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ON MINIMALLY FREE ALGEBRAS 

PAUL BANKSTON AND RICHARD SCHUTT 

1. Introduction. For us an "algebra" is a finitary "universal algebra" in 
the sense of G. Birkhoff [9]. We are concerned in this paper with algebras 
whose endomorphisms are determined by small subsets. For example, an 
algebra A is rigid (in the strong sense) if the only endomorphism on A is 
the identity id^. In this case, the empty set determines the endomorphism 
set E(A). We place the property of rigidity at the bottom rung of a 
cardinal-indexed ladder of properties as follows. Given a cardinal number 
K, an algebra .4 is minimally free over a set of cardinality K (K-free for short) 
if there is a subset X Q A of cardinality K such that every function 

f\X —-> A extends to a unique endomorphism <p e E(A). (It is clear that A 
is rigid if and only if A is 0-free.) Members of X will be called counters; 
and we will be interested in how badly counters can fail to generate the 
algebra. 

The property "«-free" is a solipsistic version of "free on K generators" in 
the sense that A has this property if and only if A is free over a set of 
cardinality K relative to the concrete category whose sole object is A and 
whose morphisms are the endomorphisms of A (thus explaining the use of 
the adverb "minimally" above). In view of this we see that the free 
algebras on K generators relative to any variety give us examples of 
"small" K-free algebras. We wish, however, to focus on constructing 
examples which are "exotic" in the following sense. Define a K-free algebra 
A to be large if the cardinality of A is infinite, exceeding both K and the 
number of distinguished operations in the algebraic type r = rA of A. In 
such an algebra, the counters fail miserably to generate the algebra, but 
still "determine" it in a natural sense. 

The underlying problem in the present study is to specify, given a 
cardinal K and a class JTof algebras of the same type, which are the K-free 
algebras in J#f 

1.1. Examples, (i) Let JTbe the class of fields. There are no K-free fields 
for K > 0; however there are rigid fields, e.g. the rational field Q and the 
real field R. (Here, R is a large 0-free algebra.) 

(ii) Let JTbe the class of torsion-free divisible abelian groups. Each such 
group can be regarded as a vector space over Q; hence A e Jfis K-free if 
and only if A is the direct sum of K copies of Q. (In particular there are no 
large /c-free algebras in J f for any K.) 
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964 P. BANKSTON AND R. SCHUTT 

(iii) Let J f be any variety of algebras such that Jfhas rigid algebras of 
arbitrarily high cardinality. Then JT contains arbitrarily large /c-free 
algebras for any fixed /c. (This is a recent result, due to I. Krîz and A. Pultr 
[12]. They actually prove a more general theorem, but this is the version of 
most interest here.) Examples of such classes J f include 2-unary algebras, 
semigroups, and commutative unital rings (see [9] ). 

1.2. Remark. The question of the existence of classes Jfwith arbitrarily 
large /c-free algebras was originally posed by P. Bankston at the Denver 
A.M.S. Annual Meeting in 1983. B. Jonsson [10] came up with an example 
for K = 1 within a day. The problem got around; and J. Sichler remarked 
to A. Pultr [16] that if Xis the variety of all 2-unary algebras then one can 
form a /c-free algebra in JTsimply by taking a coproduct of a suitably large 
rigid algebra and the free J^algebra with /c generators. This is the genesis 
z-Pultr result. 

This paper is organized as follows. In Section 2 we consider 1-free 
semigroups, concentrating our energies on the problem of constructing 
large 1-free groups. Theorems (2.3) and (2.7), along with examples (2.8) 
and (2.9) (due to R. Schutt), are the principal results. (Only the trivial 
group is rigid, so the variety of groups does not fall under the Krïz-Pultr 
theorem.) In Section 3 we look at the problem of constructing large /c-free 
algebras of continuous functions. We regard Theorems (3.5), (3.7), (3.10), 
(3.12), and (3.18) (due to P. Bankston) as the main results of this 
section. 

Throughout the paper we adopt a standard notation for ordinal and 
cardinal numbers (see [13] ). In particular: each ordinal is the set of its 
predecessors; co = {0, 1, 2, . . . } is the first infinite ordinal (and cardinal); 
c is the cardinality of the continuum, c = 2W = exp(co) (the notation A 
can denote either a cartesian power or a cardinal, depending on context); 
arbitrary ordinals will be denoted by lower case Greek letters (the letters 
/c, À, /z will usually be reserved for cardinals); and the cardinal successor 
of K is denoted /c+(a>j = o? + ). 

We are grateful to various people for stimulating conversations and 
helpful suggestions concerning the present topic. We thank especially: 
B. Banaschewski, M. Henriksen, B. Jonsson, E. Nelson, and A. Pultr. 

2. Semigroups. In this section we focus on /c-free semigroups for /c = 1 ; 
and, except for a few preliminary remarks, concern ourselves only with 
1-free groups. 

2.1. PROPOSITION. Every \-free group is abelian. 

Proof. Let G be 1-free with counter g. Then the inner automorphism / 
with respect to g fixes g, so must be the identity map. Thus g is in the 
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center of G. If a e G is arbitrary then 

Ja(g) = a~]8a = a~]aê = g> 

hence must also be the identity map. Thus G is abelian. 

2.2. Remark. Not every 1-free semigroup is abelian. M. Petrich [14] has 
observed that the free inverse semigroup on one generator is a 
noncommutative 1-free semigroup. Without going into excessive detail 
(the reader is referred to [15] ), here are the reasons why. 

An inverse semigroup is a semigroup with the property that to each x 
there is a unique y such that x = xyx, y = yxy. Clearly every semigroup 
homomorphism also preserves this "inverse". 

An alternative description is to add a distinguished unary operation 
( ) _ 1 to the semigroup and to write down the equational axioms: 

(xy)'] =y-]x'] 

(x~]r] = x 

XX X X = X XXX 

Given such, x~] is uniquely determined by x " = x xx~ , 
JC = xx x. 

The free algebra on one generator in this variety is the free inverse 
semigroup S on one generator. S is clearly 1-free, however it so happens 
that gg~~ ^ g~ g for the counter g. 

In the sequel, G will denote a commutative semigroup and additive 
notation will be used. The set E(G) of endomorphisms is a "semiring" 
(i.e., addition is merely a commutative semigroup operation) under the 
operations 

(<j> + Wx) = <j>(x) + iKx) and (<£ • *)(*) = 4>^(x) ). 

(Of course, E(G) is a ring if G is an abelian group.) If R is any semiring let 
R+ denote the additive semigroup of R. In the spirit of P. Schultz [17], R is 
an E-semiring (Schultz is concerned with rings, by the way) if for 
0 G. E(R + ) there is an r e R such that 6(x) = r • x identically. Our first 
result characterizes 1-free commutative semigroups. 

2.3. THEOREM. Let G be a commutative semigroup and let E = E(G). The 
following are equivalent. 

(i) G is \-free. 
(ii) G = E+ and E is an E-semiring. 

(iii) There is a g G G such that 

G = Eg= {<t>(g):<t> e E} 

and E is commutative. 
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Proof, (i) => (ii). Let G be 1-free with counter g, and consider the map 
0\E+ —> G defined by 6(<j>) = <j>(g). 0 is clearly a homomorphism, 0 is 
one-one because two members of £ which agree at g agree everywhere, and 
0 is onto because for each a e G there is always an endomorphism taking 
g to a. Thus 0 is an isomorphism. Now suppose/is an endomorphism of 
E+. Define the map/ :G —> G by 

Tfa) = 7(<Ms)) =/(*«)(*) 
(<^ is, as before, the unique endomorphism on G sending g to a). Clearly 
/ Gi £; and f(<j>) = J ' <j> for any <j> e £, since members of £ are 
determined by where they send g. Thus E is an £-semiring. 

(ii) => (iii). Let <f> G E. The map i//1—> ;// -̂ > is an endomorphism of £ + , 
hence \p • <j> is identically 0 • i// for some 0 G E. Letting \f/ = idc, we get 
4> = 0. Thus £ is commutative. Now let TJ be an isomorphism from £ + to 
G. For each <f> G E define L'.E+ —» £ + by /.(*//) = <f> - \p. Then 

l o ^ o f ' a and (TJ o /^ o j]~])(r](idG) ) = TJ(<». 

Thus we have G = Eg where g = rj(idc). 
(iii) => (i). Let g G G be such that G = Eg and suppose E is 

commutative. If a G G then # = <£(g) for some <(> e £; we have to show 
that <f> is unique. So let a = *//(g) for i// e £. For arbitrary b G G, find 
0 <= £ such that 6 = 0(g). Then 

# 6 ) = <K*(g) ) = 0(<l>(g) ) = 0«<g) ) = #0(g) ) = xP(b). 

T h u s <f> = \}s. 

2.4. Examples, (i) Schultz [17] and Bowshell-Schultz [4] pointed out that 
the epimorphs of the ring Z of integers, the unital subrings of the field Q 
of rationals, and the pure subrings of the ring R of /7-adic integers 
(p prime) are £-rings. Moreover, in [17], Schultz showed that the unital 
pure subrings of 1 1 ^ ^ Zp (where, for any positive integer n, Zn = Z/nZ) 
are £-rings. 

(ii) One can show the "semifield" of positive elements of any 
Archimedean field is an £-semiring, as is any unital subsemiring of Q. 

The rest of this section is devoted to the construction of large (i.e., 
uncountable) £-rings. Among the examples above, I I Z , R and the 
semifield of positive real numbers are of particular interest since they have 
cardinality c. 

We still do not know whether there are 1-free abelian groups, or even 
1-free commutative semigroups of arbitrarily large cardinality; but we will 
put a dent in the problem by constructing £-rings of cardinalities exp(c) 
and exp (c). 

In the sequel all groups are abelian. Before we give our examples we will 
need the following material from [7]. Let H = I I ^ ( O » where each 
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(en) is an infinite cyclic group with generator en. A torsion-free group G is 
slender if, for every homomorphism TJ:H —> G, {n:j](en) ¥= 0} is finite (en 

being identified in H in the obvious way). 

2.5. THEOREM [7, p. 165]. A torsion-free group G is slender if and only if G 
does not contain a copy of Q , H, or R for any prime p. 

Recall that a cardinal number JU, is Ulam-measurable if there is a 
countably complete nonprincipal ultrafilter on JU, (see [5], [7], [8], [13], 
[18] ). It is well known that the class of non-Ulam-measurable cardinals 
constitutes an infinite interval of cardinals which is closed under chain 
suprema and cardinal exponentiation. 

2.6. THEOREM [7, p. 161]. Let {G{.i G / ) be a family of torsion-free 
abelian groups where the cardinality of I is non-Ulam-measurable, and let G 
be slender. If t\\ I I / G / Gt—> G is any homomorphism whose kernel includes 
the set of elements ~a of 'finite support" (i.e., {/ G l\ai ¥= 0} is finite), 
then r\ = 0. 

Define a family {Rf.i G / ) of rings to be incomparable if 

Hom(R^, Rj+) = 0 whenever / ¥= j . 

2.7. THEOREM. Let {Rf.i G / ) be an incomparable family of E-rings, 
where each Rt is slender and \I\ is non-Ulam-measurable. Then I I / G / R, 
is an E-ring. 

Proof. Let # = UiŒf Rj. For each / G /, identify R, with (a G R'MJ = 
0 for j ^ / } , and let S = 2 / G / Rj. Then S, the (internal) direct sum of 
the Rj's, is just the elements of R of finite support. Let 0 G E(R + ) . 
Since the Rt are incomparable, they are "absolutely invariant", i.e., 

0[Rt] Q Rt for each / G /. 

Now for each i there is some rt G Rt with 6(x) = rl•• x holding for x G Rt. 
Letting 7 G R have coordinates r/5 we then have 0(x*) = ~r • ~x true for 
~x G S (because S is a direct sum). So let <j> = 0 — ~r (i.e., <j>( JC) is 
0(x*) —~r-~x). Then <j> f S = 0. For each / G / let TT.R —» /?, be projection. 
Then 

(",- o <w r s = o. 
Since JR/ is slender, we can apply (2.6) and conclude that 

77, o <j> = 0 for each / G /. 

Thus <f> = 0, and 0(x) = 7 • JC holds for all ï G i?. 

In our examples we exhibit two incomparable families of slender 
firings; one of cardinality c, the other of cardinality exp(c). The products, 
of cardinality exp(c) and exp2(c) respectively, will be £-rings by (2.7). 
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2.8. Example. A 1-free group of cardinality exp(c). 

Construction. For each set X Q P ( = the set of positive prime numbers), 
let 

Qx = j - e Q:b is not a multiple of any p G X ?. 

Thus Q p = Z, Q0 = Q, and each Q^ is an £-ring. Moreover, by 
(2.5), each Q ^ for X ^ 0 is slender. (Q^ is countable and reduced.) 
Suppose X £ Y and choose p G X\Y. Then /?Qy = Qy (i.e., Qy is 
/^-divisible). But 

00 

n / Q + = 0; 

hence Q^ contains no/?-divisible subgroup. Now homomorphic images of 
/^-divisible groups are/?-divisible; therefore, 

Hom(Q + , Q + ) = 0. 

Thus if X and Y are incomparable with respect to inclusion then Q^ and 
QF are incomparable with respect to homomorphisms. Now in any set of 
cardinality co there is a set I of c pairwise incomparable subsets. (This is a 
special case of a more general fact: replace <o by K ^ co and c by exp(/c). In 
the case K = 10; identify co with Q ç R and count pairwise incomparable 
open intervals.) Thus ( Q ^ : ^ G I) satisfies the hypotheses of (2.7) and the 
resulting direct product is an £-ring of cardinality exp(c). 

2.9. Example. A 1-free group of cardinality exp (c). 

Construction. Let p be a fixed prime, let R denote the ring of /?-adic 
integers, and let F^ denote the field of /?-adic numbers, 

F^ = \ — :a G Rp, n a nonnegative integer ?. 

Recall that R is a local ring with unique maximal ideal pR , hence any 
* G R^\/?R^ is a unit. 

Moreover, R^+ is reduced (in fact n ^L, / R ^ = 0) but nRp = Rp if 
(n, p) — 1 (i.e., A2 is prime to/?). Also 

Rp/p
nRp = Zpn for every /i ^ 0. 

If F G F is any subfield, let RF = F n R . We will produce a family of 
exp(c) such subfields F such that the rings RF are £-rings, the groups 
RF are slender, and the family of rings RF is incomparable. 

2.9.1. LEMMA. RF is a pure local subring ofR and is hence an E-ring. 
Moreover, if F' is another subfield of F then RF Q RF> if and only if 
F ç F'. 
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Proof. Fix F and let R = RF. For any positive integer n, nF = F\ so 

nR = n(F n Rp) = F n nRp = F D Rp n nRp = R n nRp. 

Hence R is pure in R Now 

pR = R O pR ¥= R. 

For otherwise choose n with (n, p) = 1. Then 

nR = R n nRp = R H Rp = R\ 

hence if pR = R then R would be divisible and nonzero (since 1 G R). 
This is impossible since R is reduced. Since/?/? is a proper ideal of R, let 
x G R\pR. Then x <£ pR , so JC is a unit of R . But x - 1 G F. 
Therefore 

JC - 1 G F n R^ = R, 

so x is a unit of R. This means pR is the unique maximal ideal of R, i.e., R 
is local. Now suppose F' is another subfield of F^ and let K = RF. If 
R Q R' and x G F then * = a//?w for some # G R and n ^ 0. Thus 

/ • JC = A G R ç /*' ç F , 

whence x e F . 

The following result is well known (see, e.g. [1] ). 

2.9.2. LEMMA. Let G be a pure subgroup of R and let 0 G 
Hom(G, R^~). Then there is a fixed a G R such that 0(x) = a • x for all 
x G G. In particular, the rings RF above are E-rings. 

2.9.3. LEMMA. Let G be a pure subgroup ofR containing 1 and let 6 be 
a nonzero homomorphism of G into a pure local subring H of Rp. Then 
G Q H. 

Proof By (2.9.2), there exists a ^ Rp such that 0(x) = a - x holds. Thus 
aG Q H. Suppose a = pn • u where u is a unit of R .̂ Now 

pnG = pnRp n G and uRp = Rp. 

Thus, 

aG = pn uG = w • pnG = u(pnRp n G) 

= / ? % n uG n H Q pnH. 

Therefore uG Q H. Since H is pure in R ,̂ the map 

<t>:H/pH -» R /pR, , 

given by 

<J>(/* + PH) = h+ pRp, 
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is injective. And since 

Rp/pRp = Zp, 

it follows that pH is a maximal ideal; hence the maximal ideal of H since 
H is local. Since 1 e G, we have u e H. But 

u £ H n pRp = pH. 

Thus u is a unit of H. So G Q u~xH Q / / a s desired. 

By (2.9.3) we can immediately infer that two pure local subrings of R^ 
are comparable under additive homomorphisms if and only if they are 
comparable under inclusion. Now let B Q F « b e an algebraically 
independent subset of cardinality c (i.e., no element of B is algebraic over 
the subfield of F generated by the remaining elements of B). Let / be a 
collection of exp(c) pairwise incomparable subsets of B. For each / e /, let 
Fj be the subfield of Fp generated by / and let Ri = Ft Pi R^. If / and j are 
distinct members of / then Ft and F- are incomparable under inclusion. 
Thus, in light of Lemmas (2.9.1) and (2.9.3), we conclude that (R{.i ^ / ) is 
an incomparable family of £-rings. We can use (2.7) to conclude that 
I l / e / Rj is an ^-ring of cardinality exp (c) once we show each Rj is 
slender. By (2.5) we need only show Ri contains no copy of Q, H, or 
% for any prime q. Now Rt Q R . Since R^ is reduced, R^ contains 
no copy of Q. 

2.9.4. LEMMA ( [7, p. 166, ex. 6] ). R^ contains no copy of H; hence 
neither does Ri . 

If q is a prime distinct from p then pR = R (i.e., R is /7-divisible). 
But 

oo 

n P
nRp = o. 

n = 1 F 

Since /^-divisibility is preserved by homomorphisms, we conclude that 
R̂ ~ (and hence R*) contains no copy of R*. 

Now Rj is a pure and proper subring of R^ and pRp is a maximal 
subgroup of R^~. Thus 

*,. ZpRp and Rp
+ = *,+ + pRp

+. 

Thus 

POL;,!*?)-'*' +
+

R' - R , + /*,. 

If (n,p) = 1 then 

, ( R ; / ^ ) = ""y
Jt+"

1 = ̂ —^ = K/Rr-, + , D + x _ nRP + Rl _ RP + ^1 _ D + /D + 



MINIMALLY FREE ALGEBRAS 971 

Thus R /R; is a nonzero divisible group, and hence infinite (in fact 
torsion-free since R* is pure). But 

R,VR„ = z,„ 

which is finite. It follows that /?;
+ cannot contain any copy of p"Rp. It 

is easily seen that these are the only copies of R in R . Thus 
Rj contains no copy of R* and is hence slender. This completes the 
construction. 

2.10. Remark. Of course the construction in (2.9) can be used to obtain 
£-rings of cardinality exp(c). We included (2.8) because of its much 
greater simplicity. 

3. Algebras of continuous functions. This last section is devoted to a 
study of /c-free algebras of continuous functions. Let £ be a topological 
algebra of finitary algebraic type T, and let f be a full subcategory 
of the category of topological spaces and continuous maps such that the 
contravariant functor X i—> C(X, E) which takes a space I e f to 
the T-algebra of continuous £-valued functions (with operations defined 
pointwise) is a category duality from 9£ to the category C\% E] of algebras 
C(X, E) and r-homomorphisms, for X e 9C. (If/: Y —> X is continuous for 
X, Y e ^ t h e n C(f)(g) = g o/defines the induced homomorphism from 
C(X, E) to C(Y, E).) 

3.1. Examples, (i) Let E be the two-element discrete Boolean algebra, 
and let & be the class of totally disconnected compact Hausdorff spaces. 
Then C[X E] is the variety of Boolean algebras by the Stone duality 
theorem [18]. 

(ii) Let I denote the closed unit interval in the real line. We consider I 
as a topological algebra with the lattice operations for distinguished 
binary operations and with all elements of I as distinguished nullary 
operations (constants). Thus we let E be 

<I, V, A, {ct:t G 1} >. 

Let SC be the class of compact Hausdorff spaces. Then X H-> C(X, E) 
defines a duality [2]. (In Banaschewski's parlance, C\% E] is the class of 
"separated, functionally complete I-lattices".) 

(iii) Let E be the topological ring R of real numbers, and let SC again be 
the class of compact Hausdorff spaces. Then C\9£, E] is dual to 9£ by the 
Gel'fand-Kolmogorov duality theorem [8]. 

(iv) Let E be as in (iii), but let 9C consist of all realcompact Tichonov 
spaces. Then C\% E] is dual to % again by Gel'fand-Kolmogorov 
duality. 

Let us now look at what it means for an algebra C(X, E) to be /c-free. 
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We can easily dispense with the case K = 0; for C(X, E) is rigid if and only 
if |A"| ^ 1 if and only if C(X, E) is either degenerate or the r-algebra E. 
(Note that in the examples (3.1) all of the classes C[X E] have rigid 
algebras.) To analyze the case K > 0, define a continuous map/ :X —> Y to 
be a coreflection map if for each continuous g:X —> Y there is a unique 
continuous h:X —» X such that g = fo h. 

3.2. Remark. Let J ^ ^ be categories, with J ^ a subcategory of 3d. 
A functor F : ^ —» j / i s a coreflection if i7 is right-adjoint to the inclusion 
functor (see, e.g., [19] ). The canonical morphism from F(X) back to X is 
always a "coreflection map" in the above sense. 

3.3. PROPOSITION. Let f:X —> Y be a coreflection map. Then f is a 
bijection. 

Proof. Let y e Y and let g be x M> y. The existence of h forces y e /[A"], 
s o / i s onto. Suppose ^ = / (JCJ) = f(x2), and let g again be x M> _y. The 
maps //,, //2 defined by x f-> Xj, x H» JC2 respectively, both satisfy g = fo h. 
Thus hx = h2 a n d / i s one-one. 

Thus we may view a coreflection map/:X—> y as a "uniformly defined" 
enrichment of the topology on Y. Typical coreflection functors in topology 
are specified in just this way. 

3.4. Examples. The following topology-enriching operations give rise to 
topological coreflections. 

(i) F(X) = D(X) is the discrete topology on X. 
(ii) F(X = k(X) is the "/c-modification" of X, i.e., A Q X is closed in 

k(X) if and only if A n K is closed in K for each compact subspace K of X 
(see [5] ). 

(iii) For a given cardinal À, F(X) = (X)x is the "À-modification" of X, 
i.e., basic open sets in (X)x are intersections of fewer than À open sets 
in X (see (15]). 

3.5. THEOREM. Let & be a class of spaces such that the functor 
X h-> C(X9 E) defines a duality between % and C[X E]. The algebra C(X, E) 
is K-free if and only if there is a coreflection map f.X —» EK, where EK is the 
usual cartesian power with the (Tichonov) product topology. Moreover, if 
the underlying space EK is in % then C(EK, E) is not only K-free, but the free 
C[% E]-algebra over a K-element set. 

Proof. Assume f.X —> EK is a coreflection map, and let 

iTi:E
K - > E 

be the £ projection map, £ < K. It is straightforward to show that 
C(X, E) is /c-free with counters /^ = TT^ O f First of all, the /^'s are all 
distinct s ince/ is onto. Suppose (g^è < /c) is a /c-sequence of elements of 
C(X, E). Then the map g:X —> EK, defined by n^o g = g^ is continuous 
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and there is a unique continuous h:X —> X with g = f o h. Thus C{h) is a 
homomorphism taking /^ to g^ £ < /c. The uniqueness of C(h) is 
guaranteed by the uniqueness of h and the duality between 9C and C\% E\. 
A minuscule amount of extra work shows that C(EK, E) is the free 
C\% £]-algebra over (TT^ < K) whenever EK e 3T(see also [3] ). 

Now suppose C(X, E) is /c-free with counters (f(.£ < K). Defining 
f\X —> £* by the conditions TT^ o f = f^ we show / is a 
coreflection map. Indeed, let g.X —> 2sK be given, and let 

^:C(X, £ ) -» C(*, £ ) 

be an endomorphism taking/^ to g^ £ < K. By duality there is a unique 
h\X —> X such that i// = C(h). Thus /z is unique such t h a t / o h = g. 

3.6. Remark. We can now specify the /c-free algebras in C [ ^ £ ] for the 
first three examples in (3.1): (i) A Boolean algebra is /c-free if and only if it 
is free on /c generators. 

(ii) A separated, functionally complete I-lattice is /c-free if and only if 
it is of the form C(l\ I). 

(iii) there are no /c-free unital rings C(X) = C(X, R) for X compact 
Hausdorff and /c > 0. 

From the above remark, we know that there can be no large /c-free 
Boolean algebras for any /c; but the story is less clear for the I-lattices 
C(X, I). Since there are c distinguished operations in this type, we need to 
address the question of when 

i c ( r , i) i > c • K. 

3.7. THEOREM. Let K be any cardinal. Then 

i c ( r , i) i = c - /cw. 
Proof. If K < co then the equality is well known, so assume /c is infinite 

and let A Q lK be 

(x <E 2K:xç = 1 for exactly one £ < /c). 

Then A is discrete and its closure Â in T is easily seen to be A U {0}. Thus 
A is the one-point compactification of the /c-element discrete space. Let 
S c I be the set 

{0} U i-:n > o}. 

Now every continuous surjection/:^ —* S can t)e specified by: (i) choosing 
a countable B Q A; (ii) sending A\B to 0 (f(O) = 0 since fis onto); and 
(iii) sending B to S\{0} in such a way that point-inverses are finite. This 
can be accomplished in /cw different ways, so 

/c" ^ \C(A, S)\. 
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Since we can extend I-valued maps from A to the full cube, we have 

C ' K» ^ |C(f, I) |. 

To get the reverse inequality we invoke a theorem of R. Engelking (see [11, 
Theorem 4.9] ) to the effect that every continuous/: T —> I depends on 
only countably many coordinates (i.e., there is a countable J Q K and a 
continuous g: lJ —» I such t h a t / = g o TTJ). This immediately gives us 

C(IK, I) ^ c • /cw. 

3.8. COROLLARY. TTzere /'s a large K-free separated, functionally complete 
l-lattice if and only if c - K" > c - K (i.e., KW > K > c). 

3.9. Remark. In the absence of questionable axioms of set theory, it is 
impossible to pin down those cardinals K such that K" > K. Of course if K 
is of the form 2A, then K does not have this property. On the other hand, if 
K has countable cofinality then Konig's lemma (see [13] ) tells us that 
K° > K. If K has uncountable cofinality then 

K" = K - sup{Àw:À < K}. 

Thus, assuming the Generalized Continuum Hypothesis, 

KW ^ K • sup{À+:À < K] = K. 

For the remainder of this section, RCF denotes the class of unital rings 
C(X) = C(X, R) for X an arbitrary topological space. It is well known 
(see [8] ) that if X is a space then there is a realcompact Tichonov space 
X' such that C(X) = C(X'). (X' is obtained by identifying points of 
X which cannot be separated by members of C(X); by suitably topolo-
gizing the set of equivalence classes; and then by applying the Hewitt 
realcompactification.) 

Combining this fact with (3.5) and the Gel'fand-Kolmogorov duality, 
we have the following. 

3.10. THEOREM. R G RCF is K-free if and only if there is a realcompact 
Tichonov space X and a coreflection map f.X —> RK such that R = C(X). 
Consequently the cardinality of any K-free ring R e RCF lies between 
c • Kœ and exp (K • co). 

Proof We need only justify the second assertion. Clearly if C(X) is 
/c-free then 

\C(X) | ^ exp2(/c • co) 

since \X\ = |RK| = exp(/c • to) (by (3.3) ). Also, since RK is realcompact, 
C(RK) is /c-free and its cardinality is c • K". (Use the argument in (3.7) to get 
|C(IK) | ^ c • K".) Since V is a retract of RK, we get 

|C(RK) | ^ c • K" 
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On the other hand, Engelking's theorem also applies to continuous maps 
from RK to R. Thus |C(RK) | = c • KW.) 

3.11. Question. Given K, is there always a large /c-free unital ring in 
RCF? 

Although we cannot answer (3.11) completely, we can give an 
affirmative answer "for all practical purposes". In particular, from (3.9) 
and (3.10) we know that 

|C(RK) | = c • /c"; 

and hence that C(RK) is large provided 0 ^ K < c or /c is of countable 
cofinality. In further pursuit of an answer, let us consider C(D(RK) ). This 
ring is of cardinality exp (/c • <o), so is certainly large whenever it is 
/c-free. 

3.12. THEOREM. The following are equivalent. 
(i) Z)(RK) is realcompact. 

(ii) C(D(RK) ) is K-free. 
(iii) C(D(RK) ) is X-free for some X. 
(iv) K is not Ulam-measurable. 

Proof (i) =» (ii). This follows by (3.4 (i) ) and (3.5). 
(ii) => (iii). This is immediate. 
(i) *=> (iv). This is well known [8]. 
(iii) => (i). Let X be the Hewitt realcompactification of D(RK). Then 

C(X) = C(D(RK) ) is X-free, so there is a coreflection m a p / : * - > R \ NOW 
R carries a topological group structure, and is hence (point-) homogen­
eous. We show X is also homogeneous. For let JC, y e. X and let k be a 
homeomorphism on R taking f(x) to f(y). Since fis a coreflection map, 
there is a unique h:X —» X such t h a t / o h = k of Then 

/(*(*)) = k(f(x)) =f(y), 
so h(x) = y (since/is one-one). Also there is a unique h!\X —» X such that 
foj = k~] of. Thus 

foh' oh = k~l of oh = k~X okof = f\ 

whence W o h = idx. Similarly h o W = id^, so h is a homeomorphism. 
Since X has isolated points, we must have that X is discrete. But the 
realcompactification of a discrete space is never homogeneous, unless 
the discrete space is realcompact to begin with. 

3.13. COROLLARY. There is always a large K-free unital ring in RCF, 
provided K is either non-U lam-measurable or of countable cofinality. 

Another issue which has direct bearing on (3.11) is the following. 

3.14. Question. How many /c-free unital rings in RCF are there? 
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By (3.10) we need look only at Tichonov topologies ^ o n the set RK such 
that: (i) ^"extends the usual product topology; (ii) ^ i s realcompact; and 
(iii) ^~is "coreflective" (with respect to the product topology), i.e., any 
function f:RK —» RK which pulls usual open sets back to ^ o p e n sets also 
pulls ^ o p e n sets back to ^ o p e n sets. Now two of the main results of 
Comfort-Retta [6] are: (1) if ^ i s a realcompact topology and IT' is any 
topology with ^ " ç 3T' ç (F) ( = the <ormodification of ST) then T is 
realcompact; and (2) if ^"is a realcompact topology then so is (^r)/x, where 
jit is the first Ulam-measurable cardinal (should one exist). Williams [20] 
went on to extend the first result; in particular he showed that if ^~is a 
realcompact topology, a is a non-Ulam-measurable cardinal, and 3T' is 
a Tichonov topology with F Q T Q (F)a+ and T = (^')c f ( a ) (cf(a) 
is the cofinality of a) t hen^ 7 is realcompact. Since the topologies {^)a are 
all coreflections of ST, we can state the following. 

3.15. THEOREM. The unital ring C( ( R \ ) is K-free for any a ^ ji. 

Although (3.15) sheds important light on question (3.14), it falls short of 
providing a complete answer. When K ^ <o, (3.15) gives us just C(RK) and 
C(D(RK) ). The Comfort-Retta theorem tells us that any coreflective 
Tichonov topology will give another /c-free ring, however we do not know 
whether any such topologies exist. (What one can easily check out is that if 
&~ is such a topology on R, nondiscrete and distinct from the usual 
topology, then ^"is point-homogeneous; moreover any new ^ o p e n set 
must inherit a dense ordering without endpoints from the usual ordering 
on R.) 

Presumably we could also extend (3.13) to cover the case K = \i using 
the second Comfort-Retta result. While it is true that C( ( R ^ ) is M-free, 
we do not know whether it is large. (What complicates matters is that \i is 
strongly inaccessible.) 

That said, let us return to smaller cardinals and consider K = <o,. 

3.16. PROPOSITION. There are at least three coffrée unital rings in 
RCF:C(RW'X of cardinality c\ C( (Rw,)w,)» of cardinality exp(c); and 
C(D(R"]) ), of cardinality exp2(coi). 

Proof We need only show 

|C( (RU')U|) | = exp(c). 

Indeed 2W is closed in RWl, hence {2W)W = D(2œ) is closed discrete in 
(Rw')w . Now (R^Ow 1S weU known to be normal (even hereditarily 
ultra-paracompact), so every map 

f:D(2a) - R 

extends to (R"')u . Thus 

|C((RW')U|I i= exp(c). 
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To continue, RW| has weight <o,. Thus the weight of (RWl)w is = cô  = c; 
hence 

|C((R"%,)I ^ exp(c). 

We close this section by considering the question of when a ring 
R e RCF is /c-free for more than one cardinal K. The following is 
obvious. 

3.17. PROPOSITION. Let K be non-Ulam-measurable. Then C(D(RK) ) 
is X-free if and only if c = cK. In particular, C(D(K) ) is X-free for 
1 ^ X ^ co. 

By contrast we have the following result. 

3.18. THEOREM. C ( R K ) is X-free if and only ifX = K. 

Proof All we need establish is that there can be no continuous bijection 
/:RK -» Rx for K ¥= X. We have two cases. 

Case (i). K > X. If À > «, / embeds IK into R , an impossibility for 
reasons of dimension. If À ^ co then the dyadic space 2K Q RK, which has 
weight /c, cannot possibly be embedded in a space of lower weight. 

Case (ii). K < X. If X < co we can write RK as a countable union of the 
cubes [ — n, n]K, n = 1, 2, . . . . Let y4„ be the image of [ — n, n]K under/. 
Then 

x °° 
R = „u ^ 

and it is easy to see that each An is nowhere dense. This contradicts the 
Baire category theorem. Now suppose À ^ <o, and let A Q R be 

{ ï G 2 :x^ = 1 for exactly one £ < X}. 

Then ,4 is discrete of cardinality À. But f~][A ] Q RK has a dense subset of 
cardinality K • co < X, hence so does A This cannot be. 
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