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FIRST ORDER REPRESENTATIONS
OF COMPACT HAUSDORFF SPACES

Paul Bankston

ABSTRACT. If two compact Hausdorff spaces have elementarily equivalent lattices
of closed sets, then their nnital rings of continmous real-valued functions satisfy the
same positive-universal sentences, We briefly indicate how this is proved (with details
appearing elsewhere), and offer fairly strong evidence that the weakness of the conclusion
is in some sense inevitable.

Let r be a type of finitary relation and function symbols, and denote by M(r)
the category of relational structures of type r (see [8]), together with those maps
which preserve atomic relations for morphisms. If X is a category, then a frst
order representation (f.o.r.) of X in type 7 is just a functor R : X — M(r). We
denote by R[X] the class {R(X) : X € X'}. This notion was first defined explicitly
in [4], but was implicit much earlier in [9); and a fairly extensive model theoretic
study has been made of f.0.r.’s whose domains are categories of topological spaces.

1 ExXAMPLES. For a topological space X, let F(X) (resp. Z(X), B(X)) denote
the bounded lattices of closed (resp. zero-, clopen) subsets of X; and let D(X)
denote the bounded lattice of continuous maps from X to the closed unit interval
[0,1]. By adding constants ¢; for 0 < ¢ < 1 to the type of bounded lattices we
get the type of “[D,1}-lattices”, and let E(X} denote the [0, 1]-lattice of continuous
[0, 1]-valued maps on X. These f.o.r.’s, along with the unital ring C{X) of contin-
uous real-valued functions on X, are contravariant as functors from the category
TOP of spaces and continuous maps. Other examples are legion: among those
which are covariant on TOP are the first singular homology group and the edge-
path groupoid. The semigroup of self-maps is functorial only when one restricts
the morphisms of TOP to be the homeomorphisms.

In this note we will consider the domain X to be a full subcategory of the
category K H of compact Hausdorff spaces and continuous maps, and focus on
applications of techniques involving “exotic” ultrapowers. The main result of (4]
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is concerned with the preservation of elementary equivalence (in the usual sense
of [6], and denoted by =) as we pass from one f.o.r. to another. To be spec:ﬁc a
somewhat more general version of the following is proved.

2 THEOREM. [4, Theorem (2.13)]. Let X and Y be compact Hausdorff. If
F(X)=F(Y) (or Z(X) Z(Y)) then C(X) and C(Y) satisfy the same positive-

universal sentences.

PROOF(SKETCH): The positive-universal formulas are built up from the atomic
formulas using conjunction, disjunction, and universal quantification. The truth
of sentences of this type is well known [8] to be preserved under substructures and
homomorphic images. Assuming F{X) = F(Y) (the case Z(X) = Z(Y) is handled
similarly), the first step is to use the Keisler-Shelah ultrapower theorem [6] to find
an ultrafilter U so that the ultrapowers IIy F(X) and Iy F(Y) are isomorphic as.
lattices. Next, inspired by the fact that, by Stone duality, ultrapowers of Boolean
algebras correspond to “ultracopowers” of Boolean (= totally disconnected com-
pact Hausdorff) spaces, one examines ultracoproducts of arbitrary compact Haus-
dorff spaces as inverse limits of coproducts in K H (see [3], [4], [5]). Denoting the
ultracopower of X via U by Ly X, one goes on to prove the crucial lemma that an
isomorphism between Iy F(X) and Iy F(Y) induces a homeomorphism between
EZyX and ByY. The duality theorem of Gel’fand-Kolmogorov then tells us that
C(X) and C(Y') have isomorphic “ultrapowers”. Unfortunately this must be taken
in the category-theoretic sense. Letting I}, C(X) denote C(Ey X), one determines
that this ring can be obtained from the usua.l ultrapower 11y C(X) by taking a
quotient of & subring in such a way that there is still .2 natural embedding from_
'C(X) to M};C(X) (induced by the diagonal maps from C(X) into powers of C'(X),
in the category C[KH]). The last step is to use this analysis to make the easy
inference that C(X)-and C(Y) must satisfy the same positive-universal sentences.ll
3 REMARKS. (i) One way to try to prove a'preservation theorem about elemen-
tary equivalence is to effect a syntactic translation which has desirable semantic
qualities. Such an approach was used by A. MacIntyre [9, ".[‘heorem (5.1)] to show
that elementary equivalence is preserved for all compact Hausdorff (even Tichonov})
spaces as we pass from C to Z. (The translation is based on the dbservation that,
gnren 1,9 € C(X), their.zero-sets Z(f) and Z{g) are disjoint iff f* + g has an
inverse. Thus Z(f) C Z(g) iff for each h € C(X), if Z(g) and Z(h) aré disjoint
then so are Z(f) and Z(h). This tells us how to. translate the atomic.formulas
in the language of lattices. The rest of the translation follows straightforwardly.)
This approach can also be used to show the preservation of elementary equivalence
for all spaces when we pass from F or Z to B. (Here, the basiz of the translation
is the observation that a closed (or zero-) set in X is in B(X) iff that set has a
complement.) However, any attempt at translation seems doomed to failure in the
case of Theorem (2) because of the following example due to J. Isbell [9, Theorem
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(5.2)]. Let X {resp. Y) be the one-point compactification of a countably infi-
pite (resp. uncountable) discrete space. Then F(X) = F(V) [9, Theorem (3.3))].
However Isbell observed that in Z(Y) every atom is complemented, whereas in
Z(X) the atom corresponding to the point at infinity of X is not complemented;
g0 Z(X) # Z(Y). By MacIntyre’s theorem, C(X) # G(Y). (At this point we do
not have absolute proof that Z(X) = Z(Y) does not imply C(X) = C(Y), but we
have strong suspicions.)

(ii) The for. € : KH — C[KH)] is very special in that it is a category du-
ality (the Gel’fand-Kolmogorov theorem). This is what allows us to infer that
N},C(X) = M}C(Y) above. What prevents the desirable conclusion “C(X) =
C(Y)” in Theorem (2) is the pathological nature of C[KH] as a class of rings: if
it were closed under usual cartesian powers as well as usual ultrapowers (it fails
on both counts), then everything would be fine, i.e. the usual ultrapowers would
be the categorical ones.

A similar situation arises with the for. [E. As recently shown by B. Ba-
naschewski [1], E : KH — E[KH] is also a duality. Unlike the category C|KH),
E[KH] (= the “separated functionally complete” [0, 1]-1attices) does have usual
products; however ultraproducts in E[KH] are generally quotients of the usual
ultraproducts. Thus, techniques similar to those used to prove Theorem (2) work
in this setting, and we can infer that E(X) and E(Y) eatisfy the same positive-
universal sentences whenever F(X) = F(Y) or Z(X) = Z(Y). Unfortunately we
see no way to improve on this, even though ultraproducts behave better here than
in C[K H].

(iii) Once we have a version of Theorem (2) for E, we can immediately obtain
one for D since any sentence in the language of bounded lattices fiolds in D(X) just
in case it holds in E{X). (We note in passing that D is not a duality; although, as
is proved in [, Corollary to Proposition (1)), D is “sharp”, ie. D(X) and D(Y)
are non-isomorphic whenever X and ¥ are non-homeomorphic.)

Theorem (2) can be naturally decomposed into two steps as follows. Define
two compact Hausdorff spaces X and ¥ to be co-elementarily equivalent (we
write X = Y, abusing notation slightly) if there are ultrafilters U and V such that
the ultracopowers Dy X and EyY are homeomorphic. (Note that, for Boolean
spaces X and Y, X = Y 'iff B(X) = B(Y) (Stone duality plus the ultrapower
theorem). It is not trivial, however, to show that = is an equivalence relation on
* KH [6].) Step one is to show that R(X) = R(Y) implies X = Y; and step two is
to show that X =Y implies something about ${X) and $(Y). It turns out that
the conjunction of steps one and two is much stronger than Theorem (2) (in which
ultrapower issues are completely liidden): one can easily obtain spaces X,Y € KH
such that X = Y but R(X) # R(Y), where Rie any of F, Z or C. (Let X and Y be
Boolean without isolated points, let X be extremally disconnected, and let ¥ fail
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to be basically disconnected [T]. Then B(X) and B(Y'), being atomless Boolean
~ algebras, are elementarily equivalent. Thus X = ¥. But clearly F(X) # F(Y)
and Z(X) £ Z(Y). C(X) # C(Y) now follows by MacIntyre’s theorem.)

A Theorem (2)-style proof could also be easily cooked up to show F(X) =
F(Y) implies B(X) = B(Y) (as can be shown much more directly by translation
techniques (see Remark (3(i)) above)). Of more interest, though, is step two:
X =Y implies B(X) = B(Y) for all X,Y € KH. (This follows directly from
Lemma (4.6) of [8] which asserts that B(XyX) & Iy B(X) for any X € KH and
ultrafilter &.) The fact that B iz not sharp when one goes beyond the category
BS of Boolean spaces is somewhat irksome, however; and the zearch is on to find
a sharp for. R: X — M(r); where X is a full subcategory of KH properly
containing BS, and R(X) = R(Y) whenever X = Y. Because of ultrapower
techniques already available, there is a hope that such an R could be found so that
R: X — R|X]is a duality and R[X]is an “elementary P-class” (i.e. the class of
models of a first order theory, closed under usual products). Unfortunately, this
hope cannot be fulfilled: any R with the above properties must bear a very strong
resemblance to Stone duality.

4 THEOREM. Let X be a full subcategory of KH, coptaining BS, and suppose
that R : X — M(r) is & fo.r. which is a duality onto R{X|. Assume further that
R[X] is an elementary P-class.

Then:

(i) [8] X € X is finite iff R(X) is finite.

(ii) (Banaschewski [2]) X = BS.

(iii) For all X € X, |B(X)] £ |R(X)| (|- | denotes cardinality). Moreover, if X is
infinite then w(X) < |R(X)| (w(-) denotes “weight”, i.e. the smallest cardinality
of an open basis).

(iv) If, in R{X), equalizers are embeddings and coequalizers are surjections then
w(X) = |R(X)| for all infinite X € X .

PROOF: (i) Because X' contains the Stone-Cech compactification B(X) for each
discrete X, we know that all the KH-copowers of the singleton space 1 lie in X.
If U is any ultrafilter then the ultracopower Zy1 = lim{#(X) : X € U, Xdiscrete}

is simply 1 again [3, Lemma (4.2)]. Thus the same is true in the category X. Let
P = R(1). Since K = R[X] is closed under usual powers and ultrapowers, the
categorical ultrapowers in K are the usual ones. Consequently P is isomorphic to
each of its ultrapowers, and is hence finite. If X € X has n elements, n finite,
then X is the n-fold copower of 1; whence R(X) is the n-fold power P*, a finite
structure. Conversely, if X is infinite then X has infinitely many endomorphisms
in X (because X € KH is full and constant maps are continuous). Thus R(X)
has infinitely many endomorphisms in X, hence R(X) iz infinite.
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(1) We will only sketch the proof. The basic idea behind the clever argument in
[3] is to find an object in K which plays a role analogous (to enough of a degree)
to that played by the free Boolean algebra on a singleton. The natural candidate
is P", where n is the cardinal of P. (If R were Stone duality, P would be the
two-point algebra, and P* would be the four-point algebra.) Although P" will
not in general be free on a singleton, it is enough to show that it is a generator
(read “separator”) in the category K. This is not trivial to prove (the finiteness
of P is crucial); but once it is established, the rest is easy. For let X be the space
in X corresponding to P*. Then X, a copower of 1, is Boolean. But X is also a
cogenerator for X . This implies that, whenever ¥ € X and z,y € Y are distinct
elements, there exists a continuous f : ¥ — X with f(z) # f(y). This is, of course,
impossible if Y has a nontrivial connected subset.

(iii) First of all, it is easy to see that the structure P has cardinality > 2. Thus
if X € X is finite of cardinality n then |B(X)| = 2" < |P|* = |R(X)|. Suppose
X is infinite. Then o = | B(X)| is infinite and & = |homy (X, 2)|, where 2 is
the doubleton space. Thus a = |homy (P?, R(X))| < |R(X)| since P is finite and
R(X) is infinite. If X is infinite, we have, from (i), that X is Boolean. Hence
v(X) = |B(X)].

(iv) Given any X € X, let X4 denote X with the discrete topology. Then the
obvious contimuous surjection f : B(X¢) — X is a coequalizer in X since, by
(i), X = BS. Hence R(X) embeds as a substructure of R(B(X%)) = P2, where
a = |X|. This says that every structure in K is a substructure of a power of P.
Now let 7 be the type appropriate to K. Then we lose no generality in assuming
that r is countable: for if two distinguished relation or function symbols agree on
the finite structure P, they must agree on each structure in K.

Now suppose X is infinite, and let & = w(X). Since, by (ii), X is Boolean, there is
an embedding of X into the Cantor discontinuum 3*. Since embeddings in BS are
equalizers, we know that R(X) is a homomorphic image of the a-fold K- copower
of P2, The result that |R(X)| € a (and hence, by (iii), that |R(X)| = w(X)) will
be immediate once we prove the -

CLAIM. Let AX be the K-coproduct of the family {A¢ : § < a), where |Ael < a
for each § < @. Then [AX]| < a.

To see this, let a'g : Ag — AX be the canonical injection, £ < a, and let
A € M(r) be the usual free product of the A%’s (r is a countable type), with
injections og : Ag — A. Since the images of the maps o generate A (see [8]), we
know that |A| < a. Now there is a unique homomorphism ¢ : 4 — AK such that
poog = a-f forall § < a. Let B C AKX be the image of . By the Lowenheim -
Skolem theorem, there is an elementary substructure A’ C AX with B C A’ and,
because |B| < a, |A!] < a. Since K is an elementary class, A' € K. And since 4'
behaves like the K-coproduct, it follows that A’ = AX, This completes the proof
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of the Claim and of the Theorem.|]

5 REMARK. Theorem (4{ii)} answers Question (5.1) of [8), namely whether KH
can be category dual to an elementary P-class. This question was also answered
independently by J. Rosicky [10]; however the techniques in [10] are more special
than Banaschewski’s and do not seem to be directly applicable to yield Theorem
(4(ii)). :

€ QUESTIONS. (i) Under hypotheses similar to those of Theorem (4(iv)), can
it be shown that R{X} is actually the structure of continuous functions from X to
P (with the discrete topology)?

(ii) How many co-elementary equivalence classes are there in K H (This question
is also raised in [§].) Since F(X) = F(Y) implies X = ¥, and the language of
lattices is countable, we know this number is at most the power of the continuum.
On the other hand, by Stone duality and the fact that the theory of Boolean
algebras has countably many complete extensions [8], we know the number of
co-elementary equivalence classes in BS is countable.
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