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On categories of algebras equivalent to a quasivariety

PAUL BANKSTON AND RALPH Fox

Abstract. In a recent paper, B. Banaschewski proved that any SP-class of algebras which s category
equivalent to a variety (over a possibly different finitary similarity type) is itself a variety. Here we
prove the analogous statement obtained by replacing “variety” with “quasivariety”. We also present
examples which detail some of the difficulties arising when one tries to strengthen the theorem in
various ways.

0. Introduction

Let 7 be a similarity type of finitary relations and operations and consider the
class M, of all relational structures in type 7 to be a category in the usual sense by
declaring all homomorphisms (i.e., atomic relation preserving functions) to be
morphisms in the category. A class ¥ < #, is then viewed as a full subcategory of
.. In [2] Banaschewski provides examples of classes % which are equivalent as
categories to varieties (= equational classes) of algebras (i.e. where the similarity
type consists only of operations), but which are not themselves varieties (e.g. the
class of all torsionfree divisible abelian groups is equivalent to the equational class
of vector spaces over the rational number field). It may be of interest to note that
all of his examples are elementary P-classes (universal-existential Horn, in fact).
The class of rings of continuous real valued functions with 0-dimensional compact
Hausdorff domains is not closed under any of the usual operators on classes (in
particular it is neither elementary nor P-closed); yet it is equivalent, by the duality
theorems of M. H. Stone and Gel'fand-Kolmogorov, to the variety of Boolean
algebras.

The main result in [2], somewhat surprising in light of the examples, is the
following:

0.1 THEOREM (Banaschewski). Any SP-class of algebras which is category
equivalent to a variety is itself a variety.

Presented by E. Nelson. Received November 18, 1981. Accepted for publication in final form
January 6, 1982.

153



154 PAUL BANKSTON AND RALPH FOX ALGEBRA UNIV.

As an immediate corollary, one can show (see {4]) that the quasivariety of
torsionfree abelian groups is not equivalent to any variety.
In the present note we prove the following analogue of (0.1).

0.2 THEOREM. Any SP-class of algebras which is category equivalent to a
quasivariety is itself a quasivariety.

Both theorems relate “internal” notions (the structure of the SP-class as a
category) and “‘external” ones (how that class sits as a subcategory of 4L.).
Although knowledge of (0.1) was instrumental in leading us to think of possible
analogues such as. (0.2), our methods of proof turned out (not entirely unexpec-
tedly) to be quite different: whereas we use the techniques of Chang, Galvin,
Keisler, Shelah, et al. (see [5,7]) in the manipulation of reduced products,
Banaschewski’s method equates the notions of “equivalence relation” on an
object in a category and “congruence” on an algebra. :

A word about terminology. A class ¥ is: (i) a P-class if it is closed under the
taking of usual direct products; (i) an S-class if it is closed under substructures in
M_; (i) an elementary (resp. universal elementary, universal-existential elemen-
tary, etc., Horn) class if it is the class of models of a set of sentences (resp.
universal sentences, universal-existential sentences, etc., Horn sentences) in type 7
(see [5]); and (iv) a variety if it is a class of algebras which is the class of models of
a set of equations {i.e. universally closed atomic formulas). Any terminology
which is not in standard textbooks will be defined as we proceed.

1. Proof of Theorem 0.2

Of central importance in our approach is the reduced product construction in a
category (see [1, 3, 4, 6, 9]). Given a category o with products, a family (A; :ieI)
of s-objects, and a filter D of subsets of I, we construct (when possible) the limit
I3 A, =liﬂ([[;’;, A,;:Je D); where D is directed by reverse inclusion and the
connecting morphisms are the *‘restrictions” p a1 A —TiEc A, T2KeD.
M2 A, is called a reduced product (in sf) and an ultraproduct when D is an
ultrafilier. When A, = A for all iel, there is a natural “diagonal” morphism
A: A —[I#(A) making all relevant diagrams commute. (In [6] this morphism is
used to define “finiteness™ in a category: A is sf-finite if A% is an isomorphism for
all ultrafilters D. We will use this concept in §2.)

Now the categories A, have reduced products and they are easily seen to be
the usual ones. In fact, it is a straightforward consequence of the 10§ Theorem
that in an elementary P-class ¥, uitraproducts are defined and they are usual
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(hence “¥-finite” = “finite underlying set””). However, as we shall see (in Example
2.4), being an elementary class with ultraproducts as a category is not enough to
ensure that those ultraproducts will be usual.

If % is a Horn class, a classic result of C. C. Chang - that Horn sentences are
preserved by all reduced products - shows that % has reduced products and they
are indeed the usual ones. For future reference we state the most important
results concerning how the studies of elementary classes and reduced products
relate to one another.

1.1 THEOREM. (i) (Frayne-Morel-Scott, Kochen) ¥ is an elementary class
iff % is closed under ultraproducts and elementary equivalence.

(ii) (Chang, Keisler, Galvin) ¥ is a Horn class iff ¥ is closed under reduced
products and elementary equivalence.

(iii) (Keisler, Shelah) Two relational structures are elementarily equivalent (i.e.,
satisfy the same first order sentences) iff they have isomorphic ultrapowers for some
ultrafilter. :

(iv} (Folklore) ¥ is a quasivariety iff ¥ is an SP-class closed under ultra-
products.

(see [7]) that a Horn S-class is a quasivariety. To see this suppose % is an SP-class
closed under ultraproducts. To show ¥ to be a quasivariety it suffices to show that
X is closed under arbitrary reduced products. So let (A;:ieI) and D be given,
A;e¥ each iel, and D is a filter on I Letting % ={D': D’ is an ultrafilter on I,
D c D}, we note that D= N 4 and therefore that [, A, naturally embeds in the
product [[pca By, where By =TI A,

If ¥ is any P-class, and if [[§ A, is defined, then there are “external” and
“internal” limit morphisms p;:[Lic; A =1l A oF :[Les Ai—TIH A, and a
morphism 85 : [IpA; = [[5 A; such that B%ep, =p¥ for all Je D. Our main
lemma is the following,

1.3 Lemma. Let X and £ be SP-classes of algebras, and let % — £ be a
category equivalence. If {A;:i€I) is an indexed family in ¥, D is a filter on I, and
BZ:Tlo ®(A) - IIE ®(A,) is an isomorphism then so too is BE:IIn A = TI¥ A.

Proof. Without loss of generality we may treat [[p ®(A,) and [IE ®(A;) as
identical and define [I§ A; via the correspondence @.

Since ¥ is an S-class of algebras, it will suffice to show that BE:1Ip A, —
[I5 A, is one-one; so let [flp #[glp in the usual reduced product Il A: {flp =
{f ellics A; :{i: F(i) = f(i)t € D}). Then for each J & D, the restrictions ftroLgtd
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are distinct in [[;c; A;. Let F(x) be the free ¥-algebra over the singleton set {x}
(the ‘underlying set functors for SP-classes have left adjoints), and let ¢y(x) =
f T, v(x)=g I J, Je D. Letting n; : E; — F(x)} be the equalizer of ¢y, vy, we note
that =, is an inclusion which is not an isomorphism; and that for all J2KeD
there is an inclusion mnk:E; — Ex. Also note that for each J2KeD, ¢ =

P.nc & ‘YK pJK o yy; and hence the compositions ¢p = p; ° &1, Yo =05 ° ¥n. ¢5=
¥ ooy, v5=p¥ oy are independent of Je D. Thus '

BE( o) = Bh(dp(x)) = dH(x), and
BE(g]p) = Bo(¥B(x)) = vB(x).

Since homomorphisms which agree at x must agree everywhere, it will suffice to
prove ¢5#¥h.

Since each E; is a proper subalgebra of F(x), we know that x¢ E= Ujep Ey =
lim (E, :J€ D). It thus follows that the inclusion n : E — F(x) is not an isomorph-
1sm hence that ®(n): P(E) — ®(F(x)) also fails to be an isomorphism.

Now & is an SP-class and ®(z) is a monomorphism. Thus ®(n) is one-one,
hence must fail to be onto. So let y € ®(F(x)) fail to be in the image of ®(n).
Then, since @(7) is the limit morphism for the equalizers @(»;), each pair D(P;),
®(v,) must disagree at y. But [T5 $(A;) is the usual reduced product. This means
that ®(¢%) and P(v%) also must disagree at y; therefore ¢ # vp as desired.  [J

The proof of (0.2) is now easy, given the classic results (1.1}. Suppose X is an
SP-class which is category equivalent to a quasivariety £. Then &£ is an SP-class
and has usual reduced products. By (1.3), ¥ is closed under usual reduced
products, and is hence a quasivariety. [

2. A question and some examples.

In (1.3) we never used the full strength of the hypothesis that £ is an SP-class,
and it would be interesting if we could draw the conclusions of (0.2} from the
weaker assumptions that % is equivalent to an elementary P-class (resp. Horn
class). In particular we would like an answer to the following.

2.1 QUESTION. If ¥ is an SP-class which is category equivalent t0 an
elementary P-class (resp. Horn class), does % necessarily have usual ultraproducts
(resp. reduced products)?

The problem in trying to prove an appropriately strengthened (1.3) is that,
although it is easy to see that ®(d;) # @(v,) for all J € D, we need the existence of



Vol 16, 1983 On categories of algebras equivalent to a quasivariety 157

a single ye ®(F(x)) at which each pair of morphisms fails to agree. We have
explored various hypotheses under which such a y can be found, but the
assumption that % is an SP-class is the only one which seems reasonably elegant.

Here are some examples 4 propos of this question. First of all, we cannot
remove the property of SP-closure from ¥,

2.2 EXAMPLE. A class % of algebras which is category equivalent to an
equational class and which has unusual ultraproducts.

Construction. As mentioned before, the class ¥ of rings of continuous real-
valued functions with O-dimensional compact Hausdorff domains is equivalent to
the equational class of Boolean algebras. To see that % does not have usual
ultraproducts we note that A € ¥ is ¥-finite iff A is a finite power of the ring of
real numbers, [

Although a negative answer to (2.1) would be hard (if not impossible) to find, it
is relatively easy to specify an SP-class of algebras with unusual ultraproducts.

2.3 EXAMPLE. An SP-class i of algebras which has unusual ultraproducts.

Construction. Let M, be all algebras equipped with a countable sequence of
unary operations, and let ¥ ={(A, (f).<.):if a# b then f,(a)+# f.(b) for some
n<w}p Nowlet A=w+1={0,1,2,..., w}, let

if m=n

1
falm) = {0 it m#n,

m<w, and f,(w)=0 for all n<w.

Then it is not hard to check that ¥ is an S-class, % -reduced products exist, and
the algebra A above is infinite and ¥ -finite. Consequently, ¥ has the properties
claimed. []

We close with an example which answers in the negative a question raised in
private conversation with B. Banaschewski, to wit: If % is an elementary class
which has ultraproducts as a category, are those ultraproducts necessarily the
usual ones?

2.4 EXAMPLE. A universal elementary class ¥ of relational structures
which has unusual ultraproducts. :

Construction. Let M, be all relational structures equipped with one unary
operation and one unary relation, and let ¥ ={{A, f, V}:ae V iff fla)#a, all
ae A}. Clearly, ¥ is the class of models of a single universal sentence in the
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appropriate first order language. (% is thus an S-class.) Given (A, f, V)eX,
define U={acA:fla)=a}=A-V, U®=U, UV={acA:f**(a)e U and
f*(a)e V} (where n<w and f* denotes the n-fold iterate of f), and U“’=
{ac A:f*(a)e V, all n <w}. Then {U: a < w} is a partition of A; and if h is any
homomorphism between members of % then h preserves all sets U (because h
must preserve V). Thus if A, =(A, f,, Vi), i€l, then [ A = Uase [l U <
[Lic; A If D is an ultrafilter on I then [I5 A; = Uqsx<o [Io Ui <[Ip A, hence it
follows that A is ¥ -finite iff U™ is finite for all @ =, Let A = w, define f(0)=0,
and for each n=1 define f(n)=n—1. Of course U™ ={n}, n<w, and U =@
Thus A is infinite and ¥ -finite, so % has unusual ultraproducts. [J

2.5 Remark. The class % in (2.4) is not equivalent to an elementary P-class.
To see this it clearly suffices to find a ¥-finite A with an infinite set of
endomorphisms. So let A={0,1,1,2,2,...}, and define f(0)=0, f(k)=f(k")=
k —1 for k>0. Then U®={0}, U™ ={n, n'}, n>0, and U“’=@. For each n <o
define ¢,: A — A by

k if k=n

a®=0, etd=k e)={% & on

This gives an infinite family of endomorphisms on A.
It would be interesting to find an elementary class ¥ which is equivalent to an
elementary P-class and which has unusual ultraproducts.
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