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Using Minkowski addition of sets, we study linear betweenness in the hyperspace L(X) of lin-
early convex nonempty subsets of a normed real vector space X, as well as in the sub-hyperspace
KL(X) of compact elements of L(X). We also study the metric betweenness relation induced
by the Hausdorff metric on the latter. While linear betweenness in L(X) behaves reasonably like
linear betweenness at the point level, the analogy is not perfect: linear intervals in X are honest
line segments; this is no longer the case for L(X), where linear intervals can have exactly two
elements. However, when we restrict our focus to KL(X), the Rådström extension theorem allows
us to view this hyperspace as a linearly convex cone in a normed vector space R(X); in particular,
all linear intervals are line segments that are contained in the corresponding metric intervals.
We are especially interested in the notions of convexity induced by these two kinds of betweenness
relation. While all closed balls and metric intervals in KL(X) are linearly convex, metric con-
vexity has more nuanced behaviour. For example, the metric intervals in KL(X) determined by
singletons are all metrically convex if and only if X is strictly convex. When X is one-dimensional,
R(X) is Cartesian 2-space equipped with the max norm and KL(X) looks like the half-plane
{〈x, y〉 : x ≤ y}. In particular, all metric intervals – and no closed balls of positive radius – are
metrically convex. When X is multi-dimensional, though, while it is still the case that closed balls
are metrically nonconvex, it is now always possible to find a metrically nonconvex metric interval
that is determined by a singleton and a line segment.
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1. Introduction

If X is a real vector space – assumed throughout to be nondegenerate (i.e., having
more than one point, and hence of positive dimension) – with a, b ∈ X, we say that
ISSN 0944-6532 / $ 2.50 © Heldermann Verlag
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a point c ∈ X is linearly between a and b if there is a scalar 0 ≤ t ≤ 1 such that
c = (1 − t)a + tb. Analogously, if X = 〈X, ϱ〉 is a metric space, we say that c is
metrically between a and b if ϱ(a, c) + ϱ(c, b) = ϱ(a, b).
Both linear and metric betweenness have been studied extensively in [6] and else-
where over the years. The points linearly (resp., metrically) between a and b con-
stitute the linear (resp., metric) interval [[a, b]] (resp., [a, b]) bracketed by a and b.
When X = 〈X, ‖ · ‖〉 is a normed vector space with ϱ(a, b) := ‖a− b‖, both notions
of betweenness are present in the same structure, and we have an opportunity to
study them as they interact.
Any time a set X is equipped with a ternary “betweenness” relation [·, ·, ·] there is an
induced notion of convexity: A ⊆ X is convex if whenever a, b ∈ A and [a, x, b] holds
– i.e., x lies between a and b – then x ∈ A as well.1 Of major interest to us here are the
convexity notions induced by linear and metric betweenness. Classical convexity in
vector spaces is, of course, what we call linear convexity; metric convexity in normed
vector spaces is a much stronger property, as we will see.
Both linear and metric betweenness make sense at the set level. In the linear case,
owing to the usual pointwise addition – introduced by Hermann Minkowski – and
scalar multiplication of sets of vectors (i.e., A + B := {a + b : a ∈ A and b ∈ B},
etc.), we define C to be linearly between A and B if there is a scalar 0 ≤ t ≤ 1
such that C = (1− t)A + tB. In the metric case, if A,B and C are nonempty and
compact, the metric ϱ gives rise to the Hausdorff metric ϱH for such sets, and we
say that C is metrically between A and B if ϱH(A,C) + ϱH(C,B) = ϱH(A,B). As
at the level of points, we use the same interval notation for sets; being careful to
distinguish, say, [{a}, {b}] from [a, b], as these are entirely different objects.
Linear betweenness at the set level has its idiosyncrasies, but behaves more like its
counterpart at the point level when we restrict attention to the hyperspace L(X) of
nonempty sets that are linearly convex. Furthermore, metric betweenness behaves
reasonably well when restricted to the hyperspace K(X) of nonempty sets that are
compact. Hence, in this paper we will be most interested in the joint behaviour
of these two betweenness notions when restricted to the hyperspace KL(X) :=
K(X) ∩ L(X) of compact, linearly convex, nonempty subsets of a normed vector
space X.
A quick summary of what we cover here runs as follows: In Section 2 we define
basic concepts; one highlight is that if X is a normed vector space and A,B ∈ L(X)
(resp., A,B ∈ KL(X)), then

∪
[[A,B]] is also a member of L(X) (resp., KL(X)).

Section 3 is about first-order betweenness axioms that all hold for linear betweenness
at the point level (where linear intervals are either singletons or real line segments),
and we show that most of them hold for L(X). For example, linear betweenness
in L(X) satisfies convexity (i.e., linear intervals are themselves linearly convex) but
it does not satisfy gap-freeness (i.e., linear intervals with distinct bracket points
always contain at least three elements): one can always find A,B ∈ L(X) distinct
such that [[A,B]] = {A,B}. In particular, linear intervals in L(X) are not necessarily
line segments in the usual sense.
1 Abstract convex structures induced by suitable notions of betweenness are called interval struc-

tures in [20].
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In Section 4 we move into the metric betweenness relation in hyperspaces – especially
in KL(X) – and consider the simplest case, where the bracket points are singletons.
We show that for a, b ∈ X and A ∈ KL(X), A is in [{a}, {b}] if and only if A ⊆ [a, b]
and all elements of A are the same distance from a (or b). This is then used to show
that a normed vector space X is strictly convex if and only if each metric interval
with singleton bracket points is metrically convex, if and only if each metric interval
with singleton bracket points coincides with its corresponding linear interval.
Section 5 brings linear and metric betweenness together for the first time in K(X).
While [[A,B]] need not always be contained in [A,B], as is the case at the point
level, the containment does hold if one of the bracket points is a singleton.
Rådström’s famous extension theorem, whereby KL(X) is naturally embedded as
a linearly convex cone in a normed vector space R(X), is introduced in Section 6.
An immediate consequence of this is the fact that linear intervals are always con-
tained in their respective metric intervals; furthermore, both the linear and metric
betweenness structures of KL(X) satisfy the gap-freeness axiom. Another conse-
quence, though not as immediate, is the fact that if A,B ∈ KL(X), then

∪
[A,B]

is in L(X). And if X is finite-dimensional, then
∪
[A,B] is in K(X) as well.

The simple case of R(X) when X is unidimensional is the topic of Section 7. Here
R(X) is the Cartesian 2-space R2, equipped with the max norm (i.e., ‖〈x, y〉‖ =
max{|x|, |y|}), and KL(X) embeds as the half-plane {〈x, y〉 : x ≤ y}. In particular:
(1) R(X) is a two-dimensional Banach space; (2) the embedded copy of KL(X) has
nonempty interior and is metrically convex in R(X); and (3) every metric interval
in KL(X) is metrically convex.
Finally, in Section 8, we examine the basic features of R(X) from Section 7 when X
is multidimensional. In contrast to the unidimensional case we have the following
“bad” behaviour: (1) R(X) is an uncountable-dimensional normed vector space that
is not a Banach space; (2) the embedded copy of KL(X) has empty interior and is
not metrically convex in R(X); and (3) it is always possible to find A,B ∈ KL(X)
– where one bracket point is a singleton and the other is a line segment – such that
[A,B] is not metrically convex. In this section we also relate metric convexity in
closed balls with the relative lengths of line segments on their boundary spheres.
In particular, no closed ball of positive radius in R(X) – regardless of dimension –
can be metrically convex because its boundary sphere contains a line segment whose
length exceeds that radius.

2. Preliminaries

As stated in the Introduction, this paper is about nondegenerate – i.e., positive-
dimensional – vector spaces over the real scalar field R. Given the vector space X
and a, b ∈ X, we define the linear interval [[a, b]], with bracket points a and b, to be
the usual line segment {(1 − t)a + tb : 0 ≤ t ≤ 1}. Points in this line segment are
said to be linearly between a and b. The doubleton {a, b} is also called a bracket set
for the interval; in the linear case2 this set is unique and comprises the end points
of the line segment. Note that [[a, a]] is always the degenerate set {a}.
2 There are many others; see, e.g., [1, 2, 4, 5, 6, 7, 9].
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In the metric space 〈X, ϱ〉, with points a, b ∈ X, we essentially follow Menger [15]
and define the metric interval [a, b] = [a, b]ϱ, with bracket points a and b, to be the
set {x ∈ X : ϱ(a, x) + ϱ(x, b) = ϱ(a, b)}. This is the zero set of the continuous map
x 7→ ϱ(a, x) + ϱ(x, b) − ϱ(a, b), and is the set of points metrically between a and b.
It is automatically a closed subset of X in the metric topology. The metric interval
[a, b] is also bounded; namely its diameter is ϱ(a, b) [6, Proposition 3.1]. Bracket sets
are not necessarily unique, but separate bracket sets are disjoint: Indeed, suppose
[c, d] = [a, b]. Then ϱ(a, b) = ϱ(c, d). If it so happened that there was intersection,
say b = c, we would then have ϱ(a, d) + ϱ(d, b) = ϱ(a, b) = ϱ(b, d). This forces
ϱ(a, d) = 0, and hence {a, b} = {c, d}.
A subset B of a vector (resp., metric) space X is linearly (resp., metrically) star-
shaped about A ⊆ B if [[a, b]] ⊆ B (resp, [a, b] ⊆ B) for all a ∈ A and b ∈ B. The set
B is linearly (resp., metrically) convex if it is linearly (resp., metrically) star-shaped
about itself.
Suppose 〈X, ‖·‖〉 is a normed vector space over R. Then the norm metric is defined,
in the usual way, as ϱ(x, y) := ‖x − y‖. (When the norm metric is complete, X is
commonly referred to as a Banach space.) It is known [6, Theorem 5.5 (ii)] that
metric intervals are linearly convex in this setting.
Clearly [[a, b]] is always contained in [a, b], but the metric interval may be much larger
– even with nonempty topological interior in X. Thus, as one might expect, metric
convexity implies linear convexity, but the converse is quite false. For example, while
metric intervals are always linearly convex, they need not be metrically convex. (See
[7, Example 4.2] for a simple three-dimensional normed vector space example.)
For a mathematical structure with underlying set X, a hyperspace over X is any
family H of nonempty subsets of X. X is the base of H; the connotation being that
a hyperspace inherits structure from its base, which in turn somehow “naturally em-
beds” in the hyperspace. The hyperspace is termed unary if it contains all singleton
subsets of X, and the natural embedding is x 7→ {x}.3 Well-known examples of
unary hyperspaces include: the family ℘+(X) of all nonempty subsets of X; and,
for each n = 1, 2, . . . , the family Fn(X) of nonempty subsets of cardinality ≤ n.
A hyperspace is termed binary (ternary, etc.) if it contains F2(X) (F3(X), etc.).
Hyperspaces of interest to us here are all unary.
If X is a vector space, the hyperspace ℘+(X) inherits some of the linear structure
from X as follows: Let A,B ⊆ X be nonempty, with s ∈ R. Then define

• sA := {sa : a ∈ A}; and
• A+B := {a+ b : a ∈ A, b ∈ B}.

Under this interpretation of scalar multiplication and addition we easily see that:
(1) For each s ∈ R, multiplication by s is a one-place operation, and addition a

two-place operation, on the hyperspace ℘+(X). Addition gives us a semigroup
operation that is commutative; also {0} ∈ ℘+(X) is the additive identity. Thus
℘+(X) may be thought of as a commutative monoid, which is also equipped
with scalar multiplication.

3 See, e.g., [3] for a study of nonunary hyperspaces that still allow a naturally-embedded copy of
the base.
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(2) A set A ∈ ℘+(X) has an additive inverse if and only if A is a singleton.
(3) Scalar multiplication satisfies the associative law s(tA) = (st)A for ℘+(X); also

0A = {0} and 1A = A.
(4) The distributive law s(A + B) = sA + sB holds for ℘+(X), but the other

distributive law (s + t)A = sA + tA does not: indeed, (−1 + 1)A = {0}, but
(−1)A + 1A contains at least two elements if A does. (In general, though, we
have the semidistributive law, (s+ t)A ⊆ sA+ tA.)

When X is a vector space, F1(X), as a subset of ℘+(X), is closed under the opera-
tions of scalar multiplication and addition. As an algebraic structure in its own right,
it is clearly a vector space that is isomorphic to X under the embedding x 7→ {x}.
Now let L(X) consist of the nonempty subsets of X that are linearly convex. Then
L(X) is a unary (but nonbinary) hyperspace, which is also closed under the princi-
pal operations of ℘+(X). (To check closure under addition, suppose A,B ∈ L(X),
with a1 + b1 and a2 + b2 arbitrary elements of A+B. Then, for 0 ≤ t ≤ 1, we have
(1− t)(a1 + b1) + t(a2 + b2) = ((1− t)a1 + ta2) + ((1− t)b1 + tb2) ∈ A+B because
the summands are linearly convex.)
In L(X) one can recover the distributive law (s + t)A = sA + tA for nonnegative
scalars, as is well known. This will be useful later on (see Theorems 3.2, 3.4, and
Proposition 3.7 below).

Proposition 2.1. Let X be a vector space, with A ∈ L(X) and s, t ≥ 0. Then
(s+ t)A = sA+ tA.
Proof. It is a triviality to see that (s + t)A ⊆ sA + tA always, so assume A is
linearly convex and that both s and t are nonnegative. Pick a typical element from
sA + tA, say it is sa + ta′. If s and t are both zero, there is nothing to prove; so
assume s + t > 0, and set u = t

s+t
. Then both u and 1 − u = s

s+t
are nonnegative.

Furthermore, sa+ta′ = (s+t)a′′, where a′′ = (1−u)a+ua′, an element of A because
A is linearly convex. Thus sA+ tA ⊆ (s+ t)A.
We extend the notion of linear betweenness in a vector space X as follows: given
A,B ∈ ℘+(X), define the linear interval [[A,B]], with bracket points A and B, to
be the set {(1− t)A+ tB : 0 ≤ t ≤ 1} – appropriately called a hyperline segment –
of sets linearly between A and B. Clearly if A,B ∈ ℘+(X) then [[A,B]] ⊆ ℘+(X);
we define a hyperspace H ⊆ ℘+(X) to be linearly convex if [[A,B]] ⊆ H whenever
A,B ∈ H. Note that, because of being closed under the principal operations of
℘+(X), both F1(X) and L(X) are linearly convex hyperspaces.

Example 2.2. For any vector space X, the hyperspaces Fn(X) are clearly not lin-
early convex when n ≥ 2. For another natural example, let S(X) be the hyperspace
of (possibly degenerate) line segments. Then clearly F1(X) ⊆ S(X) ⊆ L(X). Let
X now be the usual Cartesian plane R2, let a = 〈0, 0〉, b = 〈1, 0〉, and c = 〈0, 1〉. Let
A = [[a, b]] and B = [[a, c]]. Then, in usual interval notation for the real line, we have
A = [0, 1]×{0} and B = {0}× [0, 1]. For any 0 ≤ t ≤ 1, then, C = (1− t)A+ tB is
easily seen to be the rectangle [0, 1− t]× [0, t]. So [[A,B]]∩S(X) = {A,B}, showing
that S(X) is not linearly convex.

We will see that linear betweenness at the set level is much better behaved when
restricted to L(X).
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Proposition 2.3. Let X be a vector space, with A,B ∈ ℘+(X).
(i)

∪
[[A,B]] =

∪
{[[a, b]] : a ∈ A, b ∈ B}.

(ii) If there is a singleton C ∈ [[A,B]] \ {A,B}, then both A and B are singletons.
(iii)

∩
[[A,B]] = A ∩B.

(iv) If A ⊆ B, then
∪
[[A,B]] ⊆ B if and only if

∪
[[A,B]] = B, if and only if B is

linearly star-shaped about A.
(v) [[A,A]] = {A} if and only if A ∈ L(X).
(vi) If A,B ∈ L(X), then

∪
[[A,B]] is the linear convex hull of A ∪B.

Proof. Ad (i). This is straightforward.
Ad (ii). Let C = {c} ∈ [[A,B]]\{A,B}. Then C = (1− t)A+ tB for some 0 < t < 1.
Pick a ∈ A and b1, b2 ∈ B. Then c = (1 − t)a + tb1 = (1 − t)a + tb2. Since t 6= 0,
we infer b1 = b2. This shows B is a singleton; by the same token (since t 6= 1), we
conclude that A is a singleton too.
Ad (iii). For any 0 ≤ t ≤ 1, let C = (1 − t)A + tB. If a ∈ A ∩ B we obtain
a = (1− t)a+ ta∈C. The reverse inclusion is equally trivial because A,B ∈ [[A,B]].
Ad (iv). Suppose B is linearly star-shaped about A. If c ∈

∪
[[A,B]], pick a ∈ A

and b ∈ B, 0 ≤ t ≤ 1 such that c = (1− t)a+ tb. Then c ∈ B; hence
∪
[[A,B]] ⊆ B.

Since B ⊆
∪
[[A,B]], equality holds.

Suppose B is not linearly star-shaped about some a ∈ A. Then there are b ∈ B and
0 ≤ t ≤ 1 such that (1− t)a+ tb ∈ [[a, b]] \B. Hence

∪
[[A,B]] 6⊆ B.

Ad (v). This follows immediately from (iii) and (iv).
Ad (vi). Let A,B ∈ L(X), with U =

∪
[[A,B]], and H the linear convex hull of

A ∪ B. Then [[a, b]] ⊆ H for each a ∈ A and b ∈ B; hence U ⊆ H. For equality, we
need to show U – a set containing A ∪B – is linearly convex.
Pick c1, c2 ∈ U ; we wish to show that [[c1, c2]] ⊆ U . By (i) above, we have the
existence of a1, a2 ∈ A and b1, b2 ∈ B with ci ∈ [[ai, bi]], i = 1, 2. Since both A and B
are linearly convex, we have C =

∪
[[[[a1, a2]], [[b1, b2]]]] ⊆ U ; hence it suffices to show

that C is linearly convex. Let D be the linear convex hull of the set {a1, a2, b1, b2}.
We are done once we show that C = D.
Indeed, it is obvious that C ⊆ D, so let c ∈ D be arbitrary. We need to find
s, t, u ∈ [0, 1] such that c = (1−u)((1−s)a1+sa2)+u((1− t)b1+ tb2). Now, because
c is in the linear convex hull of {a1, a2, b1, b2}, there are scalars α1, α2, β1, β2 ≥ 0,
where α1 + α2 + β1 + β2 = 1, such that c = α1a1 + α2a2 + β1b1 + β2b2. Solving for
u, s, t in terms of α1, α2, β1, β2, we obtain

u = β1 + β2, s =
α2

1− (β1 + β2)
=

α2

α1 + α2
, and t = β2

β1+β2
.

These solutions make sense as long as both α1+α2 and β1+β2 are positive, and we
may then conclude that c ∈ C. But suppose α1 + α2 = 0. Then c ∈ [[b1, b2]], and is
therefore in C. In the case β1 + β2 = 0, we have c ∈ [[a1, a2]] ⊆ C. So, in any event,
we have c ∈ C, showing C = D. Hence C is linearly convex, as desired.

If 〈X, ϱ〉 is a metric space, we denote by K(X) the hyperspace of nonempty compact
subsets of X. Given a∈X and B∈K(X), we define ϱ(a,B) := inf{ϱ(a, x) : x∈B}.



D. Anderson et al. / Betweenness-Induced Convexity ... 7

Also if A,B ∈ K(X), we define ϱ(A,B) := sup{ϱ(a,B) : a ∈ A}. Then the Haus-
dorff distance induced by ϱ on K(X) is given by

ϱH(A,B) := max{ϱ(A,B), ϱ(B,A)},

and is well known to be a metric on K(X).4

For ball neighborhood notation, we define the open ball N◦(a; r) (respectively, closed
ball N(a; r)), for a ∈ X and r ≥ 0, to be {x ∈ X : ϱ(x, a) < r} (respectively,
{x ∈ X : ϱ(x, a) ≤ r}). The point a is the centre, and r the radius, of the ball.5 For
A ∈ K(X) and r ≥ 0, we define (A)r :=

∪
{N(a; r) : a ∈ A}, the r-fattening of A.

Then it is known that, for A,B ∈ K(X),

ϱ(A,B) = inf{r ≥ 0 : A ⊆ (B)r}.

Remarks 2.4. (i) For metric space X, let H(X) be the hyperspace of all closed
nonempty subsets of X that are bounded (i.e., of finite diameter). Then the Haus-
dorff distance makes sense here too, and is easily shown to be a metric. However,
many of the nice arguments that hold for ϱH restricted to K(X) do not work in
the wider context. In particular, when X is a normed vector space, H(X) is not a
linearly convex hyperspace (see Remark 2.7 (iii) below).
(ii) The r-fattening of a compact set, though always closed and bounded, is not
necessarily compact: a closed ball of positive radius is just such a set, but in any
infinite-dimensional normed vector space, it is well known to be noncompact.
(iii) Intervals in metric spaces are also closed and bounded. But the nondegenerate
ones in c0, the Banach space of all real null sequences, equipped with the supremum
norm, are never compact [7, Example 4.19].
(iv) If X is a normed vector space, A ∈ K(X), and r ≥ 0, it is easy to see that
the r-fattening (A)r is just A + rN(0; 1); i.e., the (Minkowski) sum of A and the
appropriately scaled closed unit ball of X.

Although it is natural to treat a (unary) hyperspace as containing its base, we will
continue to use curly brackets when denoting singletons. Thus, by definition, we
have ϱH({a}, {b}) = ϱ(a, b). Note that if A,B in K(X) and either A ⊆ B or A is a
singleton, then ϱH(A,B) = ϱ(B,A). We refer to ϱ(A,B) as a one-sided Hausdorff
distance.
The canonical map x 7→ {x} embeds X isometrically as the subspace F1(X) of K(X)
(which can easily be shown to be closed in K(X)). When X is a normed vector
space, this embedding is an isometric isomorphism onto F1(X). In this setting the
combination of compactness and linear convexity of subsets is quite potent, and thus
a natural focus in this paper is the hyperspace KL(X) := K(X)∩L(X) of compact,
linearly convex nonempty subsets of X.
Let 〈X, ϱ〉 be a metric space, with H a hyperspace of X. If A,B ∈ H, we denote by
[A,B]H the metric interval in H bracketed by A,B; i.e., the set

{C ∈ H : ϱH(A,C) + ϱH(C,B) = ϱH(A,B)}.
4 Since we are dealing with compact sets, all suprema and infima are achieved; e.g., ϱ(a,B) = ϱ(a, b)

for some b ∈ B.
5 While N◦(a; r) is an open set in the metric topology, it is not always the interior of N(a; r). It is

the interior, however, when X is a normed vector space.
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Then we say that C ∈ H is metrically between A,B ∈ H if C ∈ [A,B]H.
The following adds to Proposition 2.3 in the presence of compactness.

Proposition 2.5. Let X be a normed vector space, with A,B ∈ ℘+(X).
(i) If A \B 6= ∅, B ∈ K(X), and C ∈ [[A,B]], then C ⊆ B if and only if C = B.
(ii) If A,B ∈ K(X), then

∪
[[A,B]] ∈ K(X).

(iii) If A,B ∈ KL(X), then
∪
[[A,B]] ∈ KL(X).

Proof. Ad (i). Suppose C = (1− t)A+ tB, for some t ∈ [0, 1]. Assuming C 6= B,
we have t < 1. Fix a ∈ A \ B. Because B is compact, there is some b ∈ B with
‖a − b‖ = ϱ(a, b) = ϱ(a,B). Let c = (1 − t)a + tb. Then c ∈ C; however, since
‖a− c‖ = t‖a− b‖ < ‖a− b‖ = ϱ(a,B), we infer that c 6∈ B.
Ad (ii). Let U =

∪
[[A,B]]. We show U to be sequentially compact. Indeed, let 〈cn〉

be a sequence in U . Then, for n = 0, 1, 2, . . . , we have cn ∈ [[an, bn]], where an ∈ A
and bn ∈ B. Since A is compact, the sequence 〈an〉 has a subsequence converging to
a ∈ A. The corresponding subsequence of 〈bn〉 itself has a subsequence converging to
b ∈ B, since B is compact. Without loss of generality, we may assume 〈an〉 → a ∈ A
and 〈bn〉 → b ∈ B. For n = 0, 1, 2, . . . , let cn = (1− tn)an+ tnbn. Then the sequence
〈tn〉, being a sequence from the compact set [0, 1], has a convergent subsequence;
without loss of generality, we may assume 〈tn〉 → t ∈ [0, 1]. Then we have 〈cn〉
converging to (1− t)a+ tb ∈ [[a, b]] ⊆ U .
Ad (iii). This follows immediately from (ii) and Proposition 2.3 (vi).

We have previously seen that for any vector space X, both F1(X) and L(X) are
linearly convex hyperspaces of X. If X is topological as well, we can say more.

Proposition 2.6. If X is a topological vector space, then both K(X) and KL(X)
are linearly convex hyperspaces.

Proof. To show K(X) is linearly convex, it suffices to show it is stable under scalar
multiples, as well as sums. Indeed, because X is a topological vector space, both
scalar multiplication and addition, are continuous operations on X. So if A is
compact, then so is sA for any s ∈ R. Furthermore if both A and B are compact,
then A + B, the image of the compact set A × B under the continuous function
+ : X ×X → X, is also compact.
Since K(X) is linearly convex, and we already know L(X) is linearly convex, so too
is KL(X) = K(X) ∩ L(X).

Remarks 2.7. (i) The argument in the proof of Proposition 2.6 can be used to
show that such properties as finiteness and connectedness are also stable under scalar
multiplication and set addition.
(ii) One may easily show directly that being closed, and being bounded are each
stable under scalar multiplication. However, being closed is not stable under addi-
tion: Let X = R, with A = {a1, a2, . . . } and B = {b1, b2, . . . }, where an = n and
bn = −n + 1

n+1
. Then both A and B are closed in X, and 0 6∈ A + B. But the

sequence 〈an + bn〉 = 〈 1
n+1

〉 from A + B converges to 0. Hence A + B is not closed
in X.
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(iii) Although being compact is stable under addition, being both closed and
bounded is not. Let X = c0, the space of real null sequences (as in Remark 2.4
(iii)). Let A = {a1, a2, . . . } and B = {b1, b2, . . . }, where each sequence an is 1 in its
nth entry and 0 elsewhere, and each bn is −1+ 1

n+1
in its nth entry and 0 elsewhere.

Then both A and B are closed and bounded in X, and A + B does not contain
the zero sequence. But the sequence 〈an + bn〉 from A + B converges to the zero
sequence. Hence A + B is not closed in X (though it is bounded). This supports
the claim, made in Remark 2.4 (i) above, that H(X) is not linearly convex: for if
A,B ∈ H(X) and A+B is not closed, then neither is 1

2
(A+B); so [[A,B]] 6⊆ H(X).

(iv) The sum of two closed sets may not be closed, but it is closed if one of the
summands is compact. For suppose 〈an + bn〉 is a sequence in A+B that converges
to c ∈ X. By compactness of A, there is a subsequence 〈ank

〉 of 〈an〉, converging to
a ∈ A. So we have 〈ank

+ bnk
〉 → c. Then 〈bnk

〉 → c− a. Since B is closed, we have
c− a ∈ B; hence c ∈ A+B. Thus A+B is closed in X.

3. Betweenness axioms
In [4] (and many other works) betweenness is approached axiomatically by regarding
it as an abstract ternary predicate. We place our main focus on the following small
list of (universally quantified) betweenness axioms; all are discussed in detail in
[6]. The first-order symbol I(x, y, z) should be read, “y lies between x and z,” and
generalises the statements “y ∈ [[x, z]]” and “y ∈ [x, z]” from the previous section.
(Inclusivity) I(x, x, y) ∧ I(x, y, y)
(Symmetry) I(y, x, z) → I(z, x, y)

(Uniqueness) I(y, x, y) → x = y

(Antisymmetry) (I(y, x, z) ∧ I(y, z, x)) → x = z

(Concentration) (I(y, x, z) ∧ I(y, w, x) ∧ I(x,w, z)) → w = x

(Transitivity) (I(y, w, x) ∧ I(y, x, z)) → I(y, w, z)

(Convexity) (I(u,w, v) ∧ I(x, u, y) ∧ I(x, v, y)) → I(x,w, y)

(Weak Disjunctivity) (I(x, u, y) ∧ I(x, v, y)) → (I(x, u, v) ∨ I(v, u, y))

The first three axioms are referred to in [4] (and later papers) as basic between-
ness axioms, and a ternary structure satisfying them is called a basic betweenness
structure.
In interval terms, where I(a, b) := {x : I(a, x, b)} in any interpretation of the be-
tweenness predicate, inclusivity says that I(a, b) contains {a, b}. Symmetry as-
serts that I(a, b) = I(b, a), and uniqueness says I(a, a) = {a}. Antisymmetry
says that no two distinct points can each lie between the other and a single third
point, and implies that any two distinct bracket sets for an interval must be dis-
joint. Concentration – in the presence of the basic betweenness axioms – says that
I(a, c) ∩ I(c, b) = {c} whenever c ∈ I(a, b). Transitivity amounts to the condition
that intervals are star-shaped about their bracket sets, and convexity asserts that
intervals themselves are convex. In any basic betweenness structure in which tran-
sitivity holds, antisymmetry is easily seen [6] to follow from concentration. And if
weak disjunctivity also holds, then antisymmetry and concentration are equivalent
(see [4, Theorem 5.0.5]). Weak disjunctivity itself says that I(a, b) ⊆ I(a, c)∪ I(c, b)
for all c ∈ I(a, b).
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All these axioms hold for linear betweenness in vector spaces, and all but the last two
hold for metric betweenness [6].6 By [6, Proposition 2.2], convexity follows from weak
disjunctivity in all basic betweenness structures satisfying transitivity. The metric
betweenness structure of a normed vector space X satisfies weak disjunctivity if and
only if its linear and metric intervals coincide, if and only if X is strictly convex7 [6,
Corollary 5.6].8 The metric betweenness structure of a three-dimensional normed
vector space can fail to satisfy convexity [6, Example 4.2], but convexity always
holds for metric betweenness in a normed vector space of dimension at most two [6,
Theorem 5.14].
Clearly linear betweenness satisfies inclusivity and symmetry for sets in ℘+(X), but
Proposition 2.3 (v) tells us it satisfies uniqueness if and only if it is restricted to
L(X). So we need linear convexity in order for linear betweenness at the set level
even to be basic. The same is true for transitivity.
Example 3.1. Linear betweenness also fails to satisfy transitivity for sets in ℘+(X),
even if one of the bracket points is a singleton. Indeed, let A = {a1, a2} and
B = {b} be subsets of R2, such that the points {a1, a2, b} are distinct. Then each
C ∈ [[A,B]] \ {B} is a doubleton set; hence sets in [[A,C]] typically have four points,
and [[A,C]] is therefore not generally contained in [[A,B]].
If X is a vector space, we know that linear betweenness in L(X) is basic; and, in
general, metric betweenness always satisfies the antisymmetry, concentration, and
transitivity axioms (along with the basic ones). It is our aim in this section to show
that all eight axioms hold in L(X); we first address the issue of transitivity.
Theorem 3.2. Let X be a vector space, with A ∈ L(X) and B ∈ ℘+(X). If
0 ≤ s, t ≤ 1 are such that C = (1 − s)A + sB and D = (1 − t)A + tC, then
D = (1− st)A+ stB. Hence [[A,C]] ⊆ [[A,B]] whenever C ∈ [[A,B]].
Proof. Given C = (1 − s)A + sB and D = (1 − t)A + tC, substitute for C in the
second equation, obtaining D = (1−t)A+t(1−s)A+stB. Since A is linearly convex
and 1−t, t(1−s) ≥ 0, we use Proposition 2.1 to get D = ((1−t)+t(1−s))A+stB =
(1− st)A+ stB. The second sentence of the proposition follows immediately.

Corollary 3.3. For a vector space X, the linear betweenness structure in L(X)
satisfies transitivity.

Next comes weak disjunctivity.
Theorem 3.4. Let X be a vector space, with A ∈ L(X), B ∈ ℘+(X), 0 ≤ s ≤ t ≤ 1,
C = (1−s)A+sB, and D = (1− t)A+ tB. If t = 0, we have C = D = A; otherwise
we have C = (1− s

t
)A+ s

t
D. In any case, C ∈ [[A,D]].

Proof. Let 0 ≤ s ≤ t ≤ 1 be such that C = (1− s)A+ sB and D = (1− t)A+ tB.
The conclusion where t = 0 is immediate, so assume t > 0.
6 For metric betweenness, concentration holds even without benefit of weak disjunctivity.
7 This says that if a and b are nonzero vectors such that ‖a + b‖ = ‖a‖ + ‖b‖, then each of the
vectors is a positive scalar multiple of the other. It is well known to be equivalent to the condition
that there are no nondegenerate line segments in the unit sphere.
8 Disjunctivity, a stronger form of weak disjunctivity, asserts I(a, b) ⊆ I(a, c) ∪ I(c, b) even if
c 6∈ I(a, b). This axiom holds for many topological interpretations of betweenness (see, e.g., [1]),
but rarely for geometric ones (see, e.g., [6, Proposition 5.7]).
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Then C = ((1− s
t
)+ s

t
(1−t))A+sB. Since A is linearly convex and 1− s

t
, s
t
(1−t) ≥ 0,

we obtain from Proposition 2.1 that
C = (1− s

t
)A+ s

t
(1− t)A+ sB = (1− s

t
)A+ ( s

t
(1− t)A+ s

t
tB) = (1− s

t
)A+ s

t
D.

Thus C ∈ [[A,D]], as desired.

Corollary 3.5. For a vector space X, the linear betweenness structure in L(X)
satisfies weak disjunctivity.

Proof. Let A,B ∈ L(X), and fix 0 ≤ s, t ≤ 1 so that C = (1 − s)A + sB and
D = (1− t)A+ tB. If s ≤ t, then, because A is linearly convex, we have C ∈ [[A,D]],
by Theorem 3.4. If s ≥ t, we use Theorem 3.4, with the roles of A and B reversed,
to infer that C ∈ [[B,D]] = [[D,B]].
From Corollaries 3.3 and 3.5, plus the fact [6, Proposition 2.2] that basic betweenness
structures satisfying both transitivity and weak disjunctivity also satisfy convexity,
we obtain the following.

Corollary 3.6. For a vector space X, the linear betweenness structure in L(X)
satisfies convexity.

We now address antisymmetry and concentration. In view of the fact that L(X)
satisfies one if it satisfies the other, we concentrate on concentration because a
direct proof of this property is somewhat simpler. To this end we first state a kind
of converse of convexity.

Proposition 3.7. Let X be a vector space, with A,B ∈ L(X), 0 ≤ s ≤ r ≤ t ≤ 1,
C = (1− s)A+ sB, D = (1− t)A+ tB, and E = (1− r)A+ rB. Then E ∈ [[C,D]].
Proof. Pick λ ∈ [0, 1] such that r = (1− λ)s+ λt. Then, using Proposition 2.1, it
is easy to show that E = (1− λ)C + λD.

Theorem 3.8. Let X be a vector space, with A,B,C ∈ L(X) such that C ∈ [[A,B]].
Then [[A,C]] ∩ [[C,B]] = {C}.

Proof. Fix t ∈ [0, 1] such that C = (1− t)A+ tB. Then, by Theorems 3.2 and 3.4,
we have

[[A,C]] = {(1− s)A+ sB : s∈ [0, t]} and [[C,B]] = {(1− s)A+ sB : s∈ [t, 1]}.

Let D ∈ [[A,C]] ∩ [[C,B]] be arbitrary. We than have D = (1 − s1)A + s1B =
(1− s2)A+ s2B for some s1 ∈ [0, t] and s2 ∈ [t, 1]. In particular, we have t ∈ [s1, s2];
so by Proposition 3.7, we have C ∈ [[D,D]]. Hence C = D, completing the proof.

Corollary 3.9. Let X be a vector space. Then L(X) satisfies both antisymmetry
and concentration.

As noted before, any metric betweenness structure satisfies antisymmetry and con-
centration; the following is an immediate consequence of Corollary 3.9 and Propo-
sition 2.6.

Corollary 3.10. For a normed vector space X, the linear and metric betweenness
structures in KL(X) satisfy antisymmetry and concentration.
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Remark 3.11. Because, from Corollaries 3.9 and 3.10, the linear betweenness struc-
tures in L(X) and KL(X) satisfy antisymmetry/concentration, we can use [4, The-
orem 5.0.6] to conclude for any A,B,C: (1) {A,B} is the unique bracket set for
[[A,B]]; and (2) [[A,B]] ∩ [[A,C]] ∩ [[B,C]] is either empty or a singleton.

For any points a, b in a normed vector space X, the parameterization t 7→ (1−t)a+tb
is a dilation from [0, 1] into X, with dilation constant ‖a − b‖. As such, it is a
constant map when a = b, and is a continuous embedding otherwise. Thus each
nondegenerate linear interval [[a, b]] is an arc (i.e., a homeomorphic copy of [0, 1])
whose two end (i.e., noncut) points are the bracket points a and b.
The situation is more complicated at the set level; we first consider the case of the
hyperspace L(X), with the following observation.

Proposition 3.12. Let X be a vector space. Then there exist distinct A,B ∈ L(X)
such that [[A,B]] = {A,B}.
Proof. let A = {0}, B = X, and let C = (1− t)A+ tB for some t ∈ [0, 1]. If t = 0,
we have C = A. Otherwise we have, for any x ∈ X, x = t(1

t
x) ∈ C. Hence C = X,

and we have [[A,B]] = {A,B}.
As a consequence of Proposition 3.12, it is impossible to place a Hausdorff-even a
T1-topology on L(X) so that each parameterization t 7→ (1− t)A+ tB is continuous
from [0, 1] to L(X). Even without the topology on L(X), though, we can make a
statement about the topological nature of these parameterizations.
If X is a set and Y is a topological space, a function f : Y → X is monotone if the
point-inverse f−1[x] is a connected subset of Y for each x ∈ X.

Proposition 3.13. Let X be a vector space, with A,B ∈ L(X). Then the function
f(t) := (1− t)A+ tB from [0, 1] into L(X) is monotone.
Proof. It suffices to show that every point-inverse of f is an order-convex subset
of [0, 1]. Suppose 0 ≤ s ≤ u ≤ t ≤ 1 with C = (1 − s)A + sB, D = (1 − t)A + tB,
and E = (1− u)A+ uB. Assume now that C = D; i.e., s, t ∈ f−1[C] and u ∈ [s, t].
Then, by Proposition 3.7, we have that E ∈ [[C,D]]. By our assumption, plus the
uniqueness axiom, we obtain C = E = D. Thus u ∈ f−1[C], as desired.
Hence, if H is a linearly convex unary hyperspace, contained in L(X), and H is
endowed with a Hausdorff topology such that each t 7→ (1− t)A+ tB is continuous,
then each linear interval in H is an arc whose end points are the bracket points of
the interval. This is because [16] the Hausdorff image of an arc, under a nonconstant
monotone continuous map, is an arc. Moreover, the image of an end point of the
domain arc is an end point of the image arc.

Remark 3.14. An important first-order betweenness axiom, of higher quantifier
rank than those introduced elsewhere in this section, is
(Gap-freeness) ∀x∀y∃z(x 6= y → (z 6= x ∧ z 6= y ∧ I(x, z, y)))
This universal-existential sentence says that between any two distinct elements there
exists a third, distinct from the first two. In interval terms it says that each non-
degenerate interval has at least three elements. A complete metric space is called
convex [15] if its metric betweenness structure satisfies gap-freeness. To avoid con-
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fusion with the notion of convexity induced by a betweenness relation, we refer to
such a metric space as gap-free in this paper. Complete gap-free metric spaces are,
among other things, locally connected and arc-connected. By Proposition 3.12, if X
is a nondegenerate normed vector space, the linear betweenness structure of L(X)
is not gap-free. However, in Section 6 we will show that both the linear and the
metric betweenness structures of KL(X) are indeed gap-free.

We finish this section with a study of the following fact from plane Euclidean geom-
etry: if there is a point in the intersection of the three legs of a triangle, then the
three vertices are collinear.
In any betweenness structure X, define a triple 〈a, b, c〉 to be collinear if at least one
of the statements a ∈ I(b, c), b ∈ I(a, c), c ∈ I(a, b) holds. We consider the following
two closely-related betweenness axioms.
(Collinearity) (I(x, u, y)∧I(x, u, z)∧I(y, u, z)) → (I(y, x, z)∨I(x, y, z)∨I(x, z, y))

(Strong Collinearity) (I(x, u, y) ∧ I(x, u, z) ∧ I(y, u, z)) → (u = x ∨ u = y ∨ u = z)

Collinearity easily follows from strong collinearity: For suppose we have the triple
〈a, b, c〉 and a point d ∈ I(a, b) ∩ I(b, c) ∩ I(a, c). Using strong collinearity, we infer
that, say, d = a, and hence a ∈ I(b, c). For the converse, we have the following.

Proposition 3.15. If a betweenness structure satisfies both collinearity and con-
centration, then it also satisfies strong collinearity.

Proof. Suppose 〈a, b, c〉 is a triple, with d ∈ I(a, b)∩I(b, c)∩I(a, c). Using collinear-
ity, we infer that, say, b ∈ I(a, c). But then we have both d ∈ I(a, b) and d ∈ I(b, c),
by hypothesis. By concentration, we have d = b.

In any normed vector space, (strong) collinearity clearly holds for linear betweenness;
the following shows it need not hold for the corresponding metric betweenness.

Example 3.16. Consider X = R2
1, real 2-space R2 equipped with the taxicab norm

(i.e., given by ‖〈x, y〉‖1 := |x| + |y|), and let a = 〈0, 0〉, b = 〈1, 1〉, and c = 〈1,−1〉.
Then intervals in X are rectangles with sides parallel to the coordinate axes; in
particlar we have [a, b] = [0, 1]×[0, 1], [a, c] = [0, 1]×[−1, 0], and [b, c] = {1}×[−1, 1].
The triple 〈a, b, c〉 is clearly noncollinear; however [a, b] ∩ [a, c] ∩ [b, c] = {〈1, 0〉} a
nonempty set. Hence the collinearity condition does not hold for metric betweenness
in R2

1.

We currently do not know whether linear betweenness satisfies collinearity in L(X)
generally. In Section 6 we delve more deeply into how the linear and metric between-
ness structures interact in KL(X); in particular, we find that strong collinearity does
indeed hold for linear betweeness in that case.

4. Metric intervals with singleton bracket points
In this section, we refer to a hyperspace over a metric space X as being compact if
it is contained in K(X).
When X is a vector space, F1(X) is a linearly convex hyperspace; hence the linear
interval [[{a}, {b}]], in any unary hyperspace, is just {{c} : c ∈ [[a, b]]}. The situation
with metric spaces is different: If X is a metric space and H is a compact hyperspace
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of X, F1(X) is not necessarily a metrically convex hyperspace; i.e., it is quite possible
for [{a}, {b}]H to properly contain [{a}, {b}]F1(X). In this section we analyze this
phenomenon more closely.
By way of notation: if Y ⊆ X is a subspace, we let H[Y ], the restriction of H
to Y , be H ∩ ℘+(Y ). For example, K(X)[Y ] = K(Y ) and Fn(X)[Y ] = Fn(Y ),
n = 1, 2, . . . ; but in the case of the hyperspace C(X) of closed nonempty subsets of
X, we have C(X)[Y ] properly contained in C(Y ) whenever Y is not closed in X.
In each metric interval [a, b] ⊆ X we define the binary relation ∼ab by saying x ∼ab y
just in case ϱ(a, x) = ϱ(a, y) (equivalently, ϱ(x, b) = ϱ(y, b)). This is clearly an
equivalence relation on [a, b], and is the same relation as ∼ba. Also, for a ∈ X and
r ≥ 0, we let S(a; r) := N(a; r) \ N◦(a; r) denote the sphere of radius r, centred at
a. Then we may express [{a}, {b}]H in simple terms involving these binary relations
and spheres. This will prove useful at several points in this section.

Lemma 4.1. Let X be a metric space, with a, b ∈ X and H a compact hyperspace
over X. Then

[{a}, {b}]H = {A ∈ H : A ⊆ [a, b] and ∀x, y ∈ A, x ∼ab y}

=
∪

{H[S(a; r) ∩ [a, b]] : 0 ≤ r ≤ ϱ(a, b)}.

Proof. As mentioned earlier, if a ∈ X and A ∈ H are arbitrary, then
ϱH({a}, A) = ϱ(A, {a}) = sup{ϱ(a, y) : y ∈ A}.

To prove the left-hand side of the equality contains the middle, suppose A ⊆ [a, b] is
such that A ∈ H and A is contained in a ∼ab-equivalence class. Then ϱH({a}, A) =
ϱ(a, x) for any x ∈ A. So, since A 6= ∅, fix x ∈ A. Then

ϱH({a}, A) + ϱH(A, {b}) = ϱ(a, x) + ϱ(x, b) = ϱ(a, b) = ϱH({a}, {b}).
Thus A ∈ [{a}, {b}]H.
For the reverse inclusion, suppose A ∈ H is not in the middle set. If A 6⊆ [a, b],
say x ∈ A \ [a, b], then ϱH({a}, A) ≥ ϱ(a, x) and ϱH(A, {b}) ≥ ϱ(x, b). Hence
ϱH({a}, A) + ϱH(A, {b}) ≥ ϱ(a, x) + ϱ(x, b) > ϱ(a, b) = ϱH({a}, {b}), so we have
A 6∈ [{a}, {b}]H.
Now assume A ∈ H is contained in [a, b], but is not contained in a ∼ab-equivalence
class. Then there are x, y ∈ A that are not equidistant from a; say ϱ(a, x) < ϱ(a, y).
Then ϱH({a}, A) + ϱH(A, {b}) ≥ ϱ(a, y) + ϱ(x, b) > ϱ(a, x) + ϱ(x, b) = ϱ(a, b) =
ϱH({a}, {b}), and we conclude A 6∈ [{a}, {b}]H in this case too. This establishes the
equality between the left-hand and middle terms.
Proving the equality between the middle and right-hand terms is straightforward
and left to the reader.
Remark 4.2. We saw above that metric intervals can have two or more bracket sets
(all disjoint from one another). It is tempting to conjecture that if H is a compact
hyperspace over X, with [a, b] = [c, d], then it follows that [{a}, {b}]H = [{c}, {d}]H.
This is not true, as the following example shows: start with X = R2

1, real 2-space
with the taxicab norm, as in Example 3.16. If a = 〈0, 0〉 and b = 〈1, 1〉, then
[a, b] = [0, 1]2. If c = 〈1, 0〉 and d = 〈0, 1〉, then [c, d] = [a, b]. However, we have
[[c, d]] ∈ [{a}, {b}]H \ [{c}, {d}]H when H = K(X).
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As in [6], we define a pair 〈a, b〉 in a metric space X to be narrow if ∼ab is trivial;
i.e., if no two points in [a, b] can be equidistant from a (or from b). The space is
narrow if each of its pairs is narrow. We say that a metric space X is metrically
convex in a unary hyperspace H of X if F1(X) is metrically convex in H; i.e., if
[{a}, {b}]H = [{a}, {b}]F1(X) = {{x} : x ∈ [a, b]}.9

Theorem 4.3. Let X be a metric space.
(i) If X is metrically convex in some binary compact hyperspace over X, then X

is narrow.
(ii) If X is narrow, thenX is metrically convex in every compact hyperspace overX.
Proof. Ad (i). Fix binary compact hyperspace H and assumeX is metrically convex
in H, with a, b ∈ X and x, y ∈ [a, b] equidistant from a. Then {x, y} ∈ F2(X) ⊆ H;
hence {x, y} ∈ [{a}, {b}]H, by Lemma 4.1. By convexity, each element of [{a}, {b}]H
is a singleton, and so we have x = y. Thus the pair 〈a, b〉 is narrow.
Ad (ii). If X is not metrically convex in some compact hyperspace H, then there is
a pair 〈a, b〉 such that [{a}, {b}]H is not contained in F1(X). By Lemma 4.1, there
is some A ⊆ [a, b] such that A has at least two points and every element of A is the
same distance from a. This says that 〈a, b〉 is not a narrow pair.

Corollary 4.4. For a metric space X, the following statements are equivalent:
(a) X is metrically convex in F2(X).
(b) X is metrically convex in at least one of its binary compact hyperspaces.
(c) X is narrow.
(d) X is metrically convex in each of its compact hyperspaces.

By [6, Theorem 5.5 (iii)], a normed vector space is narrow if and only if each of
its nondegenerate metric intervals is a line segment, if and only if it is strictly
convex. Thus in Proposition 4.4 – with X assumed to be a normed vector space
– we may add: (e) X is strictly convex; and (f) for each compact hyperspace H,
[{a}, {b}]H = [[{a}, {b}]].
When X is a normed vector space, the hyperspace KL(X) is clearly compact, but
not binary. Is the strict convexity of X equivalent to X being metrically convex in
KL(X)? The answer is yes, but first we need the following fact.

Lemma 4.5. Let X be a normed vector space, a, b ∈ X distinct, and 0 ≤ r ≤ ‖a−b‖.
Then both [a, b] and [a, b] ∩ S(a; r) are linearly convex.
Proof. The proof follows the argument of [6, Theorem 5.5 (ii)]; we repeat it here
for completeness. First let x, y ∈ [a, b], with z = sx+ ty for some s, t ≥ 0 such that
s+ t = 1. It suffices to show that ‖a− z‖+ ‖z− b‖ ≤ ‖a− b‖. Indeed, the left-hand
side is ‖a− (sx+ ty)‖+ ‖(sx+ ty)− b‖, which equals
‖s(a− x) + t(a− y)‖+ ‖s(x− b) + t(y − b)‖

≤ s‖a− x‖+ t‖a− y‖+ s‖x− b‖+ t‖y − b‖
= s(‖a− x‖+ ‖x− b‖) + t(‖a− y‖+ ‖y − b‖) = (s+ t)‖a− b‖) = ‖a− b‖,

since x, y ∈ [a, b]. This shows that [a, b] is linearly convex.
9 Every vector space is linearly convex in each of its unary hyperspaces.
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Next let 0 ≤ r ≤ ‖a−b‖, with x, y ∈ [a, b]∩S(a; r) and z = sx+ty as above. Then we
have ‖a−z‖ ≤ s‖a−x‖+t‖a−y‖ = (s+t)r = r; and similarly, ‖z−b‖ ≤ ‖a−b‖−r.
If either of these inequalities were strict, we would have ‖a− z‖+ ‖z− b‖ < ‖a− b‖,
contradicting the linear convexity of [a, b]. Thus z ∈ [a, b] ∩ S(a; r), showing that
[a, b] ∩ S(a; r) is linearly convex as well.

Our advertised characterisation of strict convexity is the following.

Theorem 4.6. A normed vector space X is strictly convex if and only if X is
metrically convex in KL(X).

Proof. Assume X is strictly convex. Then, as mentioned above, X is narrow, and
hence convex in KL(X), by Corollary 4.4.
For the converse, suppose that X is not strictly convex. Then there are distinct
a, b ∈ X such that 〈a, b〉 is not narrow. Thus there is some 0 ≤ r ≤ ‖a − b‖ and
distinct x, y ∈ [a, b] ∩ S(a; r). But [[x, y]] ∈ KL(X), and by Lemma 4.5, we have
[[x, y]] ⊆ [a, b] ∩ S(a; r). Hence [[x, y]] ∈ [{a}, {b}]KL(X) \ [[{a}, {b}]], showing that X
is not metrically convex in KL(X).

In the sequel we will be concerned with explicit computations of Hausdorff distances
between linearly convex compact sets. Invaluable to this endeavor is what is known
as the Bauer maximum principle: If X is a normed vector space, A ∈ KL(X),
and f : A → R is continuous and convex – in the sense that for any a, b ∈ A and
t ∈ [0, 1], f((1 − t)a + tb) ≤ (1 − t)f(a) + tf(b) – then f takes its maximum value
over A at an extreme point of A; i.e., a point of A not in the relative interior of any
line segment in A. For details, see [10] (especially Section 3.2.5).10

For any point b in a normed vector space X, the map x 7→ ‖x− b‖ is well known to
be both continuous and convex. Moreover, if B ∈ KL(X), then the map ϱ(x,B) :=
inf{‖x− b‖ : b ∈ B} is also continuous and convex (see page 87 of [10]). Note that
the one-sided Hausdorff distance ϱ(A,B) is the maximum value that ϱ(x,B) takes
as x ranges over A. For any A ∈ KL(X), let ε(A) be the set of extreme points of
A. Then after applying the Bauer maximum principle, we immediately obtain the
following.

Lemma 4.7. Let X be a normed vector space, with A,B ∈ KL(X). Then

ϱ(A,B) = sup{ϱ(a,B) : a ∈ ε(A)}.

Of course, where this lemma is most useful is when the sets A and B are polytopes;
i.e., where the number of extreme points is finite (see, especially, Theorems 4.9, 8.5,
8.6, and 8.11 below). Then ϱH(A,B) is the maximum of a finite number of terms of
the form ϱ(x,A) and ϱ(x,B).
In later results, we will make use of the following simplification, what in [6] is referred
to as the rescaled translation principle: Given r > 0 and two distinct points a, b in a
normed vector space X, the mapping f , given by x 7→ r

∥b−a∥(x− a), is an invertible
affine transformation that maps a to 0, and b to a point in S(0; r).
10 By the well-known Krein-Milman theorem, each linearly convex compact set is the closed convex

hull of its set of extreme points.
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In particular, for any x ∈ X, we have x ∈ [a, b] if and only if f(x) ∈ [0, f(b)];
both [a, b] and [0, f(b)] are rescaled translations of each other and share the same
qualitative geometric properties.

N(0; 1)

p

q

b = αp+ βq

βq

S(0; 1/2)

αp

a = 0

[a, b]

S(0; 1/2) ∩ [a, b]

Figure 1: Schematic of the interval [{a}, {b}] in two dimensions (only positive quadrant
shown). The point b is located on some face of the unit ball N(0; 1). By Lemma 4.8, the
orange parallelogram is the set [a, b]. The parallelogram is partitioned into slices, with
each slice being the intersection of an r-sphere with the parallelogram. By Lemma 4.1, a
set is an element of [{a}, {b}] exactly if it is a subset of some slice.

Also we will have use for the following parallelogram lemma, a slight paraphrasing of
[6, Theorem 5.9]. Note that, in the finite-dimensional case, every point on the unit
sphere S(0; 1) is either an extreme point of the ball N(0; 1) or it lies in the relative
interior of a line segment in S(0; 1) whose end points are extreme points of N(0; 1).
Hence this lemma, in conjunction with the rescaled translation principle, allows us
to describe the metric interval between any two points in a normed plane.

Lemma 4.8. Let X = 〈R2, ‖ · ‖〉 be a two-dimensional normed vector space, with
p, q ∈ S(0; 1) distinct extreme points of N(0; 1) such that [[p, q]] ⊆ S(0; 1). Fix
a ∈ [[p, q]], along with α, β ≥ 0 such that α + β = 1 and a = αp + βq. Let P be the
parallelogram {α′p + β′q : 0 ≤ α′ ≤ α, 0 ≤ β′ ≤ β} (a line segment if and only if
a ∈ {p, q}). Then [0, a] = P ; in particular, when a 6∈ {p, q} we have that [0, a] is a
proper parallelogram with [[0, a]] as one of its two diagonals.

The following relates strict convexity to the metric convexity of a metric interval
with singleton bracket points.

Theorem 4.9. Let X be a normed vector space, with a, b ∈ X. Then [{a}, {b}]KL(X)

is metrically convex if and only if [a, b] = [[a, b]].

Proof. For the moment, let [A,B] abbreviate [A,B]KL(X) whenever A,B ∈ KL(X).
If [a, b] = [[a, b]], then [{a}, {b}] = [[{a}, {b}]], by Lemma 4.1, and is hence metrically
convex.
As to the converse: if dim(X) ≤ 1 the equality [a, b] = [[a, b]] always holds; so assume
dim(X) > 1 and suppose a, b ∈ X are such that there is some x ∈ [a, b] \ [[a, b]]. Let
P ⊆ X be a plane containing {a, b, x}. In order to show that [a, b] is metrically
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nonconvex, it suffices to show the same for [a, b] ∩ P . Using rescaled translation,
we may take a as the origin – so P is a vector subspace – and b ∈ S(a; 1), the unit
sphere in P . From here on, we are working in a two-dimensional normed vector
space; hence we have justified the assertion that we lose no generality in assuming
dim(X) = 2, say X = 〈R2, ‖ · ‖〉. p

q

b = αp+ βq

B = {b}

βq

c = γp

c′ = γq

e
E

C

d = αp

D = {d}

a = 0

A = {a}
Figure 2: Schematic for Theorem 4.9. The set [A,B] = [{a}, {b}] is described in Figure 1
above. In this case we have C,D ∈ [A,B] and E ∈ [C,D] but E /∈ [A,B]. Hence [{a}, {b}]
is not metrically convex.

Since a = 0, b ∈ S(a; 1), and [0, b] properly contains [[0, b]], we know from Lemma
4.8 that there are distinct p, q ∈ S(0; 1), extreme points of the closed unit ball
N(0; 1), such that [[p, q]] ⊆ S(0; 1) and b ∈ [[p, q]] \ {p, q}. Hence there are scalars
0 < α ≤ β < 1, with α + β = 1, such that b = αp+ βq. Then – again from Lemma
4.8 – [0, b] is the proper parallelogram with vertices 0, αp, βq, b. Fix c = γp, where
0 < γ < α. We also single out the points d = αp and c′ = γq, as well as the sets
A = {0}, B = {b}, C = [[c, c′]], and D = {d}. Note that C is nondegenerate, and
equals [0, b] ∩ S(0; γ), a line segment parallel to [[p, q]]. Hence, by Lemma 4.1, both
C and D are in [A,B]. We aim to find E ∈ [C,D] \ [A,B]. To this end, note that
[[c′, d]] is nondegenerate; so fix e ∈ [[c′, d]] \ {c′, d}, and let E =][e, d]]. Then E is a
line segment that is not parallel to [[p, q]]; hence E 6∈ [A,B], by Lemma 4.1. It thus
remains to show that if e is judiciously chosen, then E ∈ [C,D]; i.e.,

ϱH(C,E) + ϱH(E,D) = ϱH(C,D).

First, using Lemma 4.7, we immediately obtain ϱH(E,D) = ‖e−d‖ and ϱH(C,D) =
max{‖c−d‖, ‖c′−d‖}. In order to to determine which extreme point of C is farther
from d, note that since p is an extreme point of N(0; 1), we know [6, Lemma 5.8]
that [0, d] = [[0, d]]. Thus, for any x ∈ C \ {c}, we have ‖c‖ + ‖c − d‖ = ‖d‖ <
‖x‖+ ‖x− d‖. But ‖c‖ = ‖x‖ = γ; hence we have ‖c− d‖ < ‖x− d‖. In particular,
ϱH(C,D) = ‖c′ − d‖.
It thus remains to show that, for suitable e, we have ϱH(C,E) = ‖c′ − e‖. Now,
again using Lemma 4.7, we know that

ϱH(C,E) = max{ϱ(c′, E), ϱ(c, E), ϱ(e, C), ϱ(d, C)}.
The first term is exactly ‖c′ − e‖ = ‖c′ − d‖ − ‖e − d‖, which is our aspirational
value for ϱH(C,E); so we need to choose e such that the other three terms are
relatively small. Note that both the second and third terms are ≤ ‖c − e‖, while
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the fourth is exactly ‖c−d‖. Thus if e is “close” to d, then the first term is “close” to
‖c′−d‖, while the others are “close to being dominated by” ‖c−d‖, which is strictly
less than ‖c′−d‖. To make this intuition precise, let r be the value ‖c′−d‖−‖c−d‖,
which we determined earlier to be positive. It is enough to choose e ∈ [[c′, d]] such
that 0 < ‖e− d‖ ≤ r/2. For then
max{ϱ(c, E), ϱ(e, C)} ≤ ‖c−e‖ ≤ ‖e−d‖+ ‖c−d‖ ≤ ‖c′−d‖ − ‖e−d‖ = ϱ(c′, E)

because 2‖e− d‖ ≤ r. Finally
ϱ(d, C) = ‖c−d‖ = ‖c′−d‖ − r < ‖c′−d‖ − r/2 ≤ ‖c′−d‖ − ‖e−d‖ = ϱ(c′, E),

completing the proof.
We then have the following immediate characterisation of strict convexity.

Corollary 4.10. For X a normed vector space, the following three statements are
equivalent.
(i) X is strictly convex (i.e., [a, b] = [[a, b]] for all a, b ∈ X).
(ii) For all a, b ∈ X, we have [{a}, {b}]KL(X) = [[{a}, {b}]].
(iii) For all a, b ∈ X, [{a}, {b}]KL(X) is metrically convex.

Remarks 4.11. (i) Corollary 4.10 makes essential use of the nature of hyperspaces.
Just having metric convexity in each interval [a, b] is too weak a condition and does
not imply strict convexity in a normed vector space X: by [6, Corollary 5.16], each
such interval is metrically convex as long as all nonextreme points of the unit ball
of X are coplanar (which is always the case in dimension two).
(ii) Let X be any normed vector space. By Lemma 4.8, if a ∈ S(0; 1), then [0, a] =
[[0, a]] if and only if a ∈ ε(N(0; 1)). By [7, Example 4.19], every nondegenerate metric
interval in X = c0 (see Remark 2.4 (iii)) is noncompact; hence ε(N(0; 1)) = ∅ in this
case. However, in general, any bracket point of a metric interval – always closed,
bounded, and linearly convex – is an extreme point of that interval, regardless of
whether it is compact. To see this, suppose a, b, c, d ∈ X with b ∈ [[c, d]] ⊆ [a, b].
If X is one-dimensional, the result is trivial; otherwise, let P be a plane containing
a, c, d. Then P also contains b; hence by rescaled translation and Lemma 4.8, we
know that [a, b] ∩ P is either a singleton, a line segment, or a parallelogram with a
and b as diagonally opposite vertices. In any case we cannot have [[c, d]] ⊆ [a, b] ∩ P
without either b = c or b = d. Hence b is an extreme point of [a, b].
Extreme points of intervals need not be bracket points; for example, let X be the
Cartesian plane, where the norm agrees with the taxicab norm in the first and third
quadrants (both coordinates have the same sign) and with the Euclidean norm
elsewhere. Let a = 〈0, 0〉 and b = 〈1, 1〉. Then [a, b] is the square [0, 1]2. However,
the extreme points c = 〈1, 0〉 and d = 〈0, 1〉 are not bracket points of [a, b] since
[c, d] = [[c, d]].

5. Linear and metric intervals compared in K(X)

As mentioned above, each linear interval [[a, b]] in a normed vector space is contained
in its corresponding metric interval [a, b]. The issue we wish to address in this section
is the extent to which this remains true at the level of compact sets. Specifically, if
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X is a normed vector space and A,B,C ∈ K(X) are such that C ∈ [[A,B]], when is
it true that ϱH(A,B) = ϱH(A,C) + ϱH(C,B)? From Proposition 2.3 (v) above, we
know that an affirmative answer is not assured without a degree of linear convexity:
if A is any two-point set, then [[A,A]] is not equal to {A}; hence [[A,A]] 6⊆ [A,A]K(X).
The following shows that [[A,B]] may be contained in [A,B]K(X), even when one of
the bracket points is not linearly convex.

Theorem 5.1. Let X be a normed vector space, with A ∈ F1(X) and B ∈ K(X).
Then [[A,B]] ⊆ [A,B]K(X).
Proof. By Proposition 2.6, we know that [[A,B]] ⊆ K(X), so we must now show
that for any C ∈ [[A,B]] it follows that ϱH(A,C) + ϱH(C,B) ≤ ϱH(A,B). Let
A = {a}. By rescaled translation we lose no generality in assuming a = 0. Since B
is compact, there is some b0 ∈ B such that ϱH(A,B) = ‖a− b0‖ = ‖b0‖; thus for all
b ∈ B, we have ‖b‖ ≤ ‖b0‖. Fix arbitrary C ∈ [[A,B]], say C = tB for some t ∈ [0, 1].
It is enough to show that ϱH(A,C) ≤ t‖b0‖ and that ϱH(C,B) ≤ (1− t)‖b0‖.
The first inequality is immediate because ‖tb‖ = t‖b‖ ≤ t‖b0‖ for every b ∈ B. As
for the second, we have

ϱH(C,B) = max{sup{ϱ(c, B) : c ∈ C}, sup{ϱ(b, C) : b ∈ B}}
= max{sup{ϱ(tb, B) : b ∈ B}, sup{ϱ(b, tB) : b ∈ B}}.

For each b∈B, both ϱ(tb, B) and ϱ(b, tB) are at most ‖tb−b‖=(1−t)‖b‖≤(1−t)‖b0‖;
hence we immediately have ϱH(C,B) ≤ (1− t)‖b0‖, as desired.

Remark 5.2. From Example 3.1, we know that transitivity may not hold for [[A,B]]
when both sets are compact and one of them is also a singleton. However, since
metric betweenness always satisfies transitivity, Theorem 5.1 shows that even if
C ∈ [[A,B]] and D ∈ [[A,C]] \ [[A,B]], it still follows that D ∈ [A,B]K(X).

6. The Rådström extension of KL(X)

Hans Rådström’s construction [18] shows how we may treat certain hyperspaces of
a normed vector space as linearly convex cones in other normed vector spaces. This
gives us a very powerful tool in the study of both linear and metric betweenness in
such hyperspaces. We outline the process for KL(X) as follows (with details being
found in [8, 11, 18]).
Step 1. Start with a normed vector space X. As we saw in Section 2, we may treat
KL(X) = 〈KL(X),+, {0}〉 as a commutative monoid under Minkowski addition.
And while we may not have additive inverses, we have the next best thing, namely
the following cancellation property [18, Lemma 2]: Let A,B,C ∈ KL(X) be such
that A+ C = B + C. Then A = B.
Step 2. With any commutative monoid M = 〈M,+, 0〉 satisfying the cancella-
tion property, we may extend M to an Abelian group by the so-called “method of
differences,” in a manner analogous to how we extend the natural numbers to the
integers. That is, we first define the equivalence relation ∼ on M × M by stip-
ulating that 〈a, b〉 ∼ 〈c, d〉 precisely when a + d = c + b. We denote the set of
equivalence classes by M∼ := {〈a, b〉∼ : a, b ∈ M}, and think of a representative
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〈c, d〉 ∈ 〈a, b〉∼ as the “difference” c − d. Addition in M∼ is defined in the obvi-
ous way; i.e., 〈a, b〉∼ + 〈c, d〉∼ := 〈a + c, b + d〉∼, and it is straightforward to show
that this addition is well defined and M∼ is an Abelian group. (The additive iden-
tity is 〈0, 0〉∼, and −〈a, b〉∼ := 〈b, a〉∼.) The function φM : M → M∼, given by
a 7→ 〈a, 0〉∼, is a monoid embedding; in this way we view M∼ as an extension of M .
Moreover, if G is any Abelian group and ψ : M → G is a monoid embedding, then
the assignment 〈a, b〉∼ 7→ ψ(a)− ψ(b) defines a group embedding µ :M∼ → G such
that µ ◦ φM = ψ.
Step 3. Back to our monoid KL(X), we denote KL(X)∼ by R(X), which we
call the Rådström extension of KL(X). We extend the scalar multiplication on
KL(X) to one on R(X) in the obvious manner: if 〈A,B〉∼ ∈ R(X) and t ≥ 0,
set t〈A,B〉∼ := 〈tA, tB〉∼; and if t < 0, set t〈A,B〉∼ := 〈(−t)B, (−t)A〉∼. When
there is no danger of confusion, we let φ abbreviate φKL(X). Then, for t ≥ 0,
we have φ(tA) = 〈tA, {0}〉∼ = tφ(A), so φ respects multiplication by nonnegative
scalars. This embedding does not respect multiplication by negative scalars, how-
ever; so we must not confuse, say, (−1)A with the additive inverse of A viewed
as a vector in R(X). We disambiguate this situation by explicit mention of the
embedding φ: indeed, (−1)A ∈ KL(X), while (−1)φ(A) = −φ(A) ∈ R(X).
Since no nonsingleton in KL(X) has an additive inverse in KL(X), we also know
that (−1)φ(A) 6∈ φ[KL(X)] whenever A is nondegenerate. (In general, we have
φ[KL(X)] + (−1)φ[KL(X)] = R(X).)
This step allows us to treat R(X) as a vector space in which KL(X) is embedded
as a submonoid. Moreover, since KL(X) is also closed under multiplication by
nonnegative scalars, φ embeds KL(X) as a linearly convex cone in R(X). Except
for the degenerate case, this cone contains the nonzero vector subspace φ[F1(X)].11

Furthermore, since no nonsingleton A ∈ KL(X) has an additive inverse in KL(X),
we know that no subspace of R(X) containing φ[F1(X)] is contained in φ[KL(X)].
Step 4. Our final step is to endow R(X) with a norm, and this is also done quite
naturally: for any 〈A,B〉 ∈ KL(X)×KL(X), define the norm ‖〈A,B〉∼‖ to be the
Hausdorff distance ϱH(A,B). This is well defined because of the invariance of the
Hausdorff metric under translations: ϱH(A+C,B+C) = ϱH(A,B) (see [18, Lemma
3] and Remark 2.7 (iv) above). Thus φ is an isometric monoid isomorphism that
preserves multiplication by nonnegative scalars.
From here on we we will be placing our focus on KL(X). Hence we drop sub-
scripts when talking of metric intervals in this hyperspace and let [A,B] abbreviate
[A,B]KL(X) whenever A,B ∈ KL(X). And, since we are viewing KL(X), with its
Hausdorff metric, as the linearly convex cone φ[KL(X)] in the normed vector space
R(X), each hyperline segment [[φ(A), φ(B)]] is a bona fide line segment.
For any elements V,W ∈ R(X), let [V,W ]R be the metric interval in R(X) brack-
eted by V and W . For A,B ∈ KL(X), we let [φ(A), φ(B)] be shorthand for
[φ(A), φ(B)]R∩φ[KL(X)]. Then φ is an isometry between [A,B] and [φ(A), φ(B)].
Because φ[KL(X)] is linearly convex in R(X), we know [[φ(A), φ(B)]] ⊆ [φ(A), φ(B)].
We need to make a clear distinction between [φ(A), φ(B)] and [φ(A), φ(B)]R, how-
ever, because φ[KL(X)] is not at all guaranteed to be metrically convex in R(X), as

11 Cones that contain nonzero vector subspaces are often termed flat.
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we shall see in Theorem 8.5 below. The following is a description of [φ(A), φ(B)]R
that will be useful in the proof of that theorem.
Proposition 6.1. Let X be a normed vector space, with A,B∈KL(X)and V ∈R(X).
Then V ∈ [φ(A), φ(B)]R if and only if whenever C,D ∈ KL(X) are such that
V = 〈C,D〉∼, it follows that C ∈ [A+D,B +D].

Proof. Start with A,B ∈ KL(X). For any C,D ∈ KL(X), we have obviously
〈C,D〉∼ ∈ [φ(A), φ(B)]R if and only if

‖〈A, {0}〉∼ − 〈C,D〉∼‖+ ‖〈C,D〉∼ − 〈B, {0}〉∼‖ = ‖〈A, {0}〉∼ − 〈B, {0}〉∼‖.

By definition of the norm in R(X), this is equivalent to the following equality of
Hausdorff distances: ϱH(A+D,C) + ϱH(C,B +D) = ϱH(A,B).
And, by translation invariance [18, Lemma 3], this is equivalent to the equality

ϱH(A+D,C) + ϱH(C,B +D) = ϱH(A+D,B +D);
i.e., the condition that C ∈ [A+D,B +D].

With this brief discussion in mind, we have the following easy consequences of the
Rådström extension construction.

Corollary 6.2. Let X be a normed vector space, with A,B ∈ KL(X).
(i) [A,B] is linearly convex. In particular, [[A,B]] ⊆ [A,B].
(ii) The parameterization t 7→ (1− t)A+ tB is a dilation from [0, 1] into KL(X),

with dilation constant ϱH(A,B).
(iii) Linear betweenness in KL(X) satisfies the strong collinearity axiom.
(iv) Both linear and metric betweenness in KL(X) satisfy the gap-freeness axiom.

Proof. Ad (i). The metric interval [φ(X), φ(B)]R in R(X) is linearly convex, by
Lemma 4.5. Since φ[KL(X)] is also linearly convex, so too is the intersection; hence
[A,B] is linearly convex in KL(X).
Ad (ii). The parameterization t 7→ (1− t)φ(A) + tφ(B) is a dilation from [0, 1] into
R(X), with dilation constant ϱH(A,B) = ‖φ(A) − φ(B)‖. The conclusion follows,
since φ[KL(X)] is linearly convex in R(X).
Ad (iii). This follows because strong collinearity holds for linear betweenness in
vector spaces, and hence in linearly convex subsets of vector spaces.
Ad (iv). This follows from (i) and (ii).

Another consequence, though not as immediate, is the following companion to
Proposition 2.5 (iii).

Theorem 6.3. Let X be a normed vector space, with A,B ∈ KL(X). Then∪
[A,B] ∈ L(X). If X is also finite-dimensional, then

∪
[A,B] ∈ KL(X).

Proof. By Corollary 6.2 (i), [A,B] is linearly convex in KL(X). Suppose now that
c, d ∈

∪
[A,B], say c ∈ C ∈ [A,B] and d ∈ D ∈ [A,B]. If 0 ≤ t ≤ 1, we have

(1 − t)c + td ∈ (1 − t)C + tD ∈ [[C,D]] ⊆ [A,B]. Hence (1 − t)c + td ∈
∪
[A,B],

showing that
∪
[A,B] is linearly convex.
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We next show that
∪
[A,B] is bounded in X. Metric intervals are always bounded

in their respective metric spaces, so that [A,B] is bounded, say by M > 0, as a
Hausdorff metric subspace of KL(X). Let c, d ∈

∪
[A,B], where c ∈ C ∈ [A,B] and

d ∈ D ∈ [A,B]. Then ϱ(c,D) ≤ M ; so ‖c − d‖ = ϱ(c, d) ≤ M + δ, where δ is the
diameter of D in X. Thus

∪
[A,B] is bounded in X.

Finally we assume X is finite-dimensional and show that
∪
[A,B] is closed in X.

Then, since
∪
[A,B] has already been shown to be bounded, we will be able to

infer that it is compact. Suppose 〈cn〉 is a sequence of elements of
∪
[A,B], with

〈cn〉 → c ∈ X. For each n = 0, 1, 2, . . . , we have cn ∈ Cn ∈ [A,B]. The sequence
〈Cn〉 is bounded as a sequence in KL(X) because each term lies in the bounded
subset [A,B]. Thus, by the Blaschke Selection Theorem [11, Proposition IX.9],
there is a subsequence of 〈Cn〉 that converges to some C ∈ KL(X). But [A,B]
is closed in KL(X), so C ∈ [A,B]. The corresponding subsequence of 〈cn〉 also
converges to c, so it remains to show that c ∈ C.
Indeed, suppose 〈Dn〉 → D ∈ KL(X) and 〈dn〉 → d ∈ X, where dn ∈ Dn for all
n ≥ 0, but d 6∈ D. Since D is closed, we may fix r > 0 such that the open ball
N◦(d; r) is disjoint from D. Since 〈dn〉 → d, we may also fix n0 ≥ 0 such that for
all m ≥ n0, dm ∈ N◦(d; r/2). Thus, for each m ≥ n0 we have ϱ(dm, D) ≥ r/2;
hence ϱH(Dm, D) ≥ ϱ(Dm, D) ≥ r/2. This contradicts the fact that 〈Dn〉 → D, and
completes the proof.

Remarks 6.4. (i) Since it is possible for [A,B] to contain [[A,B]] properly (see
Theorem 4.6 above), it is also possible for

∪
[A,B] to contain

∪
[[A,B]] properly.

The latter, by Proposition 2.3 (vi), is the linear convex hull of A ∪ B; thus, even
though

∪
[A,B] is a linearly convex set containing A ∪ B (Theorem 6.3), it is not

necessarily the linear convex hull of A ∪ B. As an easy example, suppose X is a
normed plane, A = {a} and B = {b}, where [a, b] is a proper parallelogram (see
Lemma 4.8). Then

∪
[A,B] = [a, b], while

∪
[[A,B]] = [[a, b]], a diagonal of [a, b].

(ii) Suppose X is such that no nondegenerate metric interval is compact (such as
X = c0, see Remark 2.4 (iii)). Then, for a, b ∈ X distinct, we have that [a, b] ⊆∪
[{a}, {b}] is closed in X, hence closed in

∪
[{a}, {b}]. This shows that the larger set

is not compact; hence the dimension assumption in Theorem 6.3 cannot be dropped.
(iii) In [8] and [11], R(X) refers to the Rådström extension of HL(X), the hy-
perspace of closed bounded linearly convex subsets of X. The technical issue that
HL(X) need not be closed under Minkowski addition is mitigated by defining A⊕B
to be the closure of A+B – noting that the closure of a linearly convex set is still lin-
early convex – and the rest of the construction proceeds without further difficulties.
In the case where X is infinite-dimensional, HL(X) is much larger than KL(X):
indeed, each nondegenerate closed ball is in HL(X) \KL(X).

7. R(X) in dimension one

In this section we examine the simple case where the dimension of the base normed
vector space is one, with an eye toward comparisons with the multi-dimensional
situation in the next section. As above, when X is a normed vector space, we have
the isometric embedding φ : KL(X) → R(X).
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Assume that dim(X) = 1, say u ∈ X is a unit vector spanning X. Then each
A ∈ KL(X) is a closed linear interval [[αu, βu]], uniquely specified by the ordered
pair ψ(A) := 〈α, β〉 ∈ R2, where α ≤ β. Let H be the cone {〈x, y〉 ∈ R2 : x ≤ y},
with L the bounding line {〈x, x〉 : x ∈ R} of H. Then ψ is a bijection from
KL(X) onto H, with members of F1(X) assigned to L. Furthermore, ψ is a monoid
homomorphism that respects multiplication by nonnegative scalars. Because of the
straightforward calculation of the Hausdorff distance between two closed bounded
subsets of R in terms of end points (see Lemma 4.7), we see that

ϱH([[αu, βu]], [[γu, δu]]) = max{|α− γ|, |β − δ|}.
Hence ψ is an isometry from KL(X) onto H ⊆ R2

∞, real 2-space with the max norm:
‖〈x, y〉‖∞ := max{|x|, |y|}. As mentioned in Step 2 of Section 6 above, we have the
map µ : R(X) → R2

∞, given by µ(〈A,B〉∼) = ψ(A)−ψ(B) (so µ◦φ = ψ, and µ may
be seen as extending ψ to R(X)). Now one readily verifies that µ is an isometric
isomorphism, and we may treat R(X) as R2

∞, with KL(X) and F1(X) identified
with H and L, respectively. We collect a few easy consequences of this discussion.

Proposition 7.1. Let X be a one-dimensional normed vector space.
(i) R(X) is a Banach space, of dimension two.
(ii) φ[KL(X)] and φ[F1(X)] are closed in R(X).
(iii) φ[KL(X)] ∩ (−1)φ[KL(X)] = φ[F1(X)].
(iv) φ[KL(X)] ∪ (−1)φ[KL(X)] = R(X).
(v) φ[KL(X)] is metrically convex in R(X).
(vi) No closed ball of positive radius in KL(X) is metrically convex.
(vii) Every metric interval in KL(X) is metrically convex.
Proof. Ad (i–iv). These statements follow immediately from the discussion above.
Ad (v). All we need to show is that H is metrically convex in R2

∞. Indeed, any
metric interval [a, b] ∈ R2

∞ is a solid rectangle with points a and b at opposite corners,
and two of its sides parallel to the line L. Thus, if two opposite corners of such a
rectangle lie in H, the entire rectangle also lies in H.
Ad (vi). Any closed ball in R2

∞ is a solid square, with sides parallel to the coordinate
axes, and with the centre of the ball being the intersection of the two diagonals.
Hence a closed ball with centre in H retains the entire northernmost side of the
original square. If a, b are the end points of that side, then [a, b], the square whose
diagonal is the line segment [[a, b]], does not lie in the ball.
Ad (vii). If c, d ∈ [a, b], a metric interval in R2

∞, then the rectangle with opposite
corners c and d has sides parallel to the sides of the rectangle [a, b]. Hence [c, d] ⊆
[a, b]. (This also follows from [6, Theorem 5.14], which says that metric intervals are
always metrically convex in a normed vector space of dimension ≤ 2.)

8. R(X) in higher dimensions
In this section we remove the assumption that our normed vector space is of dimen-
sion one, and consider the seven clauses of Proposition 7.1 in that light.
We first make the observation that if Y is a vector subspace of X, then clearly
KL(Y ) is a subset of KL(X). However, when we pass to Rådström extensions,
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a subtlety emerges, and we need to use a subscript when we speak of equivalence
classes in Y . So when A,B ∈ KL(Y ),

〈A,B〉∼Y := {〈C,D〉 ∈ KL(Y )×KL(Y ) : A+D = C +B}.
Clearly we have 〈A,B〉∼Y ⊆ 〈A,B〉∼, and the mapping θ : R(Y ) → R(X), given by
〈A,B〉∼Y 7→ 〈A,B〉∼, respects the vector space operations as well as the norm, and
has trivial kernel. Hence θ is an isometric linear embedding. In this relative case,
let φY :KL(Y ) → R(Y ) be the canonical embedding φKL(Y ), η :KL(Y ) → KL(X)
denoting the inclusion map. Then we have the commutative relationship θ ◦ φY =
φ ◦ η. In particular, if P is a normed vector space property that is inherited by
subspaces, and we are able to show that P fails in R(X) for all X of, say, dimension
two, then we know it must fail in the Rådström extensions of all higher-demensional
spaces.
Remark 8.1. In [8], where R(X) is HL(X)∼ (see Remark 6.4 (iii)), it is no longer
the case that HL(Y ) ⊆ HL(X); one must deal with the closure operation when Y is
not necessarily closed in X (infinite-dimensional case only). Hence θ is now defined
by the assignment 〈A,B〉∼Y 7→ 〈A,B〉∼, where closure is relative to X. (This works
because closure respects both boundedness and linear convexity.)
In [8, Theorem 2.2] the authors show that θ is a closed map in this setting, and
it is also surjective whenever Y is dense in X. Neither of these assertions is true,
however, in the situation where R(X) is KL(X)∼; consider the following example.
Let X = c0 be the Banach space of real null sequences à la Remark 2.7 (iii), with
Y = c00 the subspace of all null sequences that are eventually zero. Then Y is
well known to be dense in X. If θ : R(Y ) → R(X) were surjective, then for each
〈A,B〉 ∈ KL(X)×KL(X) there would be a pair 〈A′, B′〉 ∈ KL(Y )×KL(Y ) such
that A′+B = A+B′. Since adding a nontrivial null sequence to a trivial one results
in a nontrivial null sequence, this becomes an impossibility if A consists of a single
nontrivial null sequence and the only element of B is the zero sequence.
On the other hand, if A = {a} and B = {0}, let b ∈ Y be arbitrary. Then
‖〈{a}, {0}〉∼−〈{b}, {0}〉∼‖ = ‖〈{a}, {0}〉∼+〈{0}, {b}〉∼‖ = ‖〈{a}, {b}〉∼‖ = ‖a−b‖.
Since Y is dense in X, this shows that 〈A,B〉∼, while not in θ[R(Y )] itself, is in its
closure.

We are now ready to consider Proposition 7.1 in the multi-dimensional case.
Re (i). When dim(X) > 1, R(X) is no longer a Banach space [8, Theorem 2.1].12

Because all finite-dimensional normed vector spaces are Banach spaces, we immedi-
ately infer that R(X) is infinite-dimensional.
We also get infinite-dimensionality from another route: By [17, Theorem 7.3], when
1 < dim(X) < ℵ0, KL(X) is homeomorphic to the complement of any point in
the Hilbert cube. (In the one-dimensional case, KL(X) is homeomorphic to the
complement of a point on the boundary of a two-cell.) This makes KL(X) infinite-
dimensional as a topological space; hence R(X) is infinite-dimensional as a vector
space. (The case when X itself is infinite-dimensional is trivial because φ[F1(X)] is
an embedded copy of X in R(X).)
12 See also [12], where there is an example – attributed to R. J. Aumann and S. Kakutani – of a

nonconvergent Cauchy sequence in R(X), where dim(X) = 2.
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Now, every infinite-dimensional Banach space has vector space dimension at least
c = 2ℵ0 , the cardinality of the continuum [14]. But even in the absence of metric
completeness on the part of R(X), we can place c as a lower bound for dimension.

Theorem 8.2. Let X be a normed vector space of dimension greater than one. Then
there is a set L ⊆ KL(X), of cardinality c, such that φ[L] is a linearly independent
family of vectors in R(X). Hence the vector space dimension of R(X) is at least c.
Moreover, there is a basis for R(X) consisting entirely of vectors from φ[KL(X)].

Proof. By the remarks above, we lose no generality in assuming that X is two-
dimensional, say X = 〈R2, ‖ · ‖〉. (The norm on X is irrelevant here.)
For each θ ∈ R, let l(θ) = 〈cos θ, sin θ〉 be the point on the Euclidean unit circle
of angle argument θ, with L(θ) the line segment [[0, l(θ)]] ∈ KL(X). We set L =
{L(θ) : θ ∈ [0, π

2
]}. Clearly |φ[L]| = c; we claim that φ[L] is linearly independent in

R(X).
If this is not true, there is a linear combination

∑n
i=1 ciφ[L(θi)] that equates to zero

in R(X), where the angles are distinct and the coefficients are all nonzero. It is safe
to assume that at least some of the coefficients are positive. If they are all positive,
then our linear combination is

n∑
i=1

ci〈L(θi), {0}〉∼ =
⟨ n∑

i=1

ciL(θi), {0}
⟩∼
,

which, when equated to zero in R(X), means that the plane set
∑n

i=1 ciL(θi) is {0}.
But the linear combination on the lefthand side clearly contains nonzero elements;
in particular it contains c1l(θ1) 6= 0.
Thus some of the original coefficients must be negative; so there are 1 ≤ m < n and
a linear combination

m∑
i=1

di〈L(θi), {0}〉∼ −
n∑

i=m+1

di〈L(θi), {0}〉∼

that equates to zero, where the θi are all distinct, and the new coefficients are all
positive. This time the linear combination on the left becomes⟨ m∑

i=1

diL(θi),
n∑

i=m+1

diL(θi)
⟩∼
.

And for this to be zero in R(X), it follows that
m∑
i=1

diL(θi) =
n∑

i=m+1

diL(θi).

Without loss of generality, assume that θ1 > θi for m + 1 ≤ i ≤ n. Then clearly
d1l(θ1) belongs to the lefthand linear combination. We claim it does not belong to
the right; i.e., that it is not of the form

∑n
i=m+1 til(θi), where ti ∈ [0, di] for each

m+ 1 ≤ i ≤ n.
Let f : R2 → R be the linear functional 〈x, y〉 7→ x sin θ1 − y cos θ1. Then the kernel
of f is the one-dimensional linear subspace of R2 spanned by l(θ1).
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For m + 1 ≤ i ≤ n we have cos θi > cos θ1 and sin θi < sin θ1; hence f(l(θi)) >
0. Thus, by linearity, and since each ti ≥ 0, f(

∑n
i=m+1 til(θi)) is positive, unless

each ti is zero. But f(d1l(θ1)) = 0, while d1(θ1) 6= 0. This shows that d1l(θ1) 6∈∑n
i=m+1 diL(θi), as claimed. Hence φ[L] is linearly independent, and therefore the

vector space dimension of R(X) is at least c.
Since φ[L] is a linearly independent set of vectors, of cardinality c, a Zorn’s lemma
argument allows for the existence of a collection M⊇L such that φ[M] is maximal
with respect to being linearly independent. Thus φ[M] spans φ[KL(X)]. It also
spans (−1)φ[KL(X)] and forms a basis for R(X) = φ[KL(X)]+(−1)φ[KL(X)].

Re (ii). This still holds, as long as X is a Banach space, and is easy to prove.

Proposition 8.3. Let X be a Banach space. Then φ[KL(X)] and φ[F1(X)] are
closed in R(X).

Proof. If X is Banach, then KL(X) is complete in its Hausdorff metric [11, Propo-
sition IX.1]; hence φ[KL(X)] is a complete metric subspace of R(X). Any sequence
in φ[KL(X)] converging to something in R(X) is Cauchy, hence it converges to
something in φ[KL(X)]. Thus φ[KL(X)] is closed in R(X). Since F1(X) is closed
in KL(X), we have that φ[F1(X)] is closed in R(X) as well.

Re (iii). In Section 2 above, We made the simple observation that for any vector
space X, the only nonempty subsets with additive inverses under Minkowski ad-
dition are the singletons. Hence Proposition 7.1 (iii) holds without the dimension
restriction.
Re (iv). This fails, fairly dramatically, in higher dimensions.

Theorem 8.4. Let X be a normed vector space of dimension greater than one.
Then φ[KL(X)] ∪ (−1)φ[KL(X)] has empty interior in R(X).

Proof. Any member of φ[KL(X)] (resp.,(−1)φ[KL(X)]) looks like 〈A, {0}〉∼ (resp.,
〈{0}, A〉∼), where A ∈ KL(X). So given A ∈ KL(X) and r > 0 we aim to show
that the ball N(〈A, {0}〉∼; r) is not contained in φ[KL(X)] ∪ (−1)φ[KL(X)]. (The
case where the centre of the ball is 〈{0}, A〉∼ is handled similarly.)
To meet our aim, we need to find some 〈A′, B〉∼ ∈ R(X) such that :
(1) ‖〈A, {0}〉∼−〈A′, B〉∼‖ ≤ r;
(2) there is no C∈KL(X) such that 〈A′, B〉∼=〈C, {0}〉∼; and
(3) there is no C ∈ KL(X) such that 〈A′, B〉∼ = 〈{0}, C〉∼.
In terms of KL(X) alone: condition (1) amounts to saying ϱH(A + B,A′) ≤ r;
conditions (2) and (3) say, respectively, that there is no C ∈ KL(X) such that
either A′ = B + C or B = A′ + C.
There are two main cases to consider, depending upon whether or not A is a sin-
gleton. So assume first that A = {a}. Then we fix a′ ∈ S(a; r) and let A′ = [[a, a′]].
Next we use the assumption that dim(X) > 1 to fix b ∈ S(0; r), such that the points
a, a + b, a′ are noncollinear (hence b and a′ − a are nonparallel) and set B = [[0, b]].
For any C ∈ KL(X), B + C is a union of translates of B, and so cannot equal A′.
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Likewise, nothing of the form A′ +C can equal B; hence conditions (2) and (3) are
satisfied. To address condition (1), we use Lemma 4.7, noting that A+B = [[a, a+b]]
and A = [[a, a′]] are two line segments, each of length r and having a common end
point: ϱH(A+B,A′) = max{ϱ(a+ b, A′), ϱ(a′, A+B)}. Since a ∈ A′, the first term
is ≤ ‖b‖ = r; likewise, since a ∈ A + B, the second term is ≤ ‖a′ − a‖ = r. Hence
ϱH(A+B,A′) ≤ r, and condition (1) is satisfied.
So henceforth we assume our centre A is not a singleton, and let δ be its positive
diameter. We will be able to pick A′ = A in this case, so condition (1) reduces to
‖〈A+B,A〉∼‖ = ϱH(A+B,A) ≤ r, which by translation invariance [18, Lemma 3],
amounts to saying that ϱH(B, {0}) ≤ r; i.e., that ‖x‖ ≤ r for all x ∈ B. Conditions
(2) and (3), as before, amount to saying that A (resp., B) is not the Minkowski sum
of B (resp., A) and any element of KL(X). We will be able to set B = [[0, b]], where b
is suitably chosen from S(0; r), automatically satisfying condition (1). Note that we
lose no generality in assuming upper bounds for r; in particular, we take 0 < r < δ.
Then, since the diameter of B is r < δ, it cannot be the case that B = A+C for any
C ∈ KL(X). (Otherwise there exist x, y ∈ A with δ = ‖x−y‖ = ‖(x+ c)− (y+ c)‖,
where c ∈ C is arbitrary. But both x+ c and y + c are in B, a contradiction.) This
takes care of condition (3), so it remains to address condition (2).
Assume X is finite-dimensional. By the Krein-Milman Theorem , as well as Strasze-
wicz’s Theorem [19, Corollary 18.5.1 and Theorem 18.6], there is a point p ∈ A that
is exposed. This means there is a linear functional f : X → R such that for all
x ∈ A \ {p}, f(x) < f(p). Let Y be the kernel of f . Then, by elementary linear
algebra, dim(Y ) = dim(X) − 1 ≥ 1. So fix b ∈ Y ∩ S(0; r), with B = [[0, b]]. Then
f(x) = 0 for all x ∈ B. To show that there is no C ∈ KL(X) such that B+C = A,
assume otherwise. Then there is some x ∈ [[0, b]] and c ∈ C with p = x + c. By
linearity, f(p) = f(x) + f(c) = f(c). Since c = c + 0 ∈ C + [[0, b]] ⊆ A, we have
c = p because p is an exposed point of A. On the other hand, c + b ∈ A too; and
f(c + b) = f(c). Thus c + b = p; i.e., b = 0, a contradiction. Thus condition (2) is
satisfied as well as conditions (1) and (3).
Finally assume X is infinite-dimensional; we lose no generality in also assuming
0 < r < min{δ, 1}. Then, by Riesz’s lemma [13, 2.5-4] we may inductively produce
a sequence 〈u0, u1, . . . 〉 of unit vectors in X such that for each 0 ≤ m ≤ n, ‖un+1 −
um‖ ≥ r. Then clearly there is no subsequence of 〈un〉 that is Cauchy, let alone
convergent to some point in X.
We claim that for every ε > 0 there is some n ≥ 0 such that no line segment
contained in A and parallel to un can have length ≥ ε. Indeed, if this is not the
case, we may fix ε0 > 0 and a sequence 〈xn〉 in A such that xn + ε0un ∈ A for all
n ≥ 0. By the compactness of A, there is an increasing sequence of indices such
that the correspoining subsequences of 〈xn〉 and 〈xn+ε0un〉 converge in A. But that
implies that 〈un〉 has a convergent subsequence, a contradiction.
So pick n ≥ 0 such that any line segment in A that is parallel to un cannot have
length ≥ r/2, and let B = [[0, run]]. Then B satisfies condition (1); also, given any
C ∈ KL(X) the sum B + C is a union of translates of B, none of which can lie in
A. Hence A 6= B + C, and condition (2) is satisfied. Condition (3) is satisfied, as
above, since r < δ.
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Re (v). In higher dimensions, the linearly convex cone φ[KL(X)] is not metrically
convex in R(X); indeed the following is true.

Theorem 8.5. Let X be a normed vector space of dimension greater than one, with
a, b ∈ X. Then [φ({a}), φ({b})] = [φ({a}), φ({b})]R if and only if a = b.

A = {a}

a

B = {b}

A+D B +D

c

bd

C

Figure 3: Schematic for Theorem 8.5. Here D = [0, 1]× {0}.
We have 〈C,D〉∼∈ [φ(A), φ(B)]R = [φ({a}), φ({b})]R but 〈C,D〉∼ /∈φ(KL(X)).

Proof. The “if” direction is obvious, so assume a and b are distinct points in X.
By the remarks above pertaining to subspaces of normed vector spaces, we lose no
generality in assuming X is two-dimensional; say X = 〈R2, ‖ · ‖〉.
Let A = {a} and B = {b}. We need to show that [φ(A), φ(B)]R 6⊆ φ[KL(X)].
By Propisition 6.1, the condition that 〈C,D〉∼ is in [φ(A), φ(B)]R is equivalent to
saying that, back in KL(X), C ∈ [A + D,B + D]. Thus we need to find suitable
C,D ∈ KL(X) such that 〈C,D〉∼ ∈ [φ(A), φ(B)]R\φ[KL(X)]; i.e., that in addition
to the condition that C ∈ [A + D,B + D], there is no E ∈ KL(X) such that
C = D + E.
By rescaled translation we may take a to be the origin and b ∈ S(0; 2). Let p be
the unit vector 1

2
b. For our C and D, we let D = [[0, p]]. Then A + D = D and

B + D = [[2p, 3p]] are collinear line segments of unit length. Next let d = 3
2
p, the

midpoint of the segment [[p, 2p]], and choose c ∈ X so that: (1) the points p, 2p, c
are noncollinear; and (2) ‖c − d‖ ≤ 1

4
. Finally let C be the proper triangle that is

the convex hull of {p, 2p, c}.
To show that C ∈ [A +D,B +D], we invoke the Bauer maximum principle in the
form of Lemma 4.7. Both A+D and B +D are line segments, with extreme points
0, p and 2p, 3p, respectively. Hence

ϱH(A+D,B +D) = max{ϱ(0, B +D), ϱ(p,B +D), ϱ(2p,A+D), ϱ(3p,A+D)}
= max{2, 1, 1, 2} = 2.

If we show max{ϱH(A+D,C), ϱH(C,B+D)} ≤ 1 we are clearly done by the triangle
inequality. Indeed, we have

ϱH(A+D,C) = max{ϱ(0, C), ϱ(p, C), ϱ(p,A+D), ϱ(2p,A+D), ϱ(c, A+D)}
≤ max{‖p‖, 0, 0, 1, ϱ(c, A+D)} = max{1, ϱ(c, A+D)}.

But now, by the choice of c, we have

ϱ(c, A+D) ≤ ‖c− p‖ ≤ ‖c− d‖+ ‖d− p‖ ≤ 1
4
+ 1

2
< 1.

Hence ϱH(A+D,C) ≤ 1. Since d is the midpoint of [[p, 2p]], a symmetric argument
in support of ϱH(C,B+D) ≤ 1 may be used. Hence C ∈ [A+D,B+D] as desired.
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To complete the proof, we must show that C is not of the form D + E for any
E ∈ KL(X). Because D is a nondegenerate line segment parallel to the vector p,
it follows that a set of the form D + E is a union of nondegenerate line segments
parallel to p. But C is a proper triangle whose side opposite the vertex c ∈ C is
parallel to p; hence no segment parallel to p can lie in C and contain c.
Re (vi). This result holds in higher dimensions, and quickly implies that no Råd-
ström extension is strictly convex.
Theorem 8.6. Let X be a normed vector space. Then no closed ball of positive
radius in KL(X) is metrically convex.
Proof. Let K ∈ KL(X), r > 0, with N denoting the closed ball in KL(X), centred
at K and of radius r. Fix a∈X where ‖a‖=r, and consider the sets A=K+[[−a, a]],
B = K + {a}, and C = K + [[0, 2a]]. By translation invariance [18, Lemma 3],
we have ϱH(A,K) = ϱH([[−a, a]], {0}) = r and ϱH(B,K) = ϱH({a}, {0}) = r, so
A,B ∈ N . But ϱH(C,K) = ϱH([[0, 2a]], {0}) = 2r; hence C 6∈ N . On the other
hand, we have ϱH(A,B) = ϱH([[−a, a]], {a}), ϱH(A,C) = ϱH([[−a, a]], [[0, 2a]]), and
ϱH(C,B) = ϱH([[0, 2a]], {a}). By Lemma 4.7, these distances are 2r, r, and r,
respectively; hence C ∈ [A,B].13 Therefore N is not metrically convex.

Remark 8.7. An immediate corollary of Theorem 8.6 is that no closed ball of
positive radius in a Rådström extension is metrically convex. Another way to see
this is the following. With ‖a‖ = r, A = [[−a, a]], B = {a}, and 0 ≤ t ≤ 1, we have
(1 − t)A + tB = [[(2t − 1)a, a]]. Hence [[φ(A), φ(B)]] is a line segment in R(X), of
length 2r, which is contained in the sphere of radius r, centred at the origin. This is
the maximum length possible, and more than enough to counter metric convexity,
as the next proposition shows.

Theorem 8.8. Let X be a normed vector space such that the closed unit ball is
metrically convex. Then every line segment contained in a sphere in X has length
at most the radius of the sphere.
Proof. By rescaled translation, we lose no generality in concentrating on the closed
unit ball and sphere centred at the origin. Let N = N(0; 1), S = S(0; 1), and assume
there is a line segment [[p, q]] ⊆ S such that ‖p − q‖ > 1. Then p − q 6∈ N . Letting
A be the family of line segments containing the nondegenerate segment [[p, q]] and
contained within N , note that the closure of

∪
A in X is a line segment in N that

is maximal in N ; i.e., not properly contained in any line segment itself contained
in N . So without loss of generality, we may assume our original segment [[p, q]] is
maximal in N . Since −q ∈ N , it suffices to show that p − q ∈ [−q, p]. For by our
assumption that N is metrically convex, this will give p− q ∈ N , contradicting the
assumption that ‖p− q‖ > 1.
Let Y be the span of the linearly independent vectors p, q. We first claim that p and
q are extreme points of N ∩ Y . Indeed if p is not an extreme point of N ∩ Y , there
is a line segment I = [[a, b]] ⊆ N ∩ Y such that p ∈ I \ {a, b}. If I ∩ [[p, q]] contains a
point other than p, then I ∪ [[p, q]] is a line segment that is contained in N ∩ Y and
that also properly contains [[p, q]]. This contradicts the maximality of [[p, q]]; hence
it must be the case that I ∩ [[p, q]] = {p}.
13 Since we are just computing Hausdorff distances between closed bounded intervals in the real

line, we do not really need the full force of Lemma 4.7.
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With the assumption that p is not an extreme point of N ∩Y , we seek to contradict
the fact that [[p, q]] is contained in the topological boundary of N ∩ Y in Y . To
this end, let L be the line containing [[p, q]], with H and H ′ the associated open
half-planes in Y . Suppose 0 ∈ H, and let T be the proper triangle with vertices
0, p, q. Then T ⊆ N ∩Y because N ∩Y is linearly convex. Since I = [[a, b]] intersects
L in a single point that is neither end point of I, it follows that one end point of I
is in H and the other is in H ′. Suppose a ∈ H ′, and let T ′ be the proper triangle
with vertices a, p, q. Since all three vertices of T ′ are in N ∩ Y , T ′ is also in N ∩ Y .
Since T ′ ⊆ L ∪H ′, we have T ∩ T ′ = [[p, q]]. Hence T ∪ T ′ is a proper quadrilateral
in N ∩ Y that contains [[p, q]] \ {p, q} in its interior. This implies that [[p, q]] is not
contained in the boundary of N ∩ Y , and we have our desired contradiction. We
thus conclude that both p and q are extreme points of N ∩ Y .
Next we show that p− q ∈ [−q, p]. Since p− q 6∈ N , this vector witnesses that N is
not metrically convex.
Now, p− q ∈ [−q, p] if and only if p ∈ [0, p+ q], if and only if 1

2
p ∈ [0, 1

2
(p+ q)]. By

Lemma 4.8, [0, 1
2
(p+ q)]∩Y , the metric interval in Y bracketed by 0 and 1

2
(p+ q), is

the proper parallelogram whose vertices are 0, 1
2
p, 1

2
q, and 1

2
(p + q); therefore p − q

is indeed in [−q, p] \N , as desired.

In the following examples, we show: (1) that the converse of Theorem 8.8 is false;
and (2) that a ball of radius r > 0 can be metrically convex and still contain line
segments of length r in its bounding sphere.

Examples 8.9. (i) In the Cartesian plane R2, let Nr be the intersection of the usual
unit disk {〈x, y〉 : x2 + y2 ≤ 1} with the square [−r, r]2, where 1

2

√
2 ≤ r ≤ 1. Then

the Minkowski functional ‖ · ‖r : R2 → R, given by ‖u‖r = inf{t > 0 : t−1u ∈ Nr},
defines a norm on R2 whose closed unit ball is Nr. When r = 1, ‖ · ‖r is the
Euclidean norm and Nr is metrically convex. But for values of r less than unity, Nr

is a “truncated disc” whose boundary sphere Sr contains four maximal line segments
of equal ‖ · ‖r-length. (When r = 1

2

√
2, for example, this ‖ · ‖r-length is 2.) If p and

q are the end points of one of these segments, then [p, q] is a rescaled translate of
[0, a], where a = p−q

∥p−q∥ . This point a is also the midpoint of another maximal line
segment in Sr, perpendicular to [[p, q]]; hence – by Lemma 4.8 – [p, q] is a proper
parallelogram with p and q at opposite corners. Thus [p, q] 6⊆ Nr. As r gets ever
closer to 1, however, the ‖ · ‖r-length of each of these segments gets ever closer to
zero, and certainly less than one. So having all maximal line segments on the unit
sphere be of arbitrarily small positive length does not imply that the unit ball is
metrically convex.
(ii) Still in the Cartesian plane, let N be a regular hexagon centred at the origin,
with ‖ · ‖ its associated Minkowski functional. Then the unit sphere S bounding N
has six maximal line segments, each of unit ‖·‖-length. If a, b ∈ N are distinct points
and [[a, b]] is parallel to one of the six sides of the hexagon, then [a, b] = [[a, b]] ⊆ N .
Alternatively, [a, b] is a proper parallelogram, each of whose sides is parallel to a
side of the hexagon. Such a parallelogram is contained in N as long as one of its
diagonals lies in N . This shows that the metric convexity of N does not imply that
every line segment contained in a sphere in X has length strictly less than the radius
of the sphere.
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Remark 8.10. The method of proof of Theorem 8.8 may be easily adapted to show
the following condition is a consequence of the metric convexity of N(0; 1):
Let p, q ∈ X be distinct such that [[p, q]] ⊆ S(a; r). Then r p−q

∥p−q∥ is an extreme point
of N(a; r) ∩ P , where P is the plane containing the noncollinear points a, p, q.
When X is two-dimensional, this condition is equivalent [6, Theorem 5.12] to the
condition that whenever a, b ∈ X, the midset [a, b] ∩ S(a; 1

2
‖a − b‖) is metrically

convex. However, it is not equivalent to the metric convexity of the unit ball, as
the following example demonstrates: Let X be the Cartesian plane from the second
paragraph of Remark 4.11 (ii); in particular,

N(0; 1) = {〈x, y〉 ∈ R2 : max{x2 + y2, |x+ y|} ≤ 1}.
Then the consequence above is clearly satisfied; but when a = 〈−1, 0〉 and b = 〈0, 1〉,
both in N(0; 1), the metric interval [a, b] is the square [−1, 0] × [0, 1], and is not
contained in N(0; 1).

Re (vii). The short answer is that the metric betweenness structure of KL(X) never
satisfies the convexity axiom in the higher-dimensional case.
If X is a normed vector space that is of dimension > 1, then Theorem 4.9 shows that
when X fails to be strictly convex, we can find A,B ∈ KL(X), both singletons, such
that [A,B] is not metrically convex. If X is indeed strictly convex, this conclusion
fails; however, regardless of the strict convexity of X, it is always possible to find
a metrically nonconvex interval with one of its bracket points a singleton, and the
other a line segment (the next simplest thing).
Theorem 8.11. Let X be a normed vector space of dimension greater than one.
Then there are A,B ∈ KL(X), where A is a line segment and B is a singleton, such
that [A,B] is not metrically convex.

Proof. Once again we lose no generality in assuming X is two-dimensional, say
X = 〈R2, ‖ · ‖〉. We pick a ∈ S(0; 1), and set A = [[0, a]] and B = {b}, where
b = −a ∈ S(0; 1). In this proof we will be repeatedly making use of Lemma 4.7,
which allows us to compute Hausdorff distances between compact linearly convex
sets in terms of their extreme points. In particular we easily compute ϱH(A,B) to
be 2.
Let L be the linear span of a, with H one of the two half-planes whose intersection
is the line L. Then, in the topological space H, S(b; 1) ∩ H is a topological arc
that meets the disjoint open sets N◦(0; 1) and H \ N(0; 1) at the points 0 and 2b,
respectively. Since the arc is connected, there is some point c ∈ (S(b; 1)∩H)∩S(0; 1).
Observe that S(0; 1) ∩ L = {a, b}, and neither point belongs to S(b; 1). Hence
c ∈ H \L. The same argument holds for the other half-plane H ′, so there is a point
d ∈ (S(0; 1) ∩ S(b; 1) ∩H ′) \ L. Let C = [[0, c]] and D = [[0, d]]. It remains to show:
(1) that C,D ∈ [A,B]; and
(2) that [C,D] 6⊆ [A,B].
Note that in order to use Lemma 4.7, we need only consider extreme points of one
set that are not members of the other. To show C ∈ [A,B], we first have that

ϱH(C,B) = max{ϱ(b, C), ϱ(c, B), ϱ(0, B)}.
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Since ‖c − b‖ = ‖c‖ = 1, and N(b; 1) is linearly convex, we know the first term
is ≤ 1. Since B is a singleton, the second and third terms are both equal to 1;
hence ϱH(C,B) = 1. To show C ∈ [A,B], it suffices to show ϱH(A,C) ≤ 1, and
invoke the triangle inequality. Indeed, ϱH(A,C) = max{ϱ(a, C), ϱ(c, A)}. These
two terms are at most ‖a − 0‖ = 1 and ‖c − 0‖ = 1, respectively, showing that
ϱH(A,C) = ϱH(C,B) = 1. The exact same argument shows that D ∈ [A,B]; i.e.,
that ϱH(A,D) = ϱH(D,B) = 1.

L

N(0; 1) N(b; 1)

a

c

d

bA
C

D

Figure 4: First schematic for Theorem 8.11, the taxicab norm is depicted.

Up to now we have assumed nothing about our starting point a, other than that it
belongs to S(0; 1). However, in order to show [C,D] 6⊆ [A,B], we need to assume
further that a is an extreme point of N(0; 1), and hence that 0 is an extreme point
of N(b; 1). Then the points 0, c, d are noncollinear because otherwise [[c, d]] would
witness that 0 is not an extreme point of N(b; 1). We first put E ′ = 1

2
C+ 1

2
D. Then,

because the points 0, c, d form the vertices of a proper triangle, E ′ is the proper
parallelogram with vertices 0, 1

2
c, 1

2
d , and 1

2
(c + d). An important consequence of

this is that E ′ has nonempty topological interior. This set is not yet what we need,
however, as it is an element of [[C,D]] ⊆ [[A,B]] ⊆ [A,B]. The plan is to enlarge E ′

slightly to obtain E ∈ KL(X) so that:
(2.1) ϱH(C,E) = ϱH(C,E

′) and ϱH(E,D) = ϱH(E
′, D); and

(2.2) ϱH(A,E) + ϱH(E,B) > 2 = ϱH(A,B).
Satisfying the first condition will ensure that E ∈ [C,D]; satisfying the second will
gives us E 6∈ [A,B], completing the proof.
Our set E will be the linear convex hull of E ′ ∪ {e}, where e is chosen outside E ′

but close to the origin (which is contained in both C and D). Since E ′ ∈ KL(X),
we know that E =

∪
{[[x, e]] : x ∈ E} (see, e.g., the proof of Proposition 2.3 (vi)).

Hence any extreme point of E not equal to e is already an extreme point of E ′; i.e.,
ε(E) ⊆ ε(E ′) ∪ {e}.
For a clue as to how to pick this point e, we have

ϱH(C,E
′) = max{ϱ(c, E ′), ϱ(1

2
d, C), ϱ(1

2
(c+ d), C)},

and ϱH(C,E) = max{ϱ(c, E), ϱ(1
2
d, C), ϱ(1

2
(c+ d), C), ϱ(e, C)}.

This tells us that in order to satisfy (2.1), we need:
(2.1.1) ϱ(c, E ′) = ϱ(c, E); and
(2.1.2) ϱ(e, C) is sufficiently small; i.e., that e is sufficiently close to 0 ∈ C.
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To ensure (2.1.1), first note that c 6∈ E ′; otherwise there would be 0 ≤ s, t ≤ 1
2

such that c = sc + td. But then c = t
1−s

d. Since C ∩ D = {0} and 1 − s 6= 0,
we have a contradiction. With this in mind, we may fix r = ϱ(c, E ′) > 0. Then
N◦(c; r) is disjoint from E ′, and N(c; r) ∩ E ′ is the nonempty set of points of E ′

closest to c. If x ∈ E ′, plane analytic geometry ensures that [[c, x]] intersects the
edge [[1

2
c, 1

2
(c + d)]]. It follows that N(c; r) ∩ E ′ is contained in this edge. Now, by

[19, Theorem 6.1], the interiors N◦(c; r) and E ′◦ are linearly convex. Since they
are disjoint, the hyperplane separation theorem [19, Theorem 11.3] says there exists
an affine functional f : R2 → R taking negative values in one interior and positive
values in the other. By [19, Theorem 6.2], any compact linearly convex set with
nonempty interior is the closure of that interior. Hence any point y ∈ N(c; r) ∩ E ′

is a limit point of both N◦(c; r) and E ′◦. This implies that our functional f takes
points of N(c; r)∩E ′ to zero; i.e., there is a line Mc that separates N◦(c; r) and E ′◦,
and contains N(c; r) ∩ E ′.

L
a

c

d

bA

c
2

d
2

E ′

c+d
2

Figure 5: Second schematic for Theorem 8.11. The set E ∈ [A,B] \ [C,D] will be a small
enlargement of the parallelogram E′ = 1

2C + 1
2D.

We claim that 0 6∈Mc. Indeed, since Mc intersects the edge [[1
2
c, 1

2
(c+d)]] and misses

the interior of the parallelogram E ′, it must contain either 1
2
c or 1

2
(c + d). In the

first case, Mc cannot contain 0 because it does not contain c; in the second case it
cannot contain 0 because [[0, 1

2
(c + d)]] is a diagonal of E ′ and therefore intersects

E ′◦.

L

N(c; r)c

bA
E ′

Mc

Figure 6: Third schematic for Theorem 8.11. The line Mc separates N(c; r)◦ from E′◦ and
contains E′ ∩N(c; r).
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Let Hc be the closed half-plane that contains E ′ and has boundary line Mc. Then
Hc contains 0 in its interior and is disjoint from N◦(c; r). If e ∈ Hc and E is the
convex hull of E ′ ∪ {e}, then E ⊆ Hc too; so ϱ(c, E) ≥ r. Since N(c; r) meets E ′, it
also meets E and we see that ϱ(c, E) = r = ϱ(c, E ′), as required.

L
E ′a

c

d

bA
C

D

T

Figure 7: Fourth schematic for Theorem 8.11. The line T separates the two open balls.
Letting E be the linearly convex hull of E′ plus any point of T \ {0} sufficiently close to
the origin will preserve the distance from A but increase the distance from B.

If we repeat the argument just given, but with D replacing C, we have an analogous
line Md and half-plane Hd containing E ′ (and 0 in its interior), with boundary
line Md. Thus if e ∈ Hc ∩ Hd, then the corresponding set E also is in Hc ∩ Hd,
and we infer that ϱ(d,E) = ϱ(d,E ′). If, in addition, we take e to be small – say
0 < ‖e‖ ≤ min{ϱ(1

2
(c + d), C), ϱ(1

2
(c + d), D)} – then we will have ensured that

condition (2.1) above holds; i.e., that E ∈ [C,D].
Now, N(a; 1) and N(b; 1) both contain 0 and have disjoint interiors. Arguing as
above, we then have a line T that contains 0 and separates N◦(a; 1) and N◦(b; 1).
Let Tc (resp., Td) be the part of T that lies in the open half-plane that contains c
(resp., d) and is bounded by the line L (containing 0, a, b). Since 0 is an extreme
point of N(b; 1), N(b; 1) cannot intersect both Tc and Td; say it misses Tc. If e ∈ Tc,
then, we have ϱ(e, b) > 1; hence ϱ(E,B) > 1.
It remains to show that ϱH(A,E) ≥ 1. By construction, E is contained in one
of the half-planes determined by T and N(a; 1) is contained in the other. Thus
1 ≤ ϱ(a,E) ≤ ϱ(A,E) ≤ ϱH(A,E).
Finally we note that Hc ∩Hd is a neighborhood of 0 and that 0 is a limit point of
Tc. Thus, to choose our point e, it suffices to pick any point from Tc ∩Hc ∩Hd such
that ‖e‖ ≤ min{ϱ(1

2
(c+ d), C), ϱ(1

2
(c+ d), D)}. This completes the proof.
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