Obstacles to duality between classes of relational structures

PAUL BANKSTON

Abstract. We prove an algebraic result concerning inverse limits of copowers in an S-class of relational structures of the same (finitary or infinitary) type. Among several applications to the nonexistence of category dualities is the following Theorem: If there exist arbitrarily large measurable cardinals then any class $\mathcal X$ of relational structures containing a nontrivial object A and all of its cartesian powers via nonempty index sets will fail to be dual to any S-class. (No large cardinal assumption is necessary if either there is a finite such A or if $\mathcal X$ consists only of finitary relational structures and contains the elementary class generated by A and its cartesian powers.)

0. Introduction

We are interested in isolating obstacles to category duality in the sense of [8]; in particular we wish to investigate conditions under which no dualities can occur between reasonable categories of relational structures.

Let τ be a (similarity) type of relation and function symbols of various arities, finite or infinite (in the sense of model theory/universal algebra [5, 7]). If α is an infinite cardinal exceeding all the arities in τ we say τ is $<\alpha$ -ary (" $<\omega$ -ary" = "finitary"). We consider the class \mathcal{M}_{τ} of all relational structures (empty or nonempty) in type τ to be a category by declaring morphisms to be the homomorphisms (i.e. those maps which preserve atomic relations). If $\mathcal{K} \subseteq \mathcal{M}_{\tau}$ is closed under isomorphic images we call \mathcal{K} a class and consider it, unless otherwise specified, as a full subcategory of \mathcal{M}_{τ} . An object $\mathcal{A} \in \mathcal{K}$ is nontrivial if $|A| \ge 2$ (i.e. A has at least two elements); \mathcal{K} is nontrivial if \mathcal{K} has a nontrivial object. Finally $\mathcal{K} \subseteq \mathcal{M}_{\tau}$ is an S-class if it is closed under substructures in \mathcal{M}_{τ} ; a P-class if it is closed under usual (= cartesian) products; and an elementary class if τ is finitary and \mathcal{K} is the class of models of a set of sentences in the first order language appropriate to τ .

We first note that reasonable classes of relational structures can be dual. For example the category of complete atomic Boolean algebras and complete homomorphisms is dual to the class \mathcal{S} of sets (= \mathcal{M}_{τ} where τ is the empty type, see e.g. [8]); and the classical self-duality theorems for the S-classes of finite

Presented by E. Nelson. Received November 18, 1981. Accepted for publication in final form August 24, 1982.

abelian groups and finite-dimensional vector spaces over a field provide further examples.

One obvious question is whether two nontrivial SP-classes can ever be dual. The answer, implicit in [10], is negative; and is an easy corollary to the result (section (2.3) of [10]) which says that two "algebraic categories with rank" can be category dual only if they are both equivalent to either the trivial monoid or the two-element chain. An SP-class is clearly an "algebraic category with rank" in the sense of [10].

Bizarre set-theoretic axioms also enter the picture as follows: We noted above that the class $\mathcal G$ of sets is dual to the category of complete Boolean algebras and complete homomorphisms. Another obvious question is whether $\mathcal G$ can be dual to any class of relational structures. A large cardinal hypothesis (see [5] for terminology) gives a partial answer, namely the result [11 (Thm. 4.1, p. 348)] that if there are arbitrarily large measurable cardinals then $\mathcal G$ cannot be dual to any class of algebras.

In the next section we will prove an algebraic proposition concerning inverse limits of copowers (= "reduced copowers") in an S-class. In the last section we will give some applications of this result to the nonexistence of category dualities. I would like to acknowledge here my indebtedness both to Bernhard Banaschewski and to Evelyn Nelson for valuable suggestions regarding the form and content of this paper.

1. Main result

We will need some terminology about reduced copowers in a category (see also [1,2,3,4,5,6,9]). Let $\mathscr A$ be a category, let I be a nonempty index set, and let D be a filter of subsets of I. We denote by $A \cdot I$ the I-copower in $\mathscr A$ and by $\sigma_i : A \to A \cdot I$ the i^{th} "injection" morphism. We use $\nabla_I : A \cdot I \to A$ to denote the natural "codiagonal" morphism (a left inverse for each σ_i) and let $\sigma_{JK} : A \cdot K \to A \cdot J$ denote the natural injection for $K \subseteq J \subseteq I$. We use the "connecting" morphisms σ_{JK} ($J \supseteq K \in D$) to define the reduced copower $A(D) = \lim_i \{A \cdot J : J \in D\}$. The "D-codiagonal" morphism is denoted $\nabla_{(D)} : A(D) \to A$ and is equal to $\nabla_{J} \circ \sigma_{J}$ for each $J \in D$, where $\sigma_{J} : A(D) \to A \cdot J$ is the J^{th} limit morphism.

Let α be an infinite cardinal. A filter D on I is α -uniform if $J \in D$ for each $J \subseteq I$ with $|I \setminus J| < \alpha$. (N.B. " α -uniform" gets stronger with increasing α , and is simply called "uniform" when $\alpha = |I|$; D is ω -uniform iff $\bigcap D = \emptyset$, i.e. D is a free filter.)

Our main result is a technical proposition concerning D-codiagonal morphisms in categories which are S-classes of relational structures.

1.1. THEOREM. Let α be a regular cardinal, let \mathcal{K} be a $<\alpha$ -ary S-class, and let $A \in \mathcal{K}$ be such that for any nonempty I the copower $A \cdot I$ exists in \mathcal{K} and not all injections σ_i are equal. If D is an α -uniform filter on I then $\nabla_{(D)}$ is not an epimorphism.

Proof. We will first need the following.

LEMMA. Let \mathcal{A} be a category and suppose all copowers of A exist in \mathcal{A} . If $f: B \to A \cdot I$ factors through σ_{II} and σ_{IK} for some pair J, K of complementary subsets of I then for each $i \in I$, $f = \sigma_i \circ \nabla_I \circ f$.

Proof of Lemma. Suppose $J, K \subseteq I$ are nonempty and complementary, and suppose $f = \sigma_{IJ} \circ g = \sigma_{IK} \circ h$ are the hypothesized factorizations. Fixing $i \in I$, there is a morphism $u : A \cdot I \to A \cdot I$ such that $u \circ \sigma_{II} = \sigma_{IJ}$ and $u \circ \sigma_{IK} = \sigma_i \circ \nabla_K$ (since $A \cdot I$ is a coproduct of $A \cdot J$ and $A \cdot K$). Then $u \circ f = u \circ \sigma_{IJ} \circ g = \sigma_{IJ} \circ g = f$. Also $u \circ f = u \circ \sigma_{IK} \circ h = \sigma_i \circ \nabla_K \circ h$, so $f = \sigma_i \circ \nabla_K \circ h$. Hence $\nabla_I \circ f = \nabla_I \circ \sigma_i \circ \nabla_K \circ h = \nabla_K \circ h$, so $f = \sigma_i \circ \nabla_I \circ f$.

To prove (1.1), let α , \mathcal{X} , A, I and D be as in the hypothesis. Assuming A(D) exists, let $x \in A(D)$. Then, since α is a regular cardinal and \mathcal{X} is $<\alpha$ -ary, there is a set $J \subseteq I$ with $|J| < \alpha$ and $\sigma_I(x) \in \sigma_{IJ}[A \cdot J]$. (Indeed, for any structure B in the S-class \mathcal{X} , $\bigcup \{\sigma_{IJ}[B \cdot J]: J \subseteq I$ of cardinality $<\alpha\}$ is an α -directed union of substructures of $B \cdot I$ and is therefore a substructure of $B \cdot I$. This union clearly behaves like the copower and must therefore be the copower.)

Since D is α -uniform, $K = I \setminus J \in D$; hence $\sigma_I(x) \in \sigma_{IK}[A \cdot K]$. Now apply the Lemma as follows: Let B = the substructure of A(D) generated by x, and let $f = \sigma_I \upharpoonright B$. Since $\sigma_I(x) \in \sigma_{II}[A \cdot J] \cap \sigma_{IK}[A \cdot K]$, we have that f factors through σ_{II} and σ_{IK} . To see this note that σ_{IJ} is an isomorphism onto $\sigma_{II}[A \cdot J]$. (Indeed, letting $r: I \to J$ be a set retraction, we let $\rho: A \cdot I \to A \cdot J$ be the copower morphism arising from the family $\{\phi_i: i \in I\}$ from A to $A \cdot J$, where $\phi_i = \sigma_{r(i)}$. Then ρ is a left inverse for σ_{II} .) We thus let $g = \sigma_{II}^{-1} \circ f$ and $h = \sigma_K \upharpoonright B$. Now let $i, j \in I$ be two indices such that $\sigma_i, \sigma_i: A \to A \cdot I$ are distinct. Then $\sigma_i \circ \nabla_I \circ (\sigma_I \upharpoonright B) = \sigma_i \circ \nabla_I \circ (\sigma_I \upharpoonright B)$. But the B''s cover A(D), so $\sigma_i \circ \nabla_{(D)} = \sigma_i \circ \nabla_I \circ \sigma_I = \sigma_j \circ \nabla_I \circ \sigma_I = \sigma_j \circ \nabla_{(D)}$. Hence $\nabla_{(D)}$ is not an epimorphism. (N.B. In the event A(D) is empty, the above argument works even without the Lemma.) \square

2. Applications

Under certain hypotheses concerning reduced powers in a category \mathcal{A} , we can state that \mathcal{A} cannot be dual to an S-class.

2.1 COROLLARY. Let H be a class of relational structures containing a

nontrivial object A and all of its cartesian powers via nonempty index sets. Then \mathcal{K} is not dual to any S-class, provided one of the following holds:

- (i) There exist arbitrarily large measurable cardinals;
- (ii) A is finite; or
- (iii) \mathcal{X} is finitary and contains the elementary class generated by A and its cartesian powers.

Proof. Let A^I denote the cartesian power. We note that if the powers of A exist in \mathcal{X} and if the usual model theoretic reduced power $A^{(D)}$ is also in \mathcal{X} then $A^{(D)} \cong \lim_{K \to \infty} \{A^J : J \in D\}$ where the "connecting" morphisms are the restrictions $A^J \to A^K$, $J \supseteq K \in D$. Thus the usual reduced power can be dual to the reduced copower defined above. Now the "D-diagonal" homomorphism $\Delta_{(D)} : A \to A^{(D)}$ is always a monomorphism, and this is our main obstacle to duality.

So let \mathcal{K} and A be as in the hypothesis, and assume (i) holds. Given a regular cardinal α we show \mathcal{K} cannot be dual to a $<\alpha$ -ary S-class by finding an α -uniform filter D such that the reduced power $A^{(D)}$ exists in \mathcal{K} and the D-diagonal is a monomorphism. We can then apply (1.1) since A is nontrivial and the projections $A^I \to A$ are all distinct.

Let μ be a measurable cardinal such that $\alpha + |A| < \mu$, and let D be a free μ -complete ultrafilter on a set of cardinality μ . Then D is clearly μ -uniform, hence α -uniform; and the D-diagonal is an isomorphism, so the result is immediate.

- If (ii) holds and D is an ultrafilter then $\Delta_{(D)}: A \to A^{(D)}$ is an isomorphism. So let D be any α -uniform ultrafilter. Again the result is immediate.
- If (iii) holds then all usual ultrapowers of A lie in \mathcal{K} (and are the appropriate limits). Then Δ_D is always a monomorphism. \square
- (1.1) can also be applied to duality questions involving classes \mathcal{X} such that every nontrivial $A \in \mathcal{X}$ has a cartesian power lying outside of \mathcal{X} .
- 2.2. COROLLARY. The class of torsion abelian groups is not dual to any S-class.

Proof. The class \mathcal{K} of torsion abelian groups has all reduced powers as a category (see [3,6]); namely form the usual reduced power, itself an abelian group, and take the torsion part $T(\cdot)$. Thus if $A \in \mathcal{K}$ is nontrivial and I is any nonempty index set then the projection maps from $T(A^I)$ to A are all distinct. Also it is easy to check that the D-diagonal $\Delta_{(D)}: A \to T(A^{(D)})$ is always a monomorphism. \square

REFERENCES

- [1] H. Andréka, E. Makai Jr., L. Márki and T. Németi, Reduced products in categories, Contributions to General Algebra, (Proc. Klangenfurt Conf. 1978), 25-45.
- [2] P. BANKSTON, Topological Ultraproducts, Thesis, University of Wisconsin (1974).
- [3] P. BANKSTON, Some obstacles to duality in topological algebra, Can. J. Math. 34 (1982), 80-90.
- [4] P. BANKSTON, Reduced coproducts in the category of compact Hausdorff spaces, (to appear).
- [5] C. C. CHANG and H. J. KEISLER, Model Theory, North Holland, Amsterdam (1973).
- [6] A. DAY and D. Higgs, A finiteness condition in categories with ultrapowers, Math. Report 9-73, Lakehead University (1973).
- [7] G. GRÄTZER, Universal Algebra, Springer-Verlag, New York (1979).
- [8] H. HERRLICH and G. STRECKER, Category Theory, Allyn and Bacon, Boston (1973).
- [9] T. OKHUMA, Ultrapowers in categories, Yokahama Math. J. 14 (1966), 17-37.
- [10] H.-E. PORST, Topics in Categorical Algebra and Categorical Topology, Math. Colloq. of Univ. of S. Africa, 12, Pretoria (1981).
- [11] A. Pultr and V. Trnková: Combinatorial, Algebraic, and Topological Representations of Groups, Semigroups, and Categories, North Holland, Amsterdam (1980).

Marquette University Milwaukee, Wisconsin U.S.A.
