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Minimal freeness and commutativity

PAUL BANKSTON*

Abstract, A pseudobasis for an abstract algebra A is a subset X of A such that every mapping X into A
extends uniquely to an endomorphism on A. A is minimally free if 4 has a pseudobasis. In this paper
we look at how minimal freeness interacts with various notions of commutativity (¢.g., “operational”
commutativity in the algebra, usual commutativity in the endomorphism monoid of the algebra). One
application is a complete classification of minimally free torsion abelian groups.

0. Introduction

Let {2 be an operation type for universal algebras; members of {2 are operation
symbols of various finite “arities.” Set £, = {4 € 22 : p has arity m}, mz20. If
u e, and A is an Q-algebra, the interpretation u, of pin A is a mapping from the
finite cartesian power A™ into 4. (0-ary operations are also called constants.) When
confusion is unlikely to arise, we drop subscripts from interpretations of operations
in algebras. Also the letters y, v generally stand for operations of positive arities m
and n respectively.

An (Q-algebra A is minimally free if there is a subset X € 4, called a pseudobasis,
such that every map f: X — A extends uniquely to an endomorphism [f] on A. 4
is i-free, where « is a cardinal number, if 4 has a pseudobasis of cardinality .

One-element (trivial) algebras are clearly both O-free (rigid) and l-free. A
nontrivial O-free algebra cannot be x-free for any x > 0, but it is quite possible for
nontrivial minimally free algebras to possess pseudobases of widely varying cardi-
nalities (finite and infinite [1], [3]; see also 2.10(iii) in the sequel).

The notion of pseudobasis is stronger than that of “independent set” as
introduced by E. Marczewski [8). Recall that X < A is independent if every f: X — A
extends to a homomorphism from the subalgebra (X generated by X. X is a basis,
in the sense of Marczewski, if X is independent and is a generating set for 4. (In
that case A is free with respect to some-variety containing A.) Pseudobases can fail
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very badly to be generating sets (see {1], [2], [3], [4] for various demonstrations of
this fact); however if X is a pseudobasis for A, then it is easy to see that X is a basis
for (X>.

There is a model-theoretic property of pseudobases which, while not exploited
in the sequel, is of interest in its own right. If X is a pseudobasis for the Q-algebra
A, then X is a set of “indiscernibles.” That is, if @(v,,...,v,) is a first order
formula over  involving at most the distinct free variables vy, ..., 0., and if
{Xyy...  Xnp and {xi,...,x,) are two sequences from X such that for
1<ij<nx;=x if and only if x;=x;, then the substitution instances
olxy, . .., x,) and @[x1, ..., x,] (where x, is substituted for v,, etc.) are either both
true in A or both false in A. This follows easily from the fact that there is an
automorphism on A taking x; to x; for 1 <i<n. To get this automorphism, one
needs only a bijection on X taking each x, to x;. But this can be done using a simple
combinatoric argument: Let ¥ = {x,,...,x,}, Z={x],..., x,}.For1<is<n,let
B(x;) = x;. Extend § to a permutation on the finite set YU Z by scanning the list
x},...,x,. If these elements have all been assigned a value, we are done.
Otherwise, let 1 <j < n be least such that x; has not been assigned a value. Then
there is a smallest i such that x, has not yet appeared as a value, so define B(x;) to
x,. B is clearly one-one on YU Z, and is hence a permutation. Now extend ftoa
permutation on X by setting f(x) =x for x ¢ YU Z.

As mentioned above, the 0-free Q-algebras are precisely the (endomorphism-)
rigid ones, and there is an extensive literature dealing with ways of constructing
large examples. (The papers [2], [10] use large rigid algebras to construct large
x-free algebras for any fixed x.) 1-free groups, always abelian (see below), have also
been studied [4], {5], [10] under the guise of “E-rings,” those unital (i.e., having a
1) rings all of whose additive endomorphisms arise via left multiplication. As
pointed out in [1], E-rings are precisely the endomorphism rings of 1-free groups;
the additive group of any E-ring is automatically 1-free. In [4] a machine is
developed for constructing arbitrarily large E-rings (hence 1-free groups), and in [2]
it is observed that one can then construct arbitrarily large x-free abelian groups, for
x >0, because the direct sum (=weak direct product) of x copies of any 1-free
group is x-free.

Our interest is this paper lies in the various ways that minimal freeness interacts
with notions of commutativity. As an introductory e¢xample, consider
¢ =¢(v,,...,0,), an equation over the type £, in which at most the distinct
variables v,, . .., v, occur. If 4 is an £2-algebra that has a (Marczewski) indepen-
dent set X with at least » elements, and if x,, . . ., x,, are distinct elements of X" such
that the substitution instance g[x,, . .., X,] holds in A, then & is universally true in
A. In particular, suppose € contains a binary operation and A has an independent
set of two elements that commute with one another. Then all pairs of elements of
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A commute. The number of elements in the independent set cannot generally be
taken to be less than # above: there are 1-free semigroups (see [1] for an example
due to M. Petrich [11]) that are not commutative. However, it turns out that 1-free
groups are always commutative 1. The simple argument uses the full force of the
notion of “pseudobasis,” and is peculiarly group-theoretic. (If 4 is 1-free with
pseudobasis {x}, then the inner automorphism ¢ —» x ~ !¢x fixes x, hence must be the
identity map. Thus xt = ¢x for all ¢ € 4. For any a € A, then, the automorphism
t — g~ 'ta also fixes x, and is hence the identity map. Thus ab = baforall a, b € A)

A brief summary of the contents of the sequel is as follows. In §1 we consider
the variety Z, of “zero algebras,” Q-algebras with a unique constant that behaves
as an idempotent with respect to all other operations in Q. We look at conditions
under which weak direct powers of x copies of a 1-free algebra in Z,, is x-free. In
§2 we introduce the variety OC, of “operationally commutative” algebras, those
zero algebras in which all operations of positive arity commute with one another in
a natural way (e.g., diagonal algebras, modules over a commutative ring, normal
bands). We characterize the 1-free members of OC,; in terms of the commutativity
of their endomorphism monoids. Nontrivial 1-free algebras in OC,; are “uniquely”
1-free, i.e., they have pseudobases only of cardinality 1. In §3 we apply the previous
material to abelian groups. In particular, we classify the x-free torsion groups as the
k-fold weak direct powers of finite cyclic groups. We also show that a nontrivial
countable k-free abelian group is uniquely x-free. In §4 we look at another general
situation, namely at the variety I0C,, of idempotent operationally commutative
{2-algebras (where there are no constants; every element is an idempotent). This
generalizes semilattices and, more generally, normal bands. If 4 € 10C,; is 2-free,
then its endomorphism monoid contains a left zero such that any two elements
commuting with this left zero must commute with each other.

1. Minimally free zero algebras

For any Q-algebras A, B, let Hom(A, B) be the set of £2-homomorphisms from
A to B, with End(4) = Hom(A, A), the Q-endomorphisms on A. End(A) has a
natural monoid structure under function composition, the monoid identity being
the identity map id, on 4. This monoid we cail End°(A). (Under special circum-
stances, End(A) may be given other algebraic structure; we modify notation as the
need arises.) The following is obvious.

1.1 PROPOSITION. Let A have a pseudobasis X. Then the mapping S [f]is
a bijection between the cartesian power AX and End(A) that takes the inclusion map
Jrom X into A to id,. 0O
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1.2 PROPOSITION. Let A have a nonempty pseudobasis X. If either |X |=2o0r
A has at least two distinguished constants, then End°(A) is not commutative.

Proof. Suppose first |X| = 2, and let f and g be two distinct constant maps from
X to X. Then [f]-[g] #[g] c [f] Now suppose X ={x}, and let 4 have two
distinguished constants a,, @,. Then [a,] o [ao] # [42] ° [4,] {where [d] is the unique
endomorphism taking x to a € 4). [l

In the remainder of this section, € is a type that contains exactly one constant,
denoted 0. (So when we refer to € 2, we intend for g to be of positive arity m.)
An Q-algebra A is a zero algebra if {0} is a subalgebra of A. {Equivalently: (i)
w0, ...,0) =0 for all p €2, i.e., 0 is an idempotent; or (ii) the constantly 0 map
on A is an endomorphism.) The variety of zero algebras of type @ is denoted Z,,.
For A € Z,;, End°(4) now has additional algebraic structure, namely the zero map
0. The obvious equation is satisfied here: vo0=00v =0. Call this algebra
Endg(A).

Let A € Z,, I a nonempty set. The direct power A’ is again a zero algebra. For
ecach je I, let g, : A - A’ be defined by

, a fi#j
a,-(a)(z)={0 e

Then each o; is an embedding. Let A;=0;(4). Then clearly
4,0 jeni 4> =10} for i e I We write 47 = {Jicr A, the wedge power of A
(from the analogous topological construction). 4<” is a partial zero algebra in the
obvious sense. (One other way of describing 4<” is to take the disjoint union of |/
copies of 4 and then identify all the zeros.) The weak direct product (see [B]) is then
the subalgebra A1 = (A<P> of 4. This zero algebra is clearly contained in the
subalgebra of 4! consisting of all /-tuples f that take the value 0 for all but finitely
many indices i.

The constructions above can easily be extended to I-indexed families of zero
algebras. (Just replace the word “power” with the word “product.”) We will not
need this greater generality here. In the setting of abelian groups (more generally,
the setting of R-modules over a commutative ring R), these constructions are quite
familiar.

We are interested in using the weak direct power to obtain x-free algebras from
1-free algebras, where x > 0. We start with a 1-free algebra 4 € Z, and examine
when 4! is |I|-free. Define A € Z to have the wedge extension property if for any
set 7 and any homomorphism ¢ : 4< — AU), there is an extension of ¢ to an
endomorphism on AUl
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1.3 THEOREM. Let A be a nontrival 1-free zero algebra with the wedge
extension property, I a set of cardinality k. Then A is k-free.

Proof. Let {x} be a pseudobasis for 4, B = A<®, C = A1, where || = x. For
each i e I, m; : C — A4 is the ith projection map. We set X = {o:(x) :i eI}. Since A4
is nontrivial, we know x # 0; hence the elements ¢,(x) are distinct for distinct .
Thus [X|=«. To show X is a pseudobasis for C, let /: X »C be given, say
7, (f(0;(x))) =a; € A. For G, j) e I, let @y € End(A) be unique such that x goes to
a,. Define ¢ : B—C by ¢(g,(@))(i) = ¢,(a). One can readily show that @ is a
homomorphism from B to C; so by the wedge extension property, ¢ extends to an
. endomorphism ¢ € End(C). ¢ clearly extends f, so we must show @ is unigue.
Indeed if ¥ € End(C) extends f, then for each (i, ;> e I, m; oW o0; =@, by the
uniqueness of ¢,;. Thus 7,04 - g; =m; © = 6;. This implies - g, = ¢ g, for all
Jj € I Since the g,’s are embeddings and B generates C, we infer that y = ¢. [

The following is an analogue of the main result in [2].

1.4 COROLLARY. Let K < Z,, be any class closed under subalgebras and direct
powers. If x >0 and A e K is any 1-free algebra with the wedge extension property,
then A embeds as a retract of a x-free algebra'in K. O

1.5 REMARK. Algebras with the wedge extension property include: (i) alge-
bras all of whose operations of positive arity are unary; (ii) R-modules over a
commutative ring R; (iii) commutative monoids. The main resuit of {4] states that
there are arbitrarily large 1-free abelian groups; hence there are arbitrarily large
x-free abelian groups for any fixed x > 0. (The same result obviously holds for
commutative monoids.) It would be interesting to find general conditions that
suffice for a commutative (unital) ring to admit large 1-free R-modules. (N.B. R
must not be a field, for then every 1-free R-module is module isomorphic to R.)

We turn our attention now to minimally free subalgebras of minimally free
algebras.

1.6 THEOREM. Let A € Z; have a nonempty pseudobasis X, and for each
YcXlet fr: X - A be defined by

x ifxe¥

f"(")={0 fx¢v

Consider the power set P(X) as a bounded meet-semilattice. Then the mapping
Y+ [fy] is an embedding into Endj(A).
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Proof. X = {fyl=idy; T—[fz]=0.

Let Y, Z € P(X). We claim that [ fy] o [fz] =[fr~z]- All we have to check is that
the two endomorphisms agree on members of X; this is entirely routine. Clearly if
Y # Z in P(X), then fy #f;. Thus [fy] #[/:]. [

1.7 REMARK. Suppose A € Z,; has a pseudobasis X with |X| > 1. Then 1.2
tells us End°(A4) is noncommutative. However, 1.6 telis us that End°(4) may have
quite substantial commutative submonoids consisting of idempotents of End°(A).

1.8 THEOREM. Let A € Z, have a nonempty pseudobasis X, and for each
YcX, let Ay =[fr1(A). Then:
(i) The map Y — A, is an embedding of P(X), as a bounded meet-semilattice,
into the bounded meet-semilattice of subalgebras of A.
(ii) For each Y < X, Y is a pseudobasis for Ay.
(iii) If ¥, Z< X and |Y|=|Z|, then Ay = A5.

Proof. (i) Ax =[fx(4) = 4; Ay =[fzl(A) ={0}. Let Y,ZeP(X). Then
Ayez €[ frazd @) = fy]1°[fzD(4), by 1.6. Thus Ay.,=[f,)4z). Clearly
Ayny S Ay Az; so suppose [fy1(@) =[/z)(b) is an element of Ay~ Az. Then, by
1.6, [ fy]@ =fx I fr]@) = [fyN[/2](B) € Ayz. Thus ¥ — Ay is a homomor-
phism of bounded meet-semilattices. If y € ¥, then y =[ fy (), so y € 4. Suppose
Y & Z, say y € Y\Z. Then A, n Az = {0} by (i); so y ¢ Az. Thus A, < A implies
Y < Z: hence Ay = Ay implies ¥ = Z. Therefore ¥+ Ay is an embedding.

(i) We already know ¥ € 4, by (i). To show Y is a pseudobasis for Ay, let
f:Y—=>Ay, be given. Let g: ¥ > A be any map such that f=[fr]log and let
h: X — A be defined by the rule

_fgx) ifxeY
”(")_{0 fxe¢y

We then set @=(fy]c[A)|4y. If x€¥, then o(x)=[f}#x)="
[fy () = [fy(g(x)) =1 (x). Now suppose ¥ € End(4y) also extends f. Then
o o [fy] and ¥ o [ fy] are endomorphisms on 4 that agree on X. They are thus
equal, hence ¢ =1

(iii) Suppose Y, Z < X have the same cardinality; let f: ¥ -Zandg: Z—> Y be
inverses of each other. Define

Forsamn o fxet
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similarly define §: X > 4 by

. _jgx) fxeZ
g(")'{o if x ¢ Z.

Set o =(/fz]- {f]) |A}'s v=0f]-[2D lAz- Then ¢ € Hom{Ay, 1_42) and
¥ € Hom(Az, Ay). Suppose xeY. Then (¥ -@)x)=y(fz [FIx) =

VL) () = ¥(f (=) = [fy J(ZK S (X)) =[S }(x) = x. Since ¥ is a pseudobasis
for Ay, we infer o ¢ =id,,. Similarly, ¢ oy = id,,. O

1.9 COROLLARY. Let 4 € Z; have a nonempty pseudobasis X. Then there
exists a 1-free B € Zg and an embedding of the wedge power BV into A. O

In §2 we give conditions under which the result in 1.8 can be considerably
improved (see 2.11).

2. Operational commutativity

It was shown in [1], using inspiration from the lore on E-rings (see [5]), that
End°(A) is a commutative monoid when A4 is a 1-free commutative monoid. Here
we provide a general setting in which this result is true.

For any Q-algebras A and B, Hom(A, B) is a subset of B“, but not generally a
subalgebra. Clearly necessary and sufficient conditions for Hom(A4, B) to be a
subalgebra are: (i) at most one element b, € B is a distinguished constant; (ii) &, is
an idempotent; and (iii) whenever.peQ, and ¢,,..., ¢, € Hom(4, B), then
ﬂ((pl LI (pm) € Ham(A, B)

In this section, £ is an operation type containing at most one constant symbol,
which we continue to denote 0 (when it exists). An Q-algebra A4 is operationally
commutative if; (i) A € Lg; and (ii) whenever u € Q,,, ve 2,, and (v;)isanm xn
array of variables, the following equation holds in A4.

BOV@ 1, SO V2, U2 )y e WO e s D))
= V(,ll(t’“, Tty vml)s )u(vlb ety vm2): Ty Ju(vlns M vmn))
The variety of operationally commutative 2-algebras is denoted OC,,.

2.1 PROPOSITION. Let A and B be Q-algebras, with B e QCg. Then
Hom(A, B) is an operationally commutative subalgebra of B*.



Vol. 29, 1992 Minimal freeness and commutativity 95

Proof. OCy S Zg, so the zero map from 4 to B is a homomorphism. Let
peR,, with g, ..., 0, € Hom(A, B). Then g(o,, ..., ¢,) € Hom(A, B) because:
Q) w(@1s . - » OmX0) = p(@1(0), . . ., Pm(0) = (0, ..., 0) =0; and (ii) whenever
v € Q,, then we have

D, - - s @u)¥@r, ..., @) = @ (M@, .., @) @@, -5 34)))
= u(@i(@)s - > 1@, - s V@ml@)s - - - s P()))
= (@i (@), - - s @@ - M1(@), - - -5 Om(@)))
=vU@1s -+ s P d@r)s o s (@15 - - - s P )(a))-

Thus Hom(A, B) is a subalgebra of B“. Since OC, is a variety and B € OC,, we
have B* e OCy, and hence Hom(A, B) € OCq. (Hom(4, B) satisfies all identities
true in B, in fact, and usually a lot more.) U

2.2 EXAMPLES. (i) Let @ = {u}, where u is m-ary, m > 0. A diagonal algebra
[8] is an Q-algebra satisfying the identity p(u(vy,..., i)y« oy MOpma1s o s
Opm)) = (011, V22, - « - s V). Such an algebra is clearly operationally commutative,

(i) Any monoid is operationally commutative if and only if it is commutative;
a groupoid (ie., any Q-algebra where @ consists of one binary operation ) is
operationally commutative if and only if it satisfies the “medial law”
(1 - v3) * (U3 ° vg) = (- v3) * (92 - v4). Semigroups satisfying the medial law are com-
monly referred to as bands (see [11]).

(iii) Every R-module over a commutative ring R is operationally commutative.

(iv) Every operationally commutative lattice {4, v, A) is trivial. [Every non-
trivial lattice contains a two-element chain {a, b} with, say, a<b. But
(@rb)vibra)=aand@vb)adva=>b]

(v) Every operationally commutative algebra {4, -, +,0), where {4, +,05
is a group, {4, is a groupoid, and - distributes over + both on the left and
on the right, must be additively commutative and have trivial multiplication.
[<A, -, +,0> must satisfy the identity (v, + ;) * (3 +04) = (v; - v3) + (3 v4). But
it must also satisfy (0, +0,) - (03 +0,) = () - 03) + (02 03) + (01 " 04) + (02" Va)-
Hence (v,  v3) + (v, - v,)} = 0. Substituting v, = 0, we get the equation v, - v; =0. Of
course the medial law holds for +; in the presence of 0 this yields commutativity
for +.]

.‘/

Let Q < Q' be two types (arbitrary for the moment), with 4 an Q'-algebra. The
reduct of A4 to the type Q is denoted 4 | 2. Now suppose Q is a type with at
most one constant 0, and let o and id be two new operations, the first binary




96 PAUL BANKSTON ALGEBRA UNIV,

and the second nullary. Let Q*=QuU{s, id}. The variety OCS consists of
those Q*-algebras A satisfying the following: (i) 4 |{s,id} is a monoid;
(ii) 4|2 €0OCy; and (iii) 4 satisfies the identities: ¢ 00 =0 op = 0, and for each
HeR,, veuw,...,v,)=pwov,...,von,) and uo, ... ,0) 00 =
#v o, ..., v, o). (In particular, left or right multiplication by a fixed element is
an £2-endomorphism.)

If 4 € OCg, then 2.1 allows us to regard End(A) as an operationally commuta-
tive Q-algebra when operations are computed pointwise. We may also view End(4)
as an Q*-algebra when - is interpreted as function composition and id is interpreted
as id,. Denote this endomorphism algebra by Endg(4), and set
Endy(A) = Endgy(A) | . The following is automatic.

2.3 PROPOSITION. Let A € OC,. Then End3y(4) € OCS,. O

2.4 REMARK. When 4 is an abelian group, End3(A) is the well known
endomorphism ring E(A4) of A. If A is an R-module over a commutative ring R,
then Endg(A) is an R-algebra (in the pre-Birkhoff sense).

When 4 € OC,, we can expand on 1.1.

2.5 PROPOSITION. Ler 4 € QC, have pseudobasis X. Then the mapping
S 1f1is an isomorphism between A* and End,(A).

Proof. The bracket mapping is a bijection by 1.1. The constantly zero map from
X to A extends uniquely to the zero endomorphism on A; if pef, and
Jis - fu € A¥ then both [u(f,, ..., f,)] and u(( i), . . ., [ £,.]) are endomorphisms
on 4 since A € OC,. For any x € X, both endomorphisms applied to x give the
value p(fi(x),...,fn(x)). They therefore agree at every element of A4; whence
S—[f]is an isomorphism. O

The following notion generalizes that of *E-ring,” coined by P. Schultz (see [5]).
Let A € OC;,. A has property E if every member of End(A | ) can be obtained via
left multiplication by a member of A. That is, the map from A to EndS(A | Q)
taking a € 4 to the endomorphism - a o ¢, generally an embedding of A into
End3(A {Q), is an isomorphism.

2.6 PROPOSITION. Suppose A € OCg, has property E. Then A [{o,id} is a
commulative monoid.

Proof. Fix a € A. The map r — 1 - a is an endomorphism on A, so there is some
beAsuch that bot=to-ga for all r € A; in particular for r =id. Thus b = a, and
A |{e,id} is commutative. O
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The next result, a straightforward generalization of Theorem 2.3 in [1], tells us
how to equate the 1-free algebras in OC,, and the algebras in OC, with property
E.

2.7 THEOREM. Let A € OCy,. The following are equivalent:
(i) A is 1-free
(i) A = Endy(A), and End(A) has property E.
(iii) There is an element x € A such that A = {¢(x) : ¢ € End(A)}, and End°(A)
is @ commutative monoid.

Proof. (i) = (ii). Assume A has pseudobasis {x}. Then 4 =~ Endp(A) via the
bracket mapping, by 2.5. Suppose ¢ is an endomorphism on Endy(A). Define
¢ 1 A > A by @(a) = D([a])(x), where {a] is the unique endomorphism on A taking
x to @ It is a routine matter to check that ¢ € End(A); in fact ¢ = [®(id)(x)]. To
verify that @) = ¢ < ¥ for any ¥ € End(A), let = [a], and apply both @(y) and
@ o to x. The result in each case is @(a).

(ii} = (iii). End°(4) is a commutative monoid by 2.6. Suppose 1 : Endg(A4) - A
is an isomorphism, and let x = n(id,). Fix a € A and define ¢ : Endg(A) - Endg(A)
by &) =1n""a)cy. Then @ is an endomorphism. Let ¢ =5 - @ ap~'. Then
@(x) = n(P(id,)) =n(n~'(a) »id,) = a.

(iii) = (i). Let x € 4 be such that 4 ={p(x) : ¢ eEnd(A)} To show {x} is a
pseudobasis for 4, we need to show that two distinct endomorphisms on A must
disagree at x. Suppose ¢,y € End(A4) agree at x, and let ae A be arbitrary,
say a =0(x) for some 0 € End(4). Then ¢(a)= @(8(x)) = Hp(x)) = 0(f(x)) =
Y(0(x)) = Y(a). Thus o =y. 0]

2.8 REMARK. We have established that whenever A4 is a 1-free algebra in
OC,, there is a naturally defined B € OC, satisfying property E, whose reduct to
Q is A. Conversely, given any B € OC, satisfying property E, the reduct of B to 2
is a 1-free algebra in OC,,. (Note that every B € OC} satisfying property E is itself
a O-free R*-algebra.)

The following is an obvious consequence of 1.2 and 2.7.

2.9 COROLLARY. Let A € OC, be nontrivial and 1-free. Then A is not k-free
for any x #1. 0O

An algebra that is «-free for exactly one cardinal « is called uniquely x-free (or
uniguely minimally free, if we wish to suppress x). Thus 2.9 above says that any
nontrivial 1-free algebra in OC, is uniquely 1-free. Other examples illustrating this
phenomenon appear in the following list.
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2.10 EXAMPLES. (i) If A4 is a vector space over a field F, then any pseudoba-
sis for A is also a vector space basis. [A pseudobasis is linearly independent, hence
is contained in a basis. But no nonempty pseudobasis can ever be properly
contained in another.] Thus every vector space A is uniquely dim, {A4)-free.

(ii) For each cardinal «, let R* be the topological (Tichonov) product of «
copies of the usual real line. Then the unital ring C(R*) of continuous real-valued
functions on R* is uniquely w-free [1].

(iii) Let 7 be a set of cardinality continuum, and let R now be the real field.
Then the direct power R’ is a x-free unital ring for all positive x such that 2~ < 2™
[1].

(iv) Every nontrivial finite minimally free algebra (of any type) is uniquely
minimally free by i.1.

A question we have spent a fair amount of time trying to answer is whether
every nontrivial minimally free abelian group is uniquely minimally free. We take
up this issue in the next section. Before doing so, we record the following helpful
codicil to 1.8,

2.11 THEOREM. Let Q be a type containing both a binary operation + and a
(unique) constant 0, and suppose A € OC,, has a nonempty pseudobasis X and satisfies
the identity v + 0 =0+ v =v. Then:

(i) For Y,ZcX, [fy] and [f,] commute with respect to +, and

[fY] + {fz] = [quZ] + [frnz]-
(i) For Y, Z € X disjoint, {Ay WAz = Ay, .

Proof. (i) Because A € OC,,, the sum of two endomorphisms is an endomor-
phism. The desired equalities hold, then, because both sides respectively agree at
each element of X,

(ii) Clearly {4yuA,)< 4, , in general by 1.8(i). By 1.8(ii), we know
[/w]l|Aw=id,, for any WcX. Thus, for any aeAdy,z, we have
a=[frozKa) =[fru2Na) +[fr~zNa), since YnZ=(F and [f,l(a) =0. This
now becomes [fy)(@) +[fz](a) by (i) above, and is an element of
{Ay Az O

3. Applications to Abelian groups
Our work thus far can be applied in the setting of abelian groups with some

satisfactory results. First we collect what we already know (or can easily deduce)
from §1 and §2.
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3.1 THEOREM. (i) Every 1-free group is abelian.

(ii) If A is a |-free group, then the weak direct power AM iy k-free.

(iii) If X is a nonempty pseudobasis for the abelian group A, then for each x € X
there is a 1-free subgroup A, with pseudobasis {x}. For each x,y € X, there is an
isomorphism between A, and A, taking x to y. The subgroup S=8y={Urex4:>
is isomorphic to the weak direct power ALY for any ye X; X is a pseudobasis for S,
and S is pure in A (i.e., nS = Snd for all integers n). If X is finite, then S = 4.

(iv) If A is a 1-free group with pseudobasis {x}, then its endomorphism ring E(A)
is an E-ring, hence a commutative unital ring. The map that takes a € A to the unique
endomorphism [a] taking x to a is an isomorphism from A onto the additive group of
E(A).

(v) If A has a pseudobasis with at least two elements, then E(A) is noncommuta-
tive. Thus every nontrivial 1-free group is uniquely 1-free.

Proof. (i) This is proved in [1], also in §0 above.

(ii) Use 1.3 and 1.5.

(iii) Let X # ¢J be a pseudobasis for the abelian group 4, and let 4, = Ay
as in 1.8, 2.11. Then {x} is a pseudobasis for 4, by 1.8(ii). 4, and 4, are
isomorphic via an isomorphism taking x to y by (the proof of) 1.8(iii). By
1.8(1), Al yering ) E4nAny=1{0}, so § is isomorphic to the
weak direct product of the groups A,. Since these groups are all isomorphic, we
have § = A for any y € X. X is then a pseudobasis for .§ by 1.3and 1.5. If X is
finite, S = A by 2.11(ii). To show § is pure in 4, suppose a € 4 and na € S for some
integer n, say na = k,a, + - - - + k;a; where, for 1 <i < Lk isanintegerand a; € 4.
Set ¢ =[f, ]+ +[f] Then b= @(a) € §; moreover nb = p(na) = k,¢(a,) +
< kyplay). Now [fi)@;) = a;, and [f)a;) = [f )1 a)) =0 if j#3, by L.6.
Thus @(na) = na.

(iv) This is proved in [1], also, more generally, in 2.7.

(v) Use 1.2. O

3.2 REMARK. In 3.1(iii) there is a model-theoretic strengthening of the purity
of S = S, in A that is also true. If X is a first order sentence of abelian group theory
that is positive (i.e., built up from equations of terms via the logical operations of
conjunction, disjunction, and universal and existential quantification) and contains
extra constants that name elements of S, and if X is true in 4, then Z is true in 5.
This is due to the following fact: for each ay, ..., a,, € S, there is a homomorphism
@:A—S that fixes each g, 1 i< m.

Our first applications take the form of classification theorems. In the sequel,
(resp. Z, Z(n), n = 1,2, ...} is the group or unital ring of rational numbers (resp.
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integers, integers modulo ). Our intention as to which structure, group-theoretic or
ring-theoretic, we have in mind will be made clear by context. (After all, Q is 1-free
as a group, but O-free as a unital ring.)

The following classification theorem, due to P. Schultz (see [5]), was originally
phrased in terms of E-rings; we make the obvious translation to the context of
groups.

3.3 THEOREM (P. Schultz). The 1-free groups that are nonreduced (resp.
torsion, finitely generated) are precisely those abelian groups of the Jorm Q x Z(n)
(resp. Z(n), Z or Z(n)). O

We quickly obtain the following generalization.

3.4 THEOREM. Let 1 <m <W,. Then the m-free abelian groups that are
nonreduced (resp. torsion, finitely generated) are precisely those abelian groups of the
Jorm (Q x Z@m)™ (resp. Z(m)™, Z™ or Z(m)™).

Proof. Suppose A4 is an m-free abelian group with pseudobasis X of cardinality
m, and assume A4 is nonreduced. In the notation of 3.1(iii), set B = A, for any fixed
X € X we like. Then B™ = §, = 4. Now B™ is nonreduced, so there is a nontrivial
divisible subgroup D = B™. Some projection of D onto B is nontrivial and divisible,
hence B is nonreduced. By 3.3, B is of the form @ x Z(n). Of course every group of
this form is m-free by 3.1(ii). The two other cases are proved similarly: when A is
torsion, B is automatically torsion, so of the form Z(n); when A is finitely
generated, so also is B, by the structure theorem for finitely generated abelian
groups. [

We now set out to improve upon 3.4.

3.5 THEOREM. No finitely generated abelian group is x-free JSor infinite x.

Proof. Let A be finitely generated, with X = 4\{0} an infinite set. It is enough
to show X is not Marczewski independent. Marczewski independence implies usual
independence in the context of abelian groups; i.e., if mx+: - +mx, =0 then
mx;=:--=mx, =0. (The two notions of independence are equivalent in the
context of torsion-free groups.) Since 4 is finitely generated, the structure theorem
allows us to write 4 = Z’ x B, where / is a positive integer and B is finite. Because
X is infinite, there is an infinite subset of X, all of whose second codrdinates are
equal. Write this set as ¥ x {b} = {<y, b), {15, b),...}.

Then we have the inclusion Y <Z'c @' Since Y is infinite, ¥ is linearly
dependent as a subset of the Q-vector space @', so we have a linear equation
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g+ gy =0, where g, ..., g e Q and, say, g, #0. Let n be a positive
integer such that ng,...,ng,€Z and nb =0. Then ng,{y,b)+ "+
ng e, by =<0,0> and ng; #0. The order of {y,b) is infinite, so
ng,{y, b> #<0,0). Thus Y x {b} is not independent, hence X is not a pseudo-
basis. [

-3.6 COROLLARY. Every finitely generated minimally free abelian group is of
the form Z™ or Z(n)™ for some finite m. O

As a further improvement of 3.4, we propose a complete classification of the
minimally free torsion abelian groups.

3.7 LEMMA (L. Kulikov, Theorem 27.5 in [6]). If A is an abelian group and S
is a pure subgroup of A that is bounded (i.e., nS = {0} for some positive integer n),
then S is a direct summand of A. 0O

38 THEOREM. Let x be any cardinal number. Then the x-free torsion abelian
groups are precisely those abelian groups of the form Z(m)™.

Proof. Every weak direct power Z(m)™ is a k-free torsion abelian group by
3.1(ii). Let A be a torsion abelian group with pseudobasis X of cardinality x. In the
notation of 3.1(iii), set B = A, for any fixed x € X. Then B¥~ 8 =g, Since Bis
a 1-free torsion group, there is some positive integer n such that B = Z(n), by 3.3.
Thus nS = {0}. By 3.1(iii), S is pure in 4. Thus, by 3.7, there is a subgroup C of
A such that SAC ={0} and (SUC)>=A. But X 8. Let y € End(A) take each
element of x to 0 and each element of C to itself. (This is possible since 4 = § X C)
Then, since X is a pseudobasis for A, y is the zero map. Consequently, C = {0} and
S=4. O

We next take up the issue of unique minimal freeness for abelian groups. The
question of whether every nontrivial k-free abelian group {or even every such group
of the form A™, where A is 1-free) is uniquely x-free is still open. We show below
that every nontrivial countable minimally free abelian group is uniquely minimally
frec.

The approach we take is via the theory of modules. If 4 is any abelian group
and X any set, we may view A* as an E(4)-module, where we define ¢ - Y exx
to be ¥ . x ¢(a,). If A is 1-free, then A is isomorphic to the additive group of E(A4),
and therefore A1 is the free E(A4)-module on |X| generators. What is more, E(4)
is a commutative unital ring, as we showed in 2.7.
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3.9 LEMMA (Corollary 2.12, p. 186, in [9). Let R be a commutative unital
ring, with M a free R-module. Then any two free bases for M have the same
cardinality, O

3.10 REMARK. By 3.8, every minimally free torsion abelian group A is a free
Z(n)-module, where n is the maximum order of any element of A. [If Xc Aisa
pseudobasis, then all the elements of X have the same otder, and the order of any
element of A4 is a divisor of the order of an element of X]

3.11 THEOREM. Suppose A and B are 1-free groups, with A nontrivial, and let
T and J be sets, with I nonempty. Then A= BY) if and only if A = B and HEIY]

Proof. Letn : A1 BYI be an isomorphism, let {x} and {y} be pseudobases for
A and B respectively, with A # {0} and 7 # 5. We denote by 6;, 0, 7;, 7; the
respective canonical injections and projections. Then [’ = {o:(x):iel},
J'={6,(y):jeJ} are pseudobases for A!?] and BW! respectively, |I']=|7|,
[J|=|J). Fix iel jeJ. Then there is a homomorphism ¢ : AU~ B! taking
0;(x) to 6,(y), and a homomorphism y : B¥1— 4! taking o,;(¥) to o;(x). [This is
because n(Z) is a pseudobasis for BV, So let ¢ be # followed by any endomor-
phism on BY! taking y(g,(x)) to o;(»).]

Now let 8 =m;cpcg,:A>Band t=m 0y °0;.:8—+A4. Then &x) =y and
7(y) =x. Since A and B are 1-free, this implies # and 7 are mutually inverse
isomorphisms.

Thus we are reduced to the question of whether 4¥1= A4U) implies [7] = |7,
where A is nontrivial 1-free and J # @. Suppose « : A1 41/ jg any homomor-
phism. As mentioned in the paragraph before 3.9, A" is a free E(A4)-module, where
scalar multiplication is codrdinatewise application. We claim « is a module homo-
morphism. Indeed, let a € 4, p € E(A). 0;(a) is a typical additive generator of A!/1
so we need only check that a(p - 6,(a)) = p - a(,(a)). This is true just in case it is
true under each projection. So let j € J; then n{alp - 6,(a))) = 7;(x(o:(p(a)))). Now
moaco, € E(4), a commutative ring by 2.7. Thus = (a(o, (p(@))) =
p(r;((s,(a)))) = m;(p - o(o,(a))). Consequently, if 411 and 4! are isomorphic as
abelian groups, they are also isomorphic as £(4)-modules. By 3.9, =y o

3.12 COROLLARY. A nontrivial abelian group cannot be both m-free and
n-free for different finite m and n.

Proof. Use 3.1(iit) and 3.11. 0O

3.13 REMARK. In a private communication, R. Schutt announced the result
3.12 without proof.
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3.14 COROLLARY. Assume A is a nontrivial minimally free abelian group that
is countable. Then A is uniquely minimally free.

Proof. If A is finite, the result is immediate by 1.1. If 4 is countably infinite, 4
cannot have both finite and infinite pseudobases, again by 1.1. 4 cannot have two
pseudobases of differing finite cardinalities, by 3.12. [

The next result is only conditional, relying on the Generalized Continuum
Hypothesis (G.C.H.).

3.15 COROLLARY (G.C.H.). Let A be a nontrivial countable 1-free abelian
group, x > 0. Then A™ is uniquely x-free.

Proof. If x is finite, then A% is uniquely x-free by 3.1(ii) and 3.14. If x is
infinite, then, by 1.1, |End(4)| = |[A™|* =x* =2~ If A <« and 4 has a pseudobasis
of cardinality 4, 4 must be infinite as well. But then |End(4)| = 2*. By the G.C.H,,
2% « 2%, a contradiction. [

In special cases, it is unnecessary to resort to the G.C.H. in 3.15.

3.16 THEOREM. (i) Every pseudobasis of Q™, x >0, has cardinality x; no
pseudobasis is a basis.

(ii) Every pseudobasis for (Q x Z(n))™, 0 < x < ¥, has cardinality x; no pseu-
dobasis is a basis.

(iii) Every pseudobasis for 7 or for Z(n)™, k > 0, has cardinality x and is also
a basis.

Proof. (i) If X < Q™ is a pseudobasis, then X is a Q-vector space basis by
2.10(i). Thus {X| = x. Because of unique representation of elements of Q! in terms
of linear combinations of elements of X, it is impossible to span Q" using only
integer coefficients.

(i) Every pseudobasis for (@ x Z(n)™, 0 <k < X,, has cardinality x by 3.14.
No finite pscudobasis of (@ x Z(n))*! is a generating set since the group is not
finitely generated. Suppose k =N,, and let X < Q™ x Z(n)™ be a pseudobasis.
Then |X| = x, and nX = Q™ x {0} is a vector space basis for @* x {0}. By arguing
as in the proof of (i) above, we infer that there is an element a € QI x {0} that
cannot be written as a linear combination of members of nX using only integer
coefficients. Thus a/n € @™ x {0} cannot be written as a linear combination of
members of X using only integer coefficients.

(iii) Let X = Z™ = Q™ be a pseudobasis for Z. X is independent as a subset
of Z™, hence linearly independent as a subset of the Q-vector space Q™. Let ¥ be
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a vector space basis for Q™ containing X. For each y € ¥, let n(y) be the least
positive integer k such that ky € Z". (For y € X, n(y) = 1.) Let Y’ ={n(y)y : ye Y}.
Then |Y'|=|Y}=x, X € ¥’, and ¥’ = ZW. Moreover Y” is linearly independent in
Q™. Thus Y is a basis for @™, hence a free basis for ZI*). Since both X and ¥’ are
pseudobases for 7™M and X € ¥, we have X = Y".

Now consider Z(n)™. There is a pseudobasis of cardinality x that is a basis,
hence every pseudobasis of cardinality x must be a basis. [Just move one onto the
other via an automorphism.] If > 0 is countable, our assertion is proved by 3.14.
Assume, by way of transfinite induction, that for each positive integer / and each
positive cardinal i <k, where x is infinite, that Z()™ is uniquely Ai-free. If
X<cZm™ is a pseudobasis, then |[X|<x. If |X|=A<wx then, by 338,
Z(m)* = Z(1)". By the inductive hypothesis, if 1 < x, Z(/)¥ is uniquely A-free. But
it has a pseudobasis of cardinality «, a contradiction. Thus A = x. (Alternatively, by
3ll,n=]land k = 1) O

3.17 REMARK. We do not know whether every x-free abelian group that is
not reduced is of the form (Q x Z(n))™], for x = ¥,. If the (rather dubious)
hypothesis that every x-free abelian group is of the form A™ for some 1-free group
A were true, then we could conclude from 3.11 that every nontrivial minimally free
abelian group is uniquely minimally free.

3.18 COROLLARY. (i) Let 1 <m <N,. Then every m-free abelian group that
is not reduced is uniguely m-free.

(i) Every nontrivial minimally free torsion or finitely generated abelian group is
uniguely minimally free.

Proof. (i) Use 3.4 and 3.16(i).
(ii) Use 3.8 and 3.16(iii) for torsion; 1.1 and 3.6 for finitely generated. O

3.19 REMARK. There are many open problems in the area of minimally free
abelian groups. Some we have already alluded to, but the reader will no doubt
think of several other interesting ones. We did not pay any attention to the
torsion-free divisible case, as that is already subsumed by the trivial situation in
vector space theory.

4. Minimally free idempotent algebras

In this section we take Q to be a type with no constants. An Q-algebra A is an
idempotent algebra if every element of A is an idempotent. (Equivalently: (i) every
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singleton subset is a subalgebra; or (ii) every constant self-map is an endomor-
phism.) The variety of idempotent Q-algebras is denoted 1.

4,1 PROPOSITION. If A €, is O-free or 1-free, then A is trivial.

Proof. If A is O-free then A is trivial because the constant maps are endomor-
phisms. If 4 is 1-free with pseudobasis {x}, then both id, and the constantly x map
are endomorphisms on A that agree on x. They are thus equal. [l

Recall that a left zero of a semigroup S is any clement z e Ssuch that z - s =z
for all se S.

4.2 PROPOSITION. Let A € 1. Then the left zeros of End°(A) are the constant
maps on A.

Proof. Clearly every constant endomorphism is a left zero of End°(A4). Suppose
@ € End°(A) is nonconstant, say ¢(a,) =5b,, ¢(a,) =b,, and b, #b,. Let ¥ be
constantly a,. Then (@ o ¥)a,) = b, # b, = ¢(a,); hence ¢ is not a left zero of
End>(4). O

Let A cl,. Define y: 4 - End(A) to be the map that takes ae A4 to the
constantly a endomorphism.

4.3 PROPOSITION. y is an 2-embedding of A into A*; moreover y(A) is a
subsemigroup of End°(A).

Proof. Trivial. O

For idempotent Q-algebras, the notion of “n-free” for finite # may be viewed as
first order, from the standpoint of model theory.

4.4 PROPOSITION. For each finite cardinal n, there is a first order sentence o,
over the language of monoids such that if A €1, then A is n-free if and only if o, is
true in End®(A).

Proof. If n = 0, the assertion is always true, regardless of type: just express the
statement that there is one element. For n > 0, use 4.2 and the facts that the set of
left zeros of a semigroup is first order definable and for a e 4, ¢ € End(4),

Ye(@) =@ o (ya). U

The class of operationally commutative idempotent algebras is denoted
I0C, =1, OC,. Semilattices (i.e., commutative idempotent semigroups), and,
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more generally, normal bands (i.e., idempotent semigroups satisfying the medial
law) are well known special cases of this kind of algebra (see, e.g., [11]).

Let 4elOC; have pseudobasis X. For each YcX, let &(Y)=
{@ € End(A) : ¢(x) = x for all x e X\ ¥}.

4.5 THEOREM. Suppose A € 10C,, is nontrivial with pseudobasis X. Let P(X)
be the complete bounded meet-semilattice of subsets of X. Then:
(i) @ is a complete embedding of P(X) into the complete bounded meet-
semilattice of subalgebras of End}(A).
(ii) For each Y < X, let py : AY — A¥ be the natural embedding, i.e.,

_[fm ifxey
py(f)(x)-{x fx e X\Y.

Then [-]y =[] * py is an isomorphism between A” and ®(Y) | Q.

(i) For Y,Z <X, if |Y\Z|=|Z\Y|, then there is an involutionary automor-
phism on End}(A) taking ®(Y) onto $(Z).

(iv) If |X| =2, then, for Y < X, ®(Y) is a commutative submonoid if and only if

Y| < L
(V) If |X|> 2, then, for Y € X, &(Y) is a commutative submonoid if and only if
Y=0. )

Proof. (i) The verifications are routine. First check that {id, } is a subalgebra of
End(4), so the subalgebra lattice is indeed bounded. For each ¥ < X, &(Y) is
closed under function composition; if ue®, and o¢,,...,@, e ®Y), It
xeX\Y. Then we),,...,¢.Xx)=u(x,...,x)=x since A4elQOC,. Thus
Mo, . .., 0,) e ®(Y), so &(Y) is a subalgebra of Endj(A4). Next we have the
equalities $(X) = End(A), B(&) = {id, }, and for any family (¥, :i e I) of subsets
of X, (Vs Y:) =()ies ¥(¥,). Finally, if ¥, Z = X are distinct, say y € ¥\Z, let
@ € End(4) move y and fix all xeX\Y (since A is nontrivial). Then
¢ € O(Y)\P(Z); whence @ is one-one.

(ii) [-]y =[] o pyis an embedding of A7Y into End,(A) by 2.5; its image is #(Y).

(iii) Let hy: ¥\Z —» Z\Y be a bijection, and define % : X - X as follows:

ho(x) if xe Y\Z
hi'(x) ifxeZ\Y
x otherwise.

h(x) =

Then [A] is an involutionary automorphism on 4. For any ¢ e End(4), define
n(@) =[#) > @ o [A}. Then y is easily seen to be an involutionary automorphism on
End;, (A4), taking &(Y) onto @{Z).
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(iv) Foreach Y € X, let {4, Y) be the (2UY)-algebra in which the elements of
Y are regarded as distinguished constants. Then it is easy to see that ¥ is always a
pseudobasis for {4, X\ ¥), and that the submonoid #(Y) | {-, id} is isomorphic to
End°({A, X\Y)). Suppose |X|=2, Y < X. If Y = & then &(Y) = {id, }. If |¥|=1,
then &(Y) is a commutative submonoid by 2.7. If ¥ = X, then &(Y) is noncommu-
tative because of 1.2,

(v) Suppose |X|>2.If Y # (&, then &(Y) is noncommutative, again by 1.2. (If
|¥| > 1, then there are too many pseudobasis elements; if |¥| = 1, then there are too
many distinguished constants.) [

If A € I0C,, is 2-free, there is a first order statement that holds for End°(4), but
which appears to fail for End°(B) when B is k-free, ¥ > 2. Define a semigroup S to
be somewhere commutative if there is a left zero z such that: (i) every left zero z’ € §
is a multiple s - z for some s € S; and (ii) whenever s, # € § both commute with z,
thens-t=1¢-s

4.6 PROPOSITION. Let A c10C, be 2-free. Then End°(A4) is somewhere
commutative.

Proof. This is immediate from 4.2, (the proof of) 4.4, and 4.5(iv). [

We believe that every 2-free 4 € IOC,, is uniquely 2-free, but have so far been
unable to prove it. Also we are singularly lacking in interesting examples of
minimally free operationally commutative idempotent algebras (i.e., that are not
free). We leave the topic with the following small result.

4.7 PROPOSITION. Suppose A € 10C, has two pseudobases X and U, with
|X|=2#|U|. Then X nU = .

Proof. By 4.1, |U|>2. If x e Xn U, then because |X| =2, we know that any
two endomorphisms fixing x must commute, by 4.5(iv). But since |U\{x}| = 2, we
know this cannot be true by 4.5(v). O

Afterword. After this paper was prepared, I discovered in my notes of a
telephone conversation I held with R. Schutt in 1987, that Schutt had announced to
me the results 3.1(iii) (i.e., the statement that every m-free abelian group is a weak
direct power of a 1-free group, 1 < m < N,) as well as 3.8. I do not know to what
extent my proofs resemble his.

On a different topic, R. Villemaire has recently communicated to me an example
of an w-free abelian group that is not a weak direct power of any 1-free group, thus
laying to rest the “rather dubious” hypothesis in Remark 3.17. The example is
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simple, given the machinery of [6], and Villemaire has kindly consented to let it be
sketched here.

For a fixed prime number p, let J, be the additive group of p-adic integers. J,
is easily shown to be I-free, so by 3.1(ii), JI*! is w-free with pseudobasis X
consisting of all w-sequences that are 0 almost everywhere and 1 everywhere else.
Let 4 now be the p-adic completion of J&.. Then every function from X into A
extends uniquely to a homomorphism from J®! to A. Since homomorphic images
of Cauchy sequences are again Cauchy sequences, we have that every homomor-
phism from J©! to 4 extends uniquely to an endomorphism on 4. Thus X is a
pseudobasis for A, making A4 w-free.

Now suppose 4 = B™ for some 1-free group B. By Corollary 39.10 in [6], B is
a bounded group. But then A4 is bounded, a contradiction.
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