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Abstract

A universal algebra 4 is minimally free if there is a subset X of A such
that every function from X into A extends uniquely to an endomorphism on
A. If x is a cardinal number, 4 is x-free if the set X above can be chosen
to have cardinality x. (0-free is the same as (endomorphism-) rigid.} For a
topological space X, we let C(X') be the unital ring of continuous real-valued
functions on X. We are interested in the problem of classifying the x-free
rings of the form C(X). In particular we prove that R = C({point}) is the
only 0-free such ring; and for 1 < & < w,C(R") and R® = C{({discrete space
of cardinality=continuum}) are the only x-free such rings.

Subject Classification: 08A35, 54A10 54C40

0. Introduction

This article partially answers a question posed in [1], whether one can clas-
sify (effectively list) all x-free commutative unital rings C(X') of continuous
real-valued functions (Question 3.14 of [1]). A fair amount of progress was
made on the question by the first author at the time [3] was written, but
still a satisfactory classifaction theorem was lacking. Now, at least, we can
classify the x-free rings C(X) for countable « : R = C({point}) is the only
0-free such ring; and for 1 < & < w,C(R") and R° = C({discrete space of
cardinality=continuum}) are the only s-free such rings.

We follow the notation and terminology of [1]. Let 4 be a universal algebra
of arbitrary type. A is minimally free if there is a subset X of 4, called a
pseudobasis, such that every mapping of X into A extends uniquely to an
endomorphism on A. If « is a cardinal number, A is x-free if a pseudobasis of
cardinality « can be found. (Our terminology “x-free” inadvertently clashes
with that of Eklof [8], et al. Unfortunately, we were unaware of their usage
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when we wrote (1], and offer our apologies.) In [1], [2] and the K#iz-Pultr
paper [10], there are theorems that describe how badly a pseudobasis can
fail to generate the algebra. Indeed, there are varieties of algebras (e.g., the
commutative unital rings) that have arbitrarily large x-free algebras for any
fixed & (see [2], [10] for details).

Any pseudobasis is “Marczewski independent” (see Glazek [8]): every
mapping from X into A extends (uniquely) to a homomorphism from the
subalgebra generated by X. Furthermore, if the pseudobasis actually gener-
ates A, then X is a free basis for A relative to the smallest variety containing
A. (Hall [9] introduces the notion “relatively free group” in this way. See
also Neumann’s book {11].)

Here we concentrate on minimally free rings. In our usage, “ring” always
means “commutative unital ring”, and homomorphisms preserve the unity
element. We let RC'F be the class of rings C(X) of continuous real-valued
functions where X is a topological space. It is well known [7) that RCF =
{C(X) : X is realcompact and Tichonov }. Moreover, by the duality theorem
of Gel'fand- Kolmogorov, C(-) is a contravariant equivalence of categories; so
two realcompact Tichonov spaces X and V are homeomorphic if and only if
the rings C(.X) and C()) are isomorphic.

As mentioned above, there are arbitrarily large x-free rings for every «.
However, RCF contains very few of them [1], and no x-free ring in RCF
is generated by any of its pseudobases (as we prove in 0.3 below). In brief,
let R be the set of real numbers; and for each cardinal K, let U* be the
#-fold Tichonov product of the usual topology U on R. We are interested
in enrichments of this topology on R*, If X = (X, T)and X' = (X', T")
are any topological spaces, with f : X — X' continuous, define f to be
a coreflection map if for each continuous g : ¥ — X' there is a unique
continuous h : X — X such that ¢ = f o h. Coreflection maps are discussed
more fully in [1]; easy to verify is the following.

0.1 PROPOSITION. (Proposition 3.3 of {1]) Coreflection maps with nonempty
domains are continuous bijections.

Clearly every map with empty domain is coreflective; however if f :
(X,T) — (X', T') is a coreflection map with X nonempty, we may view
X and X' as the same set with T an enrichment of T'(T D T* ) satisfying
the condition that any {7, 7’)-continuous map (i.e., a map that pulls 7"'-
open sets back to T-open sets) is also a (7', T)-continuous map. Under these
circumstances we call T a coreflective enrichment of T'. Examples of this
phenomenon arise most naturally in connection with topological coreflec-
tive functors (e.g., discretization, k-modification, Gs-modification, to name
a few).

The only 4 € RCF that is simultaneously 0-free (i.e., (endomorphism-)
rigid) and x-free for some & > 0 is clearly the degenerate ring C'() (in which
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case & = 1). This said, we henceforth consider only the nondegenerate case.

0.2 THEOREM. (Theorem 3.10 of {1]) A € RCF is x-free if and only if there
is a coreflective enrichment T of U™ such that (R*,T) is a realcompact
Tichonov space and A = C({(R",T)). A pseudobasis for C({R",T)) is the
set I of projection maps from R* to R.

For any set X, let D(X) be the discrete space with point set .X.

0.3 COROLLARY.
(i) The only 0-free ring in RCF is R = C({point}).

(i) If & > 0, the cardinality of any x-free ring in RCF lies between c - x“
and exp?(w - k).

(iii) If & > 0,C({R*,U"}) is k-free; and if in addition k < the first mea-
surable cardinal, then C(D(R")) is x-free as well.

(iv) No minimally free ring in RCF is generated by any pseudobasis.
(Thus no member of RCF is relatively free.)

PRrOOF: Clauses (i)-(iii) are treated in [1]. As for clause (iv), assume 4 €
RCF is minimally free (and nondegenerate), and let X C A be a pseudobasis
of cardinality . Let 7 be a topology on R* prescribed by 0.2, with f: 4 —
C({R*,T)) an isomorphism. The set II of projection maps is a pseudobasis
for C({R",T)), of cardinality x; and, given a bijection g between f[X] and
Il, there is a unique automorphism on C({R*,T)) extending g. Thus there
is an isomorphism from A to C({R*,T)) taking X to II. Clearly II does not
generate C((R*,T)); consequently X does not generate A. §

The classification theorem, which we prove in the next section, is the
following.

0.4 THEOREM. Let 1 < k € w. Then the only x-free rings in RCF are
C((R*,U*)) and C(D(R)).

1. Proof of the Classification Theorem

In view of 0.2, all we need show is that, for 1 < & < w, the x-fold Tichonov
power U* of the usual topology i on R has no proper nondiscrete coreflective
enrichments that are realcompact and Tichonov. As it turns out, we can do
much better than this.

The notion “coreflective enrichment™ has two successive generalizations,
“(_enrichment” and “H-enrichment”, which are defined as follows: Let T
and T’ be two topologies on a set X with T 2 7'.7T is a C-enrichment
(resp. H-enrichment) of T' if whenever f: X — X is a (T',T’}-continuous
map (resp. a (7',7'}-homeomorphism), f is also a (T, T)-continuous map
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(resp. a (T, T )-homeomorphism). The study of H-enrichments is interesting
in itself, as part of the theory of bltopologlcal spaces, and is taken up in
another paper [4]. What we need in order to finish the proof of 0. 4 is the
following topological resuit.

1.1 THEOREM. Let X be a normed linear space over the real field. Then
any proper C-enrichment of the norm-topology is discrete.

PROOF: Let X = (X, +,0,] - ||} be a normed linear space, and denote the
norm-topology by £. Let T be any proper C-enrichment of £. Because
(X, &) is point-homogeneous and 7 is an H-enrichment of £, (X,T) is also
point-homogeneous. Thus it suffices to prove that 0 is a T-isolated point.
Again using homogeneity and the fact that T # £, there exists a sequence
(Za) = {zo,21,---) of distinct points of X such that (z,) £-converges to
0 and the set § = {:c,, :n < w}lis T-closed in X. Let Uy = X; and,
forn > 0, let Un = {z : ||z] < 1/n} be the open 1 _ball about 0. For
n=1,2, . let An be the “annulus” U,_;\U,. Then X = (Usz; 4n) U {0}.
For ea.ch z # 0, let R, be the ray {tz : ¢t > 0}. For n = 1, 2 , define
E : Ap — (0,1),m, : A, — (0,1], and, for n > 2, M, : A—>(12]tobe

ta(z) = 1/{(n + Dllel) ma(z) = 1/(nllz]}), and Ma(z) = 1/((n - 1)]z]).
Then R:NAn = {tz : mu(z) < t < M,(z)},n > 2, a.ncl for all n,R, N
Aniy = {tz: £,(z) <t < my(z)}. The functions ¢,,m, and M, are clearly
continuous where A, has the inherited norm-topology.

Define f: X - X and g: X — X as follows:

1-— mg.‘(z) M}.‘(z) 1

Maa(5)-man(#) o7 T Whn(e)ompa(z) Snt1s 2 € Agp
f(z) = T, ifz € Ay,
0, ifz=0
(Ml(zr)nn(_%mﬂ( )+ ﬁ%ﬁj n(:c)) r, ifzecd,,n>2
9(z) = § ¢,(2)e, if z € 4,
0, ifz=0

Now f and g are £-continuous, hence T-continuous. Since f~1[§] =
Ui, Ag,._l, we know {J7 |, A2,y is T-closed. But g~! Unzi 420-1] =
Unz197 ! [Azaa] = U 1 420, so oo, Azn is also T closed. Therefore
Un>, 4n is T-closed, hence {0} is T-open. 1

1.2 CoROLLARY. Let 1 < x < w. Then the onlv proper C-enrichment of U*
is discrete,

PROOF: For finite k, we can apply 1.1 directly: the usual euclidean norm
gives rise to the euclidean topology. In the infinite case, apply 1.1 to the
Banach space £2 of square-summable real sequences, with the obvious norm.
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Then nse the celebrated result of Anderson [12] that €2 and (R“,U*) are
homeomorphic. (The topological vector space {R”,U*} is well known not to
be normable.) 8

1.3 REMARK. 1.1 actually holds for any metrizable locally convex topolog-
ical vector space. The proof is similar to the above, but less concrete (see
{4]). Thus Anderson’s theorem can be avoided in 1.2.

2. Rings in RCF that are x-free for uncountable x.

When we pass from countable x to uncountable x, the problem of classify-
ing the x-free rings in RC F seems to become impossibly difficult. By 0.3(iii)
there always exists a x-free ring in RCF, namely C((R"*,U")). Moreover,
this ring has the attractive property of being uniquely x-free; i.e., 1t is not
A-free for any A # s {Theorem 3.18 of {1]). (Note that C(D(R)) is x-free
for all 1 € k < w.) Recall that « is Ulam-measurable if there exists a count-
ably complete nonprincipal ultrafilter on a set of cardinality . Let p be
the smallest Ulam-measurable cardinal (should one exist). Then & is Ulam-
measurable if and only if & > p. When & < g we also know from 0.3 (iii)
that C(D(R")) is x-free. (Whether it is uniquely x-free depends on obvi-
ous cardinality issues.) However, for & > g, C(D(R*)) is not minimally free
(Theorem 3.12 in [1]).

By work of Comfort-Retta [5] and Williams {13], one can always find at
least three x-free rings in RC F for uncountable x. In order to state the result
of theirs that we need, we adopt the following notation. For any topology 7
on a set X, and any A > wy, let (T), be the topology basically generated by
intersections of fewer than A open sets from T. Clearly (T}, is a coreflective
enrichment of 7.

2.1 THEOREM. (i} (Comfort-Retta) Let T be a realcompact Tichonov topol-
ogy on a set X, with T' any Tichonov topology satisfying T T C (T,
Then T' is also realcompact.

(ii) (Comfort-Retta) Let T be a realcompact Tichonov topology. Then
(T}, is also realcompact Tichonov.

(iii) (Williams) Let T be a realcompact Tichonov topology, a < u a
cardinal, and T' any Tichonov topology satisfying T C T' C (T )a+ and
T' = (T')ef(a) (where at is the cardinal successor of a and cf(a) is the
cofinality of a). Then T' is also realcompact.

With the aid of 2.1, we immediately have the following.

2.2 THEOREM. (Theorem 3.15/of [1]) Let & be a cardinal, and o any cardinal
< p. Then C({R*,{U")a)) is k-free.

#
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2.3 COROLLARY. Let & be uncountable. Then C((R",U")),
C((R",(U*)w,)), and C({R"*,U"),)) are three (isomorphically) distinct x-
free rings in RCF. :

Regarding the question of which x-free rings in RCF are uniquely -free,
other than C({R",U"™)), we have the following result.

2.4 THEOREM. (i} Assume « is a regular cardinal that is not Ulam-meas-
urable, and assume further that either: (a) k* = exp(k); or (b) x =
sup{exp(a) : @ < x}. Then C((R*,(U*),)) is uniquely x-free.

(ii) C((R*,(U™),)) is uniquely y-free.

PROOF: (i) Note that & = w is the only cardinal satisfying the hypotheses
absolutely; that case being covered already. (The case x = wj relies on either
wz = exp(wy) or w; = ¢ = exp(w) holding.) So assume x is uncountable
and let ¥ = (R",(4*).). In Williams’ theorem 2.1(iii), set T = 4* and
T' = (U")x. Then we may conclude that (U*), is a realcompact Tichonov
coreflective enrichment of &*; whence C(X) is x-free. Suppose C(X) is A-
free, and let f : ¥ — (R} U*) be a coreflective map. f is a continuous
bijection by 0.1, and the weight w({R*,4*)) of (R*,4*) is A - w. Since « is
uncountable regular, (4~). is nondiscrete; and the intersection of A - w open
sets in X' cannot be a singleton if A < k. Thus A > . Suppose (a) holds.
Then x* = exp(x) = exp(A) > X, so A = x. Now suppose (b) holds. It
is easy to construct a discrete subset D of (R*,U*) of cardinality A; thus
f7'[D] is a discrete subset of X, also of cardinality A. This forces w(X) > A.
On the other hand, we have w(X) < the number of intersections of < x open
subsets of (R",U") < the number of intersections of < x open sets from B,
where B is an open basis of {R",U*) of cardinality x. This number is in turn
< sup{exp(a) : @ < &}, since « is a regular cardinal. In short A < w(X) < k;
whence x = A.

To prove (ii), we use the Comfort-Retta theorem 2.1(ii) to infer that (U*)u
is realcompact. Thus C({R¥,(%U*),}) is p-free. Since measurable cardinals
are strongly inaccessible, condition (b) holds, and we can argue as above.

Theorem 1.1 can also be put to use in helping us get a better idea of what
kinds of topologies T O U* make it possible for C({(R*,T)) to be x-free,
even when « is uncountable. For each J C «, let A} C R"™ be the “flat”
{reR*:2;=0for £ ¢ J}. Let 77 : R® — R" be the projection map onto
A ;. For any topology 7 on R*, let T|J be the restriction of T to Aj. The
following small collection of facts is easy to prove.

2.5 PROPOSITION. (i} If T is an H-enrichment (resp. C-enrichment, core-
flective enrichment) of U". then T|J is an H-enrichment (resp. (-
enrichment, coreflective enrichment) of 1{*|J] .

(ii}) If T is an H-enrichment of U*, then all straight lines in R" (viewed
as a vector space) are equivalent via (T, 7')-homeomorphisms.
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(iii) If T is a C-enrichment of U™, then each map =y is (T, T)-continuous.
Moreover, ifU € T|&(= T|{£}), then '.rre"1 [U] € T; whence T is an enrichment
of the product topology e T|¢.

2.6 THEOREM. Let T be a C-enrichment of U*. Then either: (a) T is a
pathwise connected topology; or (b} T 2 (U").,-

ProoF: First Proof. Let £ < x. By 2.5 (i), T|€ is a C-enrichment of U{*|¢
on the £-axis d¢. ({Ag,U"|€) is naturally homeomorphic to (R,U).) By 2.5
(ii), all the subspaces (A¢, T|£) are homeomorphic; and by 1.1 they are either
all euclidean lines or all discrete. Using 2.5 (ii) again, we know that if all the
axes are euclidean, then all straight lines in {R”*,7T) are euclidean; hence T
is a pathwise connected topology.

Suppose all the axes are discrete. For each countable J C &, then, T|J is
a proper C-enrichment of U*|J on 4y; so, by 1.2 (which relies on Anderson’s
theorem: (RY,U¥) =~ £?), T|J is discrete. ({A;,U"|J) is naturally homeo-
morphic to (R“,U*).) Because m; is (T, T'})-continuous by 2.5 (iii}, every set
of the form Il¢¢ . Ug, where Uy is a singletonif { € Jand Uy =R if ¢ ¢ J, is
T -open. This implies (U*),,, CT. § '

Second Proof. Repeat the argument in the first paragraph of the proof
above. We alter the second paragraph so as not to rely on Anderson’s theo-
rem (in 1.2).

Suppose all the axes are discrete, and let J = {£, : n < w}, where
& < & < ---. Define f : R* — R" to be the function taking (z;) to

——1;-’—"-‘1—,0,0,--- € Ag. Then f is (U*,U"™)-continuous, hence (7T, 7T)-
n(uz 1+|z¢n|

continuous. Moreover, if U € T is such that ' N 4, = {(0,0,---}}, then
[U] = NgenUg, where U = {0} if £ € Jand Ug = Rif € ¢ J. By
homogenetty, this implies (U")o,, S 7T. 1

2.7 REMARKS. (i) In 2.6, conclusion (a) implies that C((R"*,T)) is a con-
nected ring; i.e., there are no nontrivial idempotents. When x is countable,
there is the much stronger conclusion that T = U". However, for uncount-
able , there is at least one other topology that could possibly work, namely
the k-modification of U*. Recall that a space (X,T) is a k-space if for any
C C X, C is T-closed if and only if C N K is closed in K for every compact
subspace K of (X, T). The k-modification k(T) of T is that topology on X,
whose closed sets are precisely those sets whose intersections with the com-
pact subspaces of (X, T) are closed in those subspaces (see [12]). It is well
known that k(T) is always a coreflective enrichment of T, and that (R~ ,U")
is not a k-space for k > w,. Also, since the compact subspaces of (X, k(T))
are exactly those of (X,7T). the modified topology is pathwise connected
whenever the old topology is. Thus k(U*) is a proper C-enrichment of U*
for which conclusion (a) obtains. Unfortunately we do not know whether this
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topology is realcompact, and hence do not know whether C({R", k(U*))) is
r-free.

(ii) If conclusion (b) holds in 2.6, then (R*,T) is a space with the follow-
ing properties. (1) The space is totally disconnected; (2) the only compact
subspaces are the finite ones; (3) the only convergent sequences are eventu-
ally constant; (4) the only first countable subspaces are discrete; and (5) all
countable subsets are closed. We do not know whether T is itself closed under
countable intersections (i.e., a P-space topology). If it were, and Tichonov
as well, we could conclude that C({R*,T)}) is a (von Neumann) regular ring
(see Exercise 4J in [T]). :
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