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ON PARTITIONS OF PLANE SETS INTO 
SIMPLE CLOSED CURVES 

PAUL BANKSTON1 

ABSTRACT. We investigate the conjecture that the complement in the euclidean plane 
E2 of a set F of cardinality less than the continuum c can be partitioned into simple 
closed curves iff F has a single point. The case in which F is finite was settled in [1] 
where it was used to prove that, among the compact connected two-manifolds, only 
the torus and the Klein bottle can be so partitioned. Here we prove the conjecture in 
the case where F either has finitely many isolated points or finitely many cluster 
points. Also we show there exists a self-dense totally disconnected set F of cardinal- 
ity c and a partition of E2\ F into "rectangular" simple closed curves. 

Let X and Y be topological spaces. By a topological partition of Y into copies of X 
we mean a covering of Y by pairwise disjoint sets, each of which is homeomorphic 
with X. In this note Y will be a subset of the euclidean plane E2 and X will be the 
unit circle. A homeomorphic copy of X will be referred to, as usual, as a simple 
closed curve (scc). 

In [1] it is proved that, among the compact connected two-manifolds, only the 
torus and the Klein bottle can be partitioned into scc's. The key to the proof is the 
following 

1. THEOREM (LEMMA IN PROOF OF THEOREM 3.3 IN [1]). Let F C E2 be finite. Then 
E2 \ F can be partitioned into scc 's iff F has exactly one point. 

Here we are interested in extending Theorem 1; in particular we believe the 
following is true. 

2. CONJECTURE. Let F C E2 be an infinite set of cardinality less than the 
continuum c. Then E2 \ F cannot be partitioned into scc's. 

In support of this conjecture we have the following result. 

3. THEOREM. Let F C E2 be an infinite set of cardinality less then c. If either: (i) F 
has finitely many isolated points; or (ii) F has finitely many cluster points in E2, then 
E 2\ F cannot be partitioned into scc's. 

In order to prove (3), we will need some auxiliary machinery. 
If S C E2 is any scc, let B(S) denote the bounded complementary domain of S. 

By the Jordan Curve Theorem, S is the common boundary of both B(S) and 
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E2\(B(S) U S); so B(S), the closure of B(S), is just B(S) U S. By the Schonflies 
Theorem, we also have B(S) E2. (This fact will enable us to "relativize" argu- 
ments.) 

Let F C E2 and assume _ is a partition of E2 \ F into scc's. We partially order S 
by S, < S2 whenever B(S,) C B(S2). Information concerning this ordering is given 
in the following 

4. LEMMA. If F is totally disconnected and 9T C S is a maximal chain, then 
M n {B(S): S E 9T} is a singleton subset of F. 

PROOF. Note first that since F is totally disconnected, each S encloses points of 
E 2\F. Therefore, by maximality, 9Th can have no < -minimal element; so M = 
n {B(S): S E 9Z}, a chain intersection of continua, is a continuum. Suppose 
x E M\F. Then x E S for some S E 5; hence S < S' for all S' E OX, contradict- 
ing the maximality of 9T. Therefore M C F. Since F is totally disconnected, M must 
be a singleton. D 

5. LEMMA. Let 1 < I F I < c. Then S is not a chain. 

PROOF. Suppose 5 is a chain. We first show that every x C F is enclosed by a 
member of S. Since E2 is not compact, S has no <-maximal element; so every 
z E E2\F is enclosed by some member of S. Let U = U {B(S): S E S}. Then 
E2\F C U. If F, = {x E F: x C B(S) for some S C $}, then U = E2\(F\F). 
Now U is simply connected, but removal of a nonempty subset of the plane of 
cardinality < c leaves a multiply connected set. Thus F, = F. 

Now by Lemma 4, since F is totally disconnected, nf {B(S): S C 5 } is a singleton 
subset of F, say {y}. Let x C F\{y}, i, {S C i: x M B(S)), and '52 = 1 
We know S =# 0 sincey is the only point in every B(S). We know ,2 # 0 since 
F, = F. We show 52 has no <-minimal element. For assume otherwise and let 

S2 C 52 be < -minimal. Then S is a partition of B(S2) (- E?2) into scc's. By 
relativization of the argument showing F, = F, we then conclude x C B(S) for some 
S EE I, a contradiction. Next we show 5, has no <-maximal element. Assuming 
otherwise, let S, E 5 be < -maximal and set C = n {B(S): SE 52}. Then C is a 
continuum containing B(S1) U {x3. By Urysohn's Lemma there is a continuous 
map f: C -- [0, 1] (the closed unit interval) taking B(S,) to 0 and x to 1. Since C is 
connected, f is surjective and must take C\(B(S1) U {x}) onto (0, 1). Since I F I < c, 
there must be a point z E C\(B(S1) U F). Let z C S for some S E S. Since 52 has 
no < -minimal element, we know S < S' for each S' E 52. Thus S EE , so S - S1 
by the < -maximality of S1. This implies z E B(S1), an impossibility. 

Let U1 = U {B(S): S E 5I1. Since 5, has no < -maximal element, U1 = 

U {B(S): S E 5I}, so U 1 C U1. Let U2= U({E2\B(S): S CE 2}- Since 52 has 
no < -minimal element, U2 U {E2\B(S): S EE 2}' SO U 52 C U2. Clearly U1 n 
U2= 0, so {U1, U2) forms a disconnection of E2\F. But sets of cardinality < c 
cannot separate E 2. This proves the lemma. O 

We are now in a position to prove part of Theorem 3. 

6. PROPOSITION. Let F C E2 be an infinite set of cardinality less than c. If F has at 
most one isolated point, then E2 \ F cannot be partitioned into scc 's. 
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PROOF. Suppose F has no isolated points (F is "self-dense"), and let S be a 
partition of E2\ F into scc's. By Lemma 5 5 is not a chain, so one can find external 

S1, S2 C 5 (i.e. B(S,) n B(S2) = 0). By Theorem 1, B(S,) and B(S2) must intersect 
F in a self-dense set, so we can relativize the above procedure to B(S,), B(S2). This 
forms the basis for a binary tree construction; hence S must have c distinct maximal 
chains. By Lemma 4, this forces I F I = c and a contradiction. 

Suppose F has one isolated point x. If S E 5 then x E B(S) by the above 
argument. Thus 5 is a chain, contradicting Lemma 5. D 

In order to prove the rest of Theorem 3, we will need to know more about the 
ordering < . In what follows it will be convenient to view the two-sphere S2 as 
E2 U {p}, the plane with a point at infinity. This ploy will enable us to "exchange" 
old points for the new point p. 

As usual, let F C E2 and let 5 be a partition of E2\F into scc's. 

7. LEMMA. Suppose I F I < c. The following are equivalent. 
(i) S is upwardly directed (i.e. given S, S2 E 5 there is some S C 5 with S, < S, 

S2 < S). 

(ii) No maximal chain in i has a < -maximal element. 
(iii) U {B(S): S E i E. 

PROOF. Assume (i). Then (ii) follows immediately. Assume (ii). If x C E2 \ F then 
x e S for some S C 5, so let S < S' for some S' e S. Then x e B(S'), hence 
x C U = U {B(S): S C i} . Now U is a union of pairwise disjoint connected simply 
connected open sets and, hence, is simply connected. Thus we may argue as in the 
proof of Lemma 5, where we showed F, = F. Thus (iii) holds. Assume (iii). If S,, 
S2 E S are given, suppose first S, < S2. Pick x C S2. Then x E B(S) for some 
S C 5, hence S2 < S. On the other hand suppose S, S2 are external and let '0, (X2 
be maximal chains containing S,, S2, respectively. If '< n 91L2 0, then 

U {B(S): S E 1,} n U {B(S): S EC9(2} = 0- 

By (iii) this gives a disconnection of E 2. So let S C 9X, n1 (2 Since 'X,, (X2 are 
chains and S,, S2 are external, we have S, < S, S2 < S and (i) holds. D 

We will have use for the following classical results. 

8. LEMMA. (i) (Mullikin [4,5]). Let C0,C1,..., be a countable collection of pairwise 
disjoint closed nonseparating subsets of E2 (i.e. E2\C is connected, n 0,1,...). 
Then U ' 0 Cn is also nonseparating. 

(ii) (Sierpinski [3, p. 173]). Let Y be a locally compact connected Hausdorff space. 
Then Y cannot be partitioned into countably many proper compact subsets. (This result 
is proved in [3] for Y compact, but is clearly true in the more general situation since 
locally compact spaces are open in their compactifications.) 

(iii) [6, p. 143]. Every connected simply connected open subset of the two-sphere has 
connected boundary. 

9. LEMMA. Let F C E2 and let 5 be a partition of E2\F into sec's. If either (i) F is 
countable, or (ii) I F I< c and i has finitely many maximal chains, then 5 is upwardly 
directed. 
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PROOF. If F is finite, then IF 1 by Theorem 1, and S is a chain without 
endpoints. So assume F is infinite. For each x C F let X= {S C e: x C B(S)>. By 
Theorem 1 each S C 5 encloses some member of F, so 0 U x F Fx and each 5x is 
an upwardly closed chain (i.e. S C SX and S < S' imply S' C SJ For each x C F let 

GX= {X} U U {B(S): S E 5}. Then UXE FGX= E 2; and, for all x, y C F either 

GX= G or Gx n G, = 0. We partition Finto three subsets: Fe = {x C F: cx = 0}; 
Fm = {x C F: ix has a < -maximal element}; and F, {x C F: Sx :# 0 and has no 
< -maximal element). Then for each x C F, GX is a singleton, a closed disk, or a 

chain union of open disks, respectively, as x is in Fe, F, or F,. 
Suppose F is countable. If there are at least two sets G, for which x E FU, then the 

plane minus a countable number of pairwise disjoint nonseparating closed sets 
(either closed disks or singletons) is disconnected, contradicting Lemma 8(i). If 
FU = 0, we contradict Lemma 8(ii). Thus there is exactly one such G,, call it U. We 
show U= E2, i.e. Fe U Fm -0. Suppose otherwise, and there are only finitely 
many sets GX for which x C Fm. Then U is homeomorphic to E2 minus a nonempty 
countable set, hence multiply connected. Thus there are infinitely many such sets GQ' 
and we can enumerate them Do, D1,..., so E2 - U U F, U U' 0 D,1 Let B 
Bd(U) = U\U (the boundary of U), and let S,, = Bd(D,,), n = 0, 1, .... Any point 
not in Fe U U'L0 Sn is either in U or in some D,1\S,1 so B c Fu U 0 S,,. On the 
other hand, if x C Sn, V is an open set containing x, and D C V is a closed disk 
containing x in its interior, then D ; D, m = 0,1,...; hence by Lemma 8(ii), D 
cannot be covered by Fe U U?0(D n D.). Thus D n U # 0, so x E B. Similarly 
if x E Fe then x E B, so the boundary of U is made up of points of Fe and the scc's 

Sn . 

We now view E2 as S2\{p). In S2, U is still a connected simply connected open 
set; and its boundary B' in S2 is either B or B U { p}, depending on whether U is 
bounded in E2. In either case B' is a continuum by Lemma 8(iii), and we contradict 
Lemma 8(ii). Thus Fe U Fm = 0 and we can apply Lemma 7. 

Now suppose i F <c and 5 has finitely many maximal chains. Then there are 
only finitely many sets Gx for which x E Fm. Letting D(,...,D,,1 denote these GX's, 
and W= U Gx, we have E2 - W U Fe U U"' D,l Then W is homeomorphic 
to E2 minus a nonempty set of cardinality < c, hence multiply connected. This is 
impossible since the components of W are chain unions of open disks. Thus 
Fm U F, = 0 and the lemma is proved. O 

Another step in the proof of Theorem 3 is the following. 

10. PROPOSITION. Let F C E2 be an infinite set of cardinality < c. If F has finitely 
many isolatedpoints then E2 \F cannot be partitioned into scc's. 

PROOF. Let n be the number of isolated points of F. By Proposition 6 we can 
assume n > 1 and proceed by induction. We write F - Fo U {xI,...,xJ where the 

xi's are isolated, Fo is self-dense, and let 5 be a partition of E 2\ F into scc's. If 

S E 5 then Proposition 6 tells us that B(S) n {xI,. ..,xJ # 0, hence 5 has at 
most n maximal chains. By Lemma 9 we know U = U {B(S): S E S} = E2. 

If F is unbounded in E2, we can "exchange xl for p ". Then 5 is a partition of 

(S2\{X1))\({p) U (F\{X1))) into scc's. Thus we have added a cluster point and 
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lost an isolated point. By our induction hypothesis, this cannot happen; hence F 
must be bounded. For each A C {x1,...x,} let SA = {S C S: B(S) n {xl. x,,} 
= A), S, = $A for A = {x,}, and $' = bA for A = {x,,...,x,}. By the induction 
hypothesis, SA = 0 whenever I l A I < n. Thus S = S' U U,1 ,. Since U = E2 
and F is bounded, an easy compactness argument tells us that F C S for some 
S C S. hence S' =# 0. Now suppose S C S is such that B(S) n Fo 7# 0, but 
Fl = F0\B(S) 7# 0 also. F, has no isolated points and F1 U {p} has at most one 
isolated point. Exchange B(S) for p. S2\B(S) E2, so what we get is a partition 
of E2 minus a set of cardinality < c with at most one isolated point into scc's (since 
S C s'). This contradicts Proposition 6. 

We thus have the fact that S C S' iff B(S) n Fo 7# 0 iff F C B(S). Now suppose 
S C Z'. Then S5 = {S' C S: S' < S) is a partition of B(S)\F into scc's; so by 
relativization there is some S' < S enclosing a point of Fo. Thus S' CZ 5' as well, so 

' has no < -minimal element. Let C = n{ B(S): S ( -'} = n{ B(S): S C 

Then C is a continuum containing F = Fo U (XI ... ,Xn. Since Fo is a perfect set, 
we have I Fo c. Thus there is a point x C Bd(FO). Let S, C S contain x. Then 
S C C, so Sx x 5'. Thus S, C 5& for some l i ? n. Now exchange B(S,) for p. 
Then {S C 5: S 4 SJ is a partition of (E2\B(Sj))\(F\{x1)), and is therefore a 
partition of (S2\B(Sx))\({p) U (F\{xl})). Now {p) U (F\{xl)) has n isolated 
points but is unbounded (since x C Bd(Fo)). This is impossible by earlier remarks, 
and the proof is complete. O 

To finish the proof of Theorem 3 we have 

I1. PROPOSITION. Suppose F C E2 is an infinite set with finitely many cluster points 
in E 2. Then E 2 \ F cannot be partitioned into sec 's. 

PROOF. Let n be the number of cluster points of F. Then F is scattered and (since 
E2 is hereditarily Lindelof), therefore, countable. Let c be a partition of E2 \ F into 
scc's. We induct on n. If n = 0 then F is closed discrete, so no S C S can enclose 
infinitely many points of F. By Lemma 9 some member of o; must enclose exactly k 
points of F for some k > 1, contradicting Theorem l. 

So assume n > 0 and x is a cluster point of F. By Lemma 9 there is some Sx C 

with x C B(S,). First suppose x C F and define Fx = B(Sj) n F. Then F, is infinite 
and bounded. Let S' be a partition of E2\(B(Sx)) into scc's, together with {S C &: 
S < S.J. Then S' is a partition of E2\F . Exchanging x for p, we get that S' is also 
a partition of (S2\{x))\({p) U (FX\{X})). Since the number of cluster points has 
been reduced by one, we violate our inductive hypothesis. So it must be the case that 
x 4 F, hence there is some SO E S with x E SO. Then SO < Sx. Now define 5' to be a 
partition of E2\B(SX) into scc's, together with {S E 5: S < Sx, S + SO), and let 

Fx = (B(Sx) n F)\B(SO). By the inductive hypothesis relativized to B(SO), SO can 
enclose only one point of F. Thus FY is again infinite and bounded. Then 5' is a 
partition of (E2\B(So))\F . Now exchange B(SO) forp. Then 5' is also a partition 
of (S2 \B(S ))\({ p) U Fj). Again we have exchanged a cluster point for an isolated 
point, so the inductive hypothesis is violated. This completes the proof of the 
proposition and the proof of Theorem 3. 0 
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The hypothesis " F < c" in Theorem 3 is crucial. Lest the reader be tempted into 
conjecturing that the weaker hypothesis "F is totally disconnected" will do, we offer 
the following construction, due to R. Fox [2]. 

12. THEOREM (R. Fox). There exists a self-dense totally disconnected set F of 
cardinality c and a partition of E 2\ F into "rectangular" scc's. 

PROOF. The easiest way to see this is to construct a family of pairwise disjoint 
(rectangularly shaped, for convenience) scc's in E2, let F be the set of points not 
covered, and observe that F has the stated properties. The process uses a double 
induction on the integers, and we describe the essential steps. All scc's in the 
construction may be taken to be the boundaries of rectangles with sides parallel to 
the coordinate axes. 

Step 1. Partition E2 \([0, 3] X [0, 1]) into scc's. 
Step 2. Throw in the new scc's ({0, 1) X [0, 1]) U ([0, 1] X {0, 1)) and ({2,3} X 

[0, 1]) U ([2, 3] X {0, 1)), thus creating three "holes" to fill. The outer ones, called 
"G-holes", are copies of (0, 1)2; and the inner one, called an "H-hole", is a copy of 
(0, 1) X [0, 1]. 

Step 3 (partially filling G-holes). This creates two new G-holes and an H-hole, all 
of smaller diameter. For simplicity, let G = (0, 5) X (0, 3) be a typical G-hole. Then 
fill in 

G\(((1,2) X (1,2)) U ((2,3) X [1,2]) U ((3,4) X (1,2))) 

as in Steps 1 and 2. 
Step 4 (partially filling H-holes). This step creates three new G-holes and four new 

H-holes, all of smaller diameter. For simplicity, let H = (0, 9) X [0, 5] be a typical 
H-hole. First we fill in the closed annulus ([3, 6] X [0, 5])\((4, 5) X (2, 3)), creating a 
smaller G-hole. The two outer H-holes are narrower, but not of diminished height 
(we want F to be totally disconnected). By filling in the annuli 

((0,3) X (1,4)) \((1,2) X (2,3)) and ((6,9) X (1,4)) \((7,8) X (2,3)), 

we get two new G-holes plus four new H-holes in the corners. 
Steps 1-4 outline the induction; and a tree 6J, whose nodes are G-holes and 

H-holes, is thus produced. Let F be the set of points contained in the intersections of 
branches of 1. Not every branch has nonempty intersection, so F is not a Cantor set. 
However it is clear that F is dense in a Cantor set. O 

13. REMARKS. (i) In the proof of Theorem 12 the partition S of E2 \F has 
cardinality c. It would be interesting to know for which F this is necessarily the case. 

(ii) One could also conjecture the analogue of Conjecture 2 for F compact totally 
disconnected. For example an affirmative answer even in the case F is a Cantor set 
would show that Theorem 12 is pretty sharp. What we know at this point is very 
sketchy. (For example, if S is a partition of E2 \F into scc's an argument similar to 
the proof of Lemma 9 shows that F C B(S) for some S E 5, so S is upwardly 
directed.) Also the referee has observed that if we can prove the conjecture for F 
compact totally disconnected, then by a theorem of R. L. Moore [3, p. 533] on upper 
semicontinuous decompositions of E2 and S2 into compact nonseparating subsets, 
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we can extend an affirmative answer to cover the case where F is compact with 
nonseparating components. 

(iii) I would like to thank several individuals who have shown interest in this 
problem area and have shared their ideas. At the risk of giving an embarrassingly 
incomplete list, I thank especially: Ralph Fox, Fred Galvin, Ronnie Levy, Richard 
McGovern, Daniel Moran, Neelima Shrikhande, Saul Stahl and the referee. 

ADDED IN PROOF. We have recently been able to show that E 2\ F cannot be 
partitioned into scc's when F is compact totally disconnected and of cardinality # 1. 
Also we can show that if F is any nondense subset of E2 and 5 is a partition of 
E 2\ F into scc's, then 1 S 1 c. These results will appear in a sequel in this journal. 
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