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ON PRODUCTIVE CLASSES OF FUNCTION RINGS 

PAUL BANKSTON 

ABSTRACT. No nontrivial P-class (''P" for "productive") of rings of continuous 
real-valued functions can be category equivalent to any cleinentary P-class of 
finitarv universal algebras. 

0. Introduction. In this paper. "algebra" means "finitary universal algebra" in the 
sense of Birkhoff, and a class 'K of algebras will be viewed as a category by allowing 
all algebra homomorphisms as category morphisms. AX is productive or a P-class 
(resp. S-class) if 'N1 is closed under usual direct products (resp. subalgebras); '1-, is 
elementary if there is a set of first order axioms such that SX is precisely the class of 
models of those axioms (see. 5]). 

We will be interested in category theoretic properties of classes of function rings, 
to wit: Let RCF denote the class of all rings of continuous real-valued functions 
C( X) with topological spaces for domains. We ask which subclasses of RCF can be 
equivalent to " nice" classes of algebras (e.g. elementary P-classes, SP-classes, 
varieties, etc.). 

0.1 EXAMPLES. (i) Xlo { tC(X): X is zero-dimensional compact Hausdorff} is 
equivalent to the variety of Boolean algebras (see (6]). 

(ii) = {C(QX) E CXo: X has no isolated points) is equivalent to the elementary 
P-class of atomless Boolean algebras. 

There has come to be a growing list of negative results in this area. In [1] it is 
shown that 'X= (C(X): X is compact Hausdorff} cannot be equivalent to an 
SP-class; and in [3] it is shown also that XK cannot be equivalent to a class L5 which is 
"' representable" (i.e. free objects over singletons exist in C ) and is either an 
elementary P-class or an S-class whose basic alphabet of operation symbols has 
cardinality less than that of the continuum. The major unsolved problem in this area 
is whether XY is equivalent to any elementary P-class at all. In this paper we highlight 
the importance of the fact that products in %0, 'h and ' above are not the usual 
ones by proving results of which the following is an easy corollary. 

0.2 THEOREM. No nontrivial P-subclass of RCF (i.e. one having more than the 
isomorphism type of the "degenerate" ring 0 C( 0 )) can be category equivalent to an 
elementary P-class. 

Received by the editors April 28, 1982 and, in revised form, August 9, 1982. 
1980 Matherntacs Subject Classificcation. Primary 08C05, 08C10, 54C40. 
Kev words anid phrases. P-classes, elementary classes, rings of continuous functions. 

C) 1983 American Mathematical Society 

0002-9939/82/0000-081 4/$02.00 

11 



12 PAUL BANKSTON 

The proof employs the notion of "reduced product" in a category and will be 
presented in the next section. 

1. Main results. We assume the reader to be familiar with the usual notion of 
reduced product in model theory [5]. The key observation, one which is well known, 
is that if X is any elementary P-class of finitary relational structures, then ultraprod- 
ucts in XC are simply direct limits of direct products (see [2,3,4] for more details and 
references). This of course can be placed in a categorical context. We will show that 
most categorical reduced products in a P-subclass of RCF must be trivial (or 
nonexistent). This will immediately entail (0.2) since the diagonal morphism from an 
algebra into an ultrapower in an elementary P-class is always a monomorphism. 

Our notation regarding reduced products and powers comes from [5]: If (A,: 
i E I) is a family of relational structures of the same finitary type and D is a filter 
on I then IIDA, nD(A,: i E I) is the reduced product with elements aD (a' E 

H,A,: {i: a = a,) E D}; if each A, is equal to A then the reduced power is 
denoted n DA and the natural diagonal embedding is denoted d: A D DA. 

For J D K E D, let rJK: ,ejAi - hIEKAi be the natural restriction morphism. 
Then the associated direct limit lim (I,EJA,: J E D) is precisely the reduced 

product HIDAi in the category of all relational structures. Moreover, if SK; is any 
elementary P-class then categorical ultraproducts in SC are the usual ones. (N.B. It is 
possible to have an elementary class A; which has unusual ultraproducts as a 
category (see [4]).) 

Before we state our main results, we introduce the notion of "commuting system" 
of homomorphisms. Let (X,: i E I) be topological spaces, let D be a filter on I, and 
let X be any space. A "commuting system", in this context, is a family (hj: J E D) 
where, for J E D, hi: HieJC(X,) -- C(QX) is a homomorphism such that for all 
JDo K E D, hK orJK = hJ. Our main concern is in the existence of certain commut- 
ing systems. 

1. 1 THEOREM. Assume < X,: i E I) is a family of topological spaces, D is a free filter 
on I (i.e. n D = 0), X is a space, there are no uncountable measurable cardinals at 
most I ( the cardinality of I), and (hj: J E D) is a commuting system. Then X is 
empty. 

PROOF. It is well known (see [6]) that we lose no generality by assuming all of the 
above spaces to be realcompact Tichonov; and we can then invoke Theorem (10.6) 
of [6] to the effect that if Y is realcompact and if h: C(Y) - C(X) is a ring 
homomorphism (N.B. h(l) = 1. Hence Hom(0, C(X)) =-0, unless X = 0.) then 
there is a unique continuous h': X - Y such that, for allf E C(Y), h( f ) = f o h'. 

Let U, X/ denote the disjoint union of the spaces X,; and let p be a z-ultrafilter 
on U , X, with the countable intersection property (c.i.p. = intersections of counta- 
ble subfamilies of p are nonempty). We show that iE, IX, is realcompact by proving 
that p must be fixed. Indeed let g: Ui,I Xi -* I take x to i exactly when x E Xi, and 
let F = (J C I: g- [J] E p}. One can check easily enough that F is a countably 
complete ultrafilter on I (e.g. F is closed under superset since g' [J] = ,IEJX, is 
always clopen, hence a zero set). Now there are no uncountable measurable cardinals 
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at most I I l, hence F must be fixed (= principal). Suppose {i} E F. Then Xi E p, 
and p restricted to Xi is a z-ultrafilter on Xi with the c.i.p. Thus, since Xi is 
realcompact, p converges. 

Now since IIE ,C( X) and C( Uie1, Xi) are naturally isomorphic, we can consider 
each h. as a homomorphism from C(OUieXi) to C(X). Thus look at the "dual 
system" h': X-) i_Xi. Letting eJK: U ieK Xi ir=_Xi be the natural embed- 

ding, J D K E D (an inclusion in this case), we note that the uniqueness of each h[ 
ensures that all the appropriate diagrams commute (i.e. eJK o h'K = h' for each 
J D K E D). Since nfD = 0, this forces X to be empty. O 

1.2 COROLLARY. If 'C is a P-subclass of RCF then reduced products in S(C are 
"trivial", in the sense that II9Ai, the reduced product in Yu, is zero whenever D is a 
free filter on an index set whose cardinality is less than all uncountable measurable 
cardinals. E 

1.3 REMARK. The measurable cardinal hypothesis is necessary for 1.1 to work. For 
let D be a free countably complete ultrafilter on a set I, and let each Xi be a 
singleton. Then HIDC(Xi) _ R (= the ring of real numbers), by Corollary (4.2.8) in 
[5]. 

We can get the conclusion of 1.1 with altered hypotheses and more model 
theoretic techniques. 

1.4 THEOREM. Assume KXi: i E I) is a family of spaces, D is a countably incomplete 
ultrafilter on I, X is a space, and (h.: J E D) is a commuting system. Then X is 
empty. 

PROOF. Suppose, to the contrary, that there is a nonempty space X for which a 
commuting system exists. If {i: Xi = 0) = J E D then hj: JliEjC(Xi) -C X), 
being a ring homomorphism, forces X to be empty. Since D is an ultrafilter, we lose 
no generality by assuming that Xi =# 0 for each i E I. For each J E D let pJ: 

liJQC(Xi) 11DQC(Xi) be the natural projection homomorphism. By properties of 
direct limits there is a unique homomorphism h: II DC(X) C(X) such that for all 
J E D, h o PJ = hJ. Now for each i E I let di: R QC(X) be the diagonal embed- 
ding. Then the ultraproduct mapping nDdi: IIDR DC(QXi) is a homomorphism. 
Now D is an ultrafilter, hence IIDR is a field by the Lo' Theorem. Therefore 
h o II Ddi is a homomorphism from a field into a nontrivial ring, hence an embed- 
ding. Let d: R II DR, e: R C( X) be the diagonal embeddings. It is a straightfor- 
ward algebraic fact that there can be no other homomorphism e': R - C(X), since 
C(X) is a "diagonal" subring of a power of R (use the fact that the identity map is 
the only ring endomorphism on R). Therefore e = h o HDdi o d, and lJDR embeds as 
a diagonal subring of C(X). Since D is countably incomplete, this ultrapower is 
X ,-saturated. We will obtain a contradiction once we prove the 

LEMMA. No diagonal subring of a power of R is w -saturated. 

PROOF OF LEMMA. Let A C R' be a diagonal subring which is xl,-saturated. For 
each n E w, let 0,(x) be the first order formula which says of x that x - n (= the 
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result when the constantly n function is subtracted from the function x) has a square 
root. pn(x) can be expressed in the first order language of rings with countably many 
additional constants. Clearly 4(x) = {+n(x): n E co} is finitely satisfiable in A: if 
4I0(x) = {P,1(x),-..,n,(x)} then A W pn[max{n1,...,nk}] for i = 1,...,k since 
R C A. So by o, -saturicity, there is an a E A such that a - n has a square root for 
each n E w. That is, for each i E I, the ith coordinate ai of a exceeds n for all n E , 
a contradiction. OI 

1.5 COROLLARY. If 'X is a P-subclass of RCF then ultraproducts in SC are "trivial" 
in the sense that IIXA1 is zero whenever D is a countably incomplete ultrafilter. El 
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