F' C h(B) C X \ G. Since
x ¢ B, we have h(B) = X \ (BU{z}) = (X \ B)\ {z}. Now X\ B C X\ (G \ {z}), so

B(B) € (X\ (G\ {#))\ {a} = (X\ G)\ {z} € X\ G. Finmally, FU {z} C X\ B, so0
(Fu{z})\{z} C h(B). But (FU{z})\{z} = F\{z}, and z ¢ A. Thus z ¢ F, hence
F C h(B). This proves the claim.

To complete the proof of the Theorem, fix z € X. By 2.6 (i), S := {A C X : T, is nonregular
perfect} is x-residual. Since h, is an involutive homeomorphism on P*(X), h,(S) ={4 € X :
Th.(4) is nonregular perfect} is also s-residual, so SNhy(S) is dense. Let A € [{z}, )]NSNhy(S).
Then T4 and 7j,(4) are both nonregular perfect H-enrichments of 7" whose join is nonperfect,

since it contains AN h;(A) = AN ({z} U (X \ 4)) = {=z}.

7



To handle the other assertions, use the rest of 2.6, where appropriate. O

3. APPLICATIONS TO EUCLIDEAN SPACE. In this section we con-
fine our attention to the euclidean spaces (R",U"), 1 < n < w. These spaces are even, and
|HU™)| = |R"| = c. However, in order to apply the results of Section 2, we must assume (as
we did in [7]) the reasonably modest axiom that c is a regular cardinal. We then have a strong
analogue to 2.7; fortunately we do not need to assume that c is weakly inaccessible (a consistent
assumption, by the way, see [13]). We first need some preliminary facts.

3.1 LEMMA ([4, Theorem 2.21]). Let 7 be a nondiscrete H-enrichment of &™. Then every
nonempty 7 -open set has cardinality c. O

Recall from the theory of symmetry groups that if G is a subgroup of Sym(X), the sym-
metric group of all permutations on the set X, and if n < w, G is n-transitive if any bijection
between two n-element subsets of X can be extended to an element of G. G is highly transitive if
G is n-transitive for all n < w. It is well known that H (U™) is highly transitive for all 1 < n < w.

3.2 LEMMA. Suppose (X, 7) is a topological space and 7' € HE(T). If H(T) is 3-transitive,
then 77 is either connected or totally disconnected.

PROOF. Fix distinct z,y € X, and suppose T is a 7'-clopen set containing both points.
Assuming 7" to be nonconnected, we may assume there is some z € X \ 7. Using 3-transitivity,
there is some h € H(T") that fixes x and switches y and z. (Actually, we use the weaker fact
that the stabilizer in H(7) of any point in X is 2-transitive on the complement.) Then hA(T) is
a T'-clopen set containing z and missing y. O

Thus H-enrichments of the multidimensional euclidean topologies are either connected or
totally disconnected. The same is true in the unidimensional case for different reasons (see [4,
Theorem 2.16]).

3.3 THEOREM. Assume c is a regular cardinal.

(¢) There is a chain in HE(U™) of order type ct consisting of even nonregular topologies;
there is a chain of order type w consisting of even nonregular connected topologies. There
is also a family in HE(U") consisting of ¢t even nonregular connected topologies.

(77) There is a chain in H E(U™) of order type ct consisting of even completely regular totally
disconnected topologies.

(73i) There is a pair of even nonregular connected H-enrichments of U™ whose join is discrete.
There is also a pair of even completely regular totally disconnected H-enrichments of ™
whose join is discrete.



PROOF. Ad (i). The proof proceeds exactly as in the proof of 2.7, except here we use 3.1
instead of the assumption that ¢~ = c.

Ad (#7). Proceed as in the proof of 2.7, but use 2.6 (iii,iv), with S := R", instead of 2.6
(,47). Use 3.1 here as well. (Note that 7', a chain join of completely regular topologies, is
completely regular. Also note that at each stage of the induction we add new clopen sets, so
the topologies are nonconnected, hence totally disconnected.)

Ad (4i7). Use 2.8 and 3.1. O

3.4 REMARK. Getting back to our Guiding Question 0.1, we know from 2.6 (4¢) that, assum-
ing c is regular, U’} is nonregular and connected for “almost” every A C R"™. This simplest of
Baire category arguments will therefore not accord us proper regular connected H-enrichments
of the euclidean topologies. The generalization of [7, Theorem 1.8 (i7i)] obtained by incorporat-
ing the “wild card” set S in 2.6 (i7i) came about from a suggestion by R. A. McCoy [15], who
thought it possible that a judicious choice of S C R (the set of irrationals, say) may lead to
regular connected H-enrichments when 2.6 (7i7) is applied to U. So far that question remains
open.

We next look at the issue of calculating the weight w(7) when 7 € HE(U"). Thanks to the
results of Section 2, we can improve on results in [7] (especially Theorems 3.3 and 3.10 therein).
We first recall an important fact.

3.5 LEMMA ([4, Theorem 2.19]). Let 7 be a proper H-enrichment of #". Then every 7-
convergent w-sequence in R™ is eventually constant. Consequently, w(7) > w;. O

Let P be any topological property, (X, 7T) a space. We say T' € HE(T) is H-mazimal-P
if 77 satisfies P, and for any 7" € HE(T), if 7" 2 7' and T" satisfies P, then 7" = T'. The
existence of H-maximal-P H-enrichments of T is assured by Zorn’s lemma provided: (i) some
T' € HE(T) satisfies P; and (i) P is inductive, i.e., preserved under chain joins of topolo-
gies. Inductive properties include perfectness, (complete) regularity, total disconnectedness and
O-dimensionality. A notable exception is connectedness. Guthrie-Stone and Wage [11] show
via two (nonconstructive) methods that 4™ can be enriched to a maximal connected topology,
but neither method seems to yield an H-enrichment. (Wage’s method yields a topology having
countably infinite open sets, and is hence not an H-enrichment by 3.1.) Thus it is an open ques-
tion whether the euclidean topologies have H-maximal-connected H-enrichments. On the other
hand, 3.3 assures us the existence of H-maximal-P H-enrichments of U™, where P is perfectness,
either alone or in conjunction with (complete) regularity and/or total disconnectedness. Our
improved result on weight is the following.

3.6 THEOREM. Assume c is a regular cardinal. If 7 € HE(U") is H-maximal-P, where
P is any one of the properties perfectness, connectedness, total disconnectedness, (complete)



regularity, O-dimensionality (all in conjunction with perfectness), then w(7) > c¢™.

PROOF. Suppose T € HE(U") is perfect and of weight < c. Then, by 3.1, T is even. By 2.4,
T is c-meager in P°¢(R™). Let property P be as above. If T satisfies P, then by appropriate
application of 2.6, there exists 7' € HE(U™), T' a proper enrichment of 7, such that 7" also
satisfies P. Thus 7 cannot be H-maximal-P. O

A simple consequence of 3.5 concerns minimal members of HE(U™). Let A :=R"\ {1/n:
n =1,2,...}; i.e., the complement of a simple sequence on the first axis. Let 7 := U%. The
following is easy to show.

3.7 PROPOSITION. 7 is the unique minimal proper H-enrichment of U"; i.e., the “false
bottom” of HE(U"). T is connected nonregular, of uncountable weight < c. However its
(hereditary) density, cellularity, m-weight and (hereditary) Lindel6f degree are all countable. O

3.8 REMARK. On the other hand, by 3.3 (ii7), there are at least two H-maximal-perfect
H-enrichments of ™. Indeed, perfectness may also be conjoined with total disconnectedness
and (complete) regularity; and, in the case n = 1, with 0-dimensionality (see 4.2 (i4i)).

4. APPLICATIONS TO THE REAL LINE. The usual topology I on the

real line R is the topology for which we have the most complete information as regards H-
enrichments. In this case, we can further sharpen 3.3 because of the following.

4.1 LEMMA ([7, Corollary 2.10]). Let A C P(R) be closed under complementation, where
AZU. Then Uy is 0-dimensional. O

4.2 THEOREM. Assume c is a regular cardinal.

(i) There is a chain in HE(U) of order type ¢* consisting of even nonregular topologies; there
is a chain of order type w consisting of even nonregular connected topologies. There is
also a family in HE(U) consisting of ¢* even nonregular connected topologies.

(17) There is a chain in HE(U) of order type ¢* consisting of even 0-dimensional topologies.

(731) There is a pair of even nonregular connected H-enrichments of & whose join is discrete.
There is also a pair of even 0-dimensional H-enrichments of I/ whose join is discrete.

PROOF. Ad (7). Same as 3.3 (7).
Ad (4i). Use 3.3 (i7) and 4.1.
Ad (i73). Use 3.3 (i3i) and 4.1. O

As mentioned above, 3.6 is an improvement on Theorem 3.10 in [7], a result which takes
the form: “If 7 € HE(U) is H-maximal-P and w(7) < ¢, then H(T) > k.” Of course we
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now know the hypothesis is false, but the conclusion is still interesting. Fortunately we are able
to salvage much of the argument that gives the conclusion, replacing an impossible hypothesis
with a reasonable one. (Also we do not need to assume c is regular.) We first recall notation
from [7]. Let (X,7) be a topological space, with 7' € HE(T). Define h € Sym(X) to be a
T'/T-homeomorphism if there exists a “witnessing” family {(T;, h;) : 7 € I} where {T; : 7 € I}
is a T'-open cover of X and {h; : i € I} is a family of 7-homeomorphisms such that for each
i € I, h|T; = h|T;. The set of T'/T-homeomorphisms is denoted H(7"/T), and is a subgroup
of Sym(X) lying between H(T) and H(T') (see Proposition 3.6 in [7]). It is worthy of note
that all the known examples of members of H(7) \ H(U) for T a nonconnected H-enrichment
of U are actually in H(7 /U). Moreover, in the witnessing family, the 7T-open cover is a clopen
partition.

4.3 THEOREM. Let & be a regular cardinal, ct < k < 2°. If T € HE(U) and there are k
T-clopen sets, then H(T /U) > k.

PROOF. Assume « is as above, and {7, : a < k} is a family of distinct 7-clopen sets. Now
|H(U)| = ¢, so we may assume that for « < § < &, there is no h € H(U) taking T, to Tp;
i.e., the sets T, are in distinct H(U)-orbits. Also, by 3.1, we may assume that each T, is a
moiety in R. (The status of moiety is not really necessary here; infinite-coinfinite will do.)
For each o < k, there is a linear shift s, taking T, to a 7-clopen set not containing 0. The
sets S, (1) are all distinct, since the sets Ty, all lie in different H (U)-orbits. So without loss
of generality, we may assume that the sets T, are all distinct 7-clopen moieties not containing 0.

Let T, :=T, N (0,00) = T, N[0,00), and T, := T, N (—00,0) = T,, N (—00,0]. Then the
sets T, T, are all T-clopen. Suppose {7 : @ < k}| < k. Then, since k is regular, there is
some X C k,|X| > &, such that for o, f € X, T;f = T5. But then for all o, 8 € X, T, # Tj.
The upshot of all this is that we may assume without loss of generality that we have a family
{T, : a < Kk} of distinct 7-clopen moieties, each lying in the positive half-line (0, 00). For
each a < k, let T} := T, U{—z : x € T,}. Then the sets 7T, are all distinct, and each is a
T-clopen moiety that is symmetric about (but does not contain) the origin. For each o < k,
define h, € Sym(R) to fix x when z € T, and to take z to —z otherwise. Then {h, : a < k}

is a family of distinct 7 /U-homeomorphisms. O

4.4 REMARK. The hypothesis of 4.3 is indeed nonvacuous; for if we assume c is a regular
cardinal and 7 € HE(U) contains an H-maximal-(perfect 0-dimensional) H-enrichment of U,
then by 3.6, 7 has c* clopen sets.

4.5 REMARK. An example of an enrichment of ¢/ that is completely regular and connected,
but not quite an H-enrichment, is the well known density topology U;. Studied extensively in
[14, 18], this topology is defined by taking a set A C R to be Uz-open just in case:

(1) A is Lebesgue measurable; and
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m(AN[z—r,xz+7]

11) for every x € A,lim, o+ ) = 1, where m is Lebesgue measure.
Yy ) o ’ g

This topology (not obviously a topology from the definition) is an enrichment of U, but it is
not an H-enrichment. To see this, use Theorem 13.1 in [17] (a theorem whose proof uses a
Baire category argument, by the way). Pick A C [0, 1] of positive measure. Then there is some
h € H(U) (which can be taken to be the identity outside (0,1)) such that h(A) has measure
0. Then h(A) is Uz-meager, but A is Ug-nonmeager. Thus h ¢ H(U,). The reason the density
topology is interesting from the point of view of Guiding Question 0.1 is that it is trying hard
to masquerade as a regular connected H-enrichment of U/. Here is what we mean. (Facts we
cite concerning H-enrichments of U are proved in [4].)

(i) Uy is completely regular (but nonnormal) and connected. In fact, like any connected H-

enrichment of U, the only Uz-connected subsets of R are the intervals. Consequently,
H(U;) < HU). (Equality holds for a connected H-enrichment.)

(77) Let A be the affine homeomorphisms on R; i.e., those maps of the form = — az+b,a # 0.
Then it is easy to show A < H(Uy), so we have that H(U,) is 2-transitive. (It is not
3-transitive, by (i) above.)

(731) Every nonempty Ug-open set has cardinality c, a property shared by any nondiscrete
H-enrichment of &4{. On the other hand, every small subset of R is Uy~ closed. This
property is shared by H-maximal-P H-enrichments of I/, where P is either perfectness or
connectedness [7].

(1v) As is the case with any proper H-enrichment of U, the only Uy-convergent w-sequences
are the eventually constant ones.

5. APPLICATIONS TO THE RATIONAL LINE. The rational line (Q,U")

is an even space, but its homeomorphism group (studied in, e.g., [16]) is too large of cardinality
to permit use of 2.6 to get H-enrichments; we must content ourselves with partial H-enrichments
via countable subgroups of H(U'). Thus for “almost” every A C Q it is true that (U4")% is non-
regular, and that (U’ )?A,Q\ 43 is perfect O-dimensional. The story for full H-enrichments is quite
different however: For “almost” every A C Q, U, is discrete. This is proved in 5.3 below.

5.1 LEMMA ([4, Theorem 2.13]). No proper nondiscrete H-enrichment of ¢’ is regular. O

For any space (X, T), let B(T) be the collection of T-clopen sets. Then we have the follow-
ing easy consequence of 2.5 and 5.1.

5.2 PROPOSITION. Suppose 7 € HE(U') is nondiscrete. Then B(T) = B(U').
PROOF. Let T € B(T)\ B(U'). Then T D Uyr.q\ry- By 2.5, Uiz g\ is O-dimensional; it is

also a proper H-enrichment of U’. By 5.1, then, T is discrete. O
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5.3 THEOREM. {A C Q : U, is discrete } is w-residual.

PROOF. Let S :={A C Q:both Aand Q\ A are U'-dense }. By 2.4, § is w-residual. Now if
A€ S, let {ag,ay,...} be a well ordering of Q so that A = {a,, : n even }. By a back-and-forth
argument, it is easy to construct an order isomorphism h on Q such that h(A) = Q\ A. Because
h € HU'), we have Uj = U, q\ 13- And since A ¢ U', we infer that U}, is discrete by 5.2. The
set in question thus contains &, and is w-residual. O

Because H(U') is uncountable, we cannot hope for analogues of 3.3 and 4.2 using 2.6. We
can, however, get chains in HE(U') of order type w using constructive means. (These means
would also work in the euclidean case, by the way.)

5.4 THEOREM. There is a chain in HE(U') of order type w.

PROOF. For each bounded interval I in Q, set S; := {a + @ : n = 2,3,...}, where
a < b are the endpoints of I. Define the scattered subsets Sy, Si,... of (0,1) inductively:
So 1= S0,1); Snt1 1= Sp UU{S : I is a maximal interval in (0,1) \ S,}. For each n < w, let
An = Q\ Sy, and put T, := U, . We immediately have 7, C 7,1 because for each n < w, there
is an order isomorphism on Q taking (3,1) N A,41 onto A,. The topologies 7,, are all distinct;
for by a straightforward argument involving Cantor-Bendixson rank, 0 is in the 7,-closure, but
not in the 7, -closure, of S, 1. O

5.5 REMARKS.

(i) The topology 7o in the proof above is the “false bottom” of HE(U'); i.e., the smallest
proper H-enrichment of U’. Although not explicitly stated in [4], there is a version of 3.5
[4, Theorem 2.19] that holds for ¢’, and the same proof works.

(17) Re Guiding Question 0.3, it is still open whether H(U') is a proper subgroup of H(T)
when 7 is a nondiscrete H-enrichment of ¢’
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