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Abstract. We continue our study of ultracoproduct continua, focusing on
the role played by the regular subcontinua–those subcontinua which are them-
selves ultracoproducts. Regular subcontinua help us in the analysis of intervals,
composants, and noncut points of ultracoproduct continua. Also, by identi-
fying two points when they are contained in the same regular subcontinua,
we naturally generalize the partition of a standard subcontinum of H∗ into its
layers.

1. Introduction

The theme of this article is an examination of ultracoproduct continua from the
perspectives of intervals, composants and varieties of noncut point, and is a con-
tinuation of the study of topological ultracoproducts begun in [5, 6]. (See [7] for
a survey up to 2003, as well as [18] for a survey up to 1992 on the use of ultraco-
products of arcs.) A principal tool in our investigation is the employment of regular
subcontinua, those subcontinua which are themselves ultracoproducts. We give a
partial answer to when ultracoproducts of intervals are intervals; we also specify
conditions under which the composant structure of an ultracopower of continuum X
is like–or very much unlike–that of X. We consider the existence of various kinds of
noncut point in nonmetrizable continua, in the aim of generalizing existence results
known for the metrizable case. While the existence of nonblock points is assured for
separable–but not all–continua, it is still true that each continuum has ultracopow-
ers which are irreducible about their sets of nonblock points. Finally we investigate
what happens when we define two points of an ultracoproduct to be R-equivalent
if they both lie in the same regular subcontinua. R-classes in ultracoproducts of
arcs via nonprincipal ultrafilters on a countable set are also known as layers, and
are instrumental in the study of the Stone-Čech remainder H∗ := β(H) \ H of the
real half-line (see, e.g., [18]).

2. The Ultracoproduct Construction

Here we use the term compactum to refer to a compact Hausdorff topological
space; a continuum is a nonempty compactum that is also connected. A subcon-
tinuum of a topological space X is a subset that is a continuum in its subspace
topology. If x ∈ X, then the component of X at x is the union C(X, x) of all
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connected subsets of X that contain x. The components of a space are well known
to partition it into connected closed subsets.

A point c of a connected space X is a cut point of X if its complement X \ {c}
is not connected; otherwise c is a noncut point.

A space is nondegenerate if it contains at least two points. If x is a point of
a nondegenerate continuum X, the composant of X at x is the union κ(X, x) of
all proper subcontinua of X that contain x. The composants of a nondegenerate
continuum are well known to be connected dense subsets (see [24]).

The topological ultracoproduct construction gives us an important source of
nonmetrizable continua; it also furnishes an avenue for bringing model-theoretic
methods to topology.

Start with an infinite discrete set I and let ~X = 〈Xi : i ∈ I〉 be an I-sequence of
compacta. Then each ultrafilter D on I gives rise to a new compactum ~XD (also
denoted

∑
D Xi), the D-ultracoproduct of the family, as follows:

Step 1 Form the disjoint union Y =
⋃

i∈I(Xi × {i}), with q : Y → I the map
taking a pair in Y to its second coordinate.

Step 2 Let qβ : β(Y ) → β(I) be the Stone-Čech lift of q.
Step 3 Viewing the ultrafilter D as a point in β(I), define ~XD to be the point

pre-image (qβ)−1[D].

When each Xi is the same compactum X, then ~XD is denoted XD and is referred
to as the D-ultracopower of X. The space Y above is then X × I, and the first-
coordinate map p : Y → X induces a continuous surjection pD := pβ |XD : XD →
X, known as the codiagonal map.

We use both vector notation and index notation in the sequel for ultracoprod-
ucts and their near-relatives, the ultraproducts. While vector notation has the
advantage of compactness, the index notation is obviously better for working with
coordinatewise operations.

As the terminology suggests, ultracoproducts and classical ultraproducts are
dual notions from the viewpoint of category theory (see [7]), but the following is
a more useful account of their connection. Given an I-sequence ~A of nonempty
sets and D an ultrafilter on I, the D-ultraproduct ~AD (also denoted

∏
D Ai)

consists of all equivalence classes that arise as ~a,~b ∈
∏

i∈I Ai are identified whenever
{i ∈ I : ai = bi} ∈ D. Elements of ~AD are denoted ~aD. If Ri is a finitary relation on
Ai of fixed arity n, i ∈ I, then the D-ultraproduct ~RD may be naturally viewed as an
n-ary relation on ~AD. In this way we extend ultraproducts of sets to ultraproducts
of relational structures. (See, e.g., [16].)

When each Xi is a compactum, the points of ~XD are the maximal filters in
the bounded lattice consisting of all ultraproducts ~FD, where each Fi is closed in
Xi. If Si ⊆ Xi, i ∈ I, we denote by (~SD)] the set of points µ ∈ ~XD such that
some member of µ is contained in ~SD. Subsets of ~XD of the form (~SD)] are called
regular. The closed (resp., open) sets in ~XD are then basically generated by the
closed (resp., open) regular subsets.

Remark 2.1. Indeed (see [7]), if Ai is a lattice base for Xi, i ∈ I; i.e., a closed-set
base that is also a bounded lattice under finite unions and intersections, then the
regular sets ( ~AD)], where each Ai is in Ai, constitute a lattice base for ~XD. The
class of Wallman lattices, those bounded lattices isomorphic to a lattice base for
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some compactum, is axiomatized using simple first-order sentences. This fact pro-
vides an important gateway between the model-theoretic world and the topological
one (see, e.g., Theorem 4.7 below).

Each ~xD ∈ ~XD may be canonically identified with the single point in (
∏
D{xi})],

which we denote by ~xD. We refer to such points as the regular points of ~XD. The
regular points show how each ultraproduct ~SD may be viewed as a (clearly dense)
subset of (~SD)].

It is easy to show that when each closed Fi ⊆ Xi is regarded as a compactum,
the set (~FD)], as a subspace, is naturally homeomorphic to the ultracoproduct ~FD.
Because of its relative simplicity, we will use the latter notation when appropriate.

One may generally start with an I-sequence ~X of topological spaces and an
ultrafilter D on I, and take ultraproducts ~UD, where Ui is open in Xi, i ∈ I. These
“open ultraboxes” provide an open-set base for the topological ultraproduct ~XD

(see [7, Section 3]). Often the topologies on the constituent spaces Xi are induced by
other structures; e.g., by total orderings ≤i. In this case the ultraproduct topology
on ~XD is induced by the ultraproduct total ordering

∏
D ≤i. (See [7]. This also

works when the other structures are uniformities, but not when they are metrics.)
When the spaces under consideration are compacta, the topological ultracoprod-

uct is a compactification of the corresponding topological ultraproduct.
In model theory, when each Ai is the same relational structure A, we write AD to

denote the D-ultrapower
∏
D Ai. Here we have a canonical diagonal embedding

dD : A → AD, given by a 7→ aD As a direct consequence of the  Loś Ultraproduct
Theorem [16, Theorem 4.1.9], diagonal embeddings are elementary, in the model-
theoretic sense. However, they are almost never continuous as functions from a
topological space into one of its topological ultrapowers.

Remark 2.2. In the compact Hausdorff setting, the codiagonal map pD is specified
by taking a given µ ∈ XD to the unique x ∈ X such that µ ∈ (UD)] for every open
neighborhood U of x. pD is thus seen to be a left-inverse for the diagonal dD;
moreover, when it is restricted to the ultrapower XD, we obtain what is known in
nonstandard analysis as the standard part map (see [7, Theorem 3.8]).

A basic fact (see [5, Lemma 4.6]) about ultracoproducts of compacta is that the
Boolean lattice of clopen subsets of the ultracoproduct is isomorphic to the corre-
sponding ultraproduct of the clopen-set lattices of the factor spaces. As an imme-
diate consequence of this, we see that ~XD is a continuum if and only if

{i ∈ I : Xi is a continuum} ∈ D.

(What is more, when the factor spaces are continua, the family { ~XD : D ∈ β(I)}
of ultracoproducts comprises the components of β(

⋃
i∈I(Xi × {i}).)

Remark 2.3. Ultracoproducts of arcs, i.e.,homeomorphs of the closed unit inter-
val I := [0, 1] in the real half-line H := [0,∞), were first investigated by J. Mio-
duszewski [22], who was motivated to study the Stone-Čech remainder H∗. With
ω := {0, 1, 2, . . . }, D a nonprincipal ultrafilter on ω, and ~X an ω-sequence of arcs,
the ultracoproduct ~XD is what we refer to here as an ultra-arc. If each Xn is of
the form [an, bn], where a0 < b0 < a1 < b1 < . . . is an unbounded sequence in H,
then the ultra-arc ID is homeomorphic to

∑
D[an, bn], which in turn is naturally
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homeomorphic to the set ⋂
J∈D

clβ(H)(
⋃
n∈J

[an, bn]) ⊆ H∗.

Such ultra-arcs are commonly referred to as the standard subcontinua of H∗ (see
[18]), and have proven to be key to understanding its fine structure.

3. Intervals

Road systems were introduced in [10] to provide a uniform framework in which
to describe various classical betweenness notions. If X is a continuum, then its
family of subcontinua qualifies as a road system because: (i) each singleton set is
a subcontinuum; and (ii) each doubleton set is contained in a subcontinuum. The
point z is said to lie between points x and y if each subcontinuum containing
{x, y} contains z as well. The interval [x, y] in this interpretation of betweenness
consists of all points lying between x and y (so y ∈ κ(X, x) if and only if [x, y] 6= X).

The following useful fact about components of ultracoproduct compacta was first
proved by R. Gurevič [17].

Lemma 3.1. ([17, Lemma 10]) Let xi ∈ Xi, i ∈ I. Then C( ~XD, ~xD) =
∑
D C(Xi, xi).

Thus components of ultracoproducts at regular points are regular sets.

We will consider analogues of Lemma 3.1 for composants in the next section.
A subset of the ultracoproduct ~XD of compacta is semiregular if it contains at

least one regular point, and is irregular otherwise. Because ~XD is dense in ~XD,
any subset with nonempty interior is semiregular. On the other hand, basic results
in the study of topological ultraproducts (see, e.g., [7]) imply that if D is a countably
incomplete ultrafilter (i.e., one not closed under countable intersections), then every
infinite compact subset–as well as every nondegenerate connected subset–of ~XD
must contain irregular points.

For any subset S ⊆ ~XD, define R(S) to be the family of all regular subcontinua
of ~XD that contain S, and let R(S) be the intersection

⋂
R(S). R(S) is the regular

hull of S, evidently a subcompactum of the ultracoproduct. R(µ) is shorthand for
R({µ}), as per convention, when µ ∈ ~XD. We refer to regular hulls of singleton
sets as point hulls. The following simple result is used frequently in the sequel.

Theorem 3.2. If K is a semireglar subcontinuum of ~XD, then R(K) = K. In
particular, point hulls of regular points are singletons.

Proof. Let K ⊆ ~XD be a subcontinuum that is semiregular; say K contains the
regular point ~xD. Let F be the collection of all closed regular sets containing K.
Then K =

⋂
F . If ~FD ∈ F and Ci = C(Fi, xi), then ~CD = C(~FD, ~xD), by Lemma

3.1. Hence K ⊆ ~CD ∈ R(K) ⊆ F , and we infer that K = R(K). �

We will see below (Remark 4.8 (ii, iii)) that the semiregularity assumption in The-
orem 3.2 cannot be dropped.

If X is a continuum and x, y ∈ X, the interval [x, y] is manifestly the intersection
of all subcontinua of X that contain both x and y. The points x and y are bracket
points for the interval (bearing in mind that an interval may have many sets of
bracket points). In the case of an ultracoproduct continuum, an interval is bracket-
regular if it has a set of regular bracket points.
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Theorem 3.3. Let xi, yi ∈ Xi, i ∈ I. Then [~xD, ~yD] ⊇
∑
D[xi, yi]. Moreover, if

there exists a natural number n ≥ 1 such that each interval [xi, yi] is the intersection
of at most n subcontinua of Xi, then [~xD, ~yD] =

∑
D[xi, yi]. In particular, bracket-

regular intervals are regular sets, and [~xD, ~yD] is connected if and only if

{i ∈ I : [xi, yi] is connected} ∈ D.

Proof. Let K ⊆ ~XD be any subcontinuum containing {~xD, ~yD}. By Theorem 3.2,
K =

⋂
R(K). If ~LD ∈ R(K), then we have {i ∈ I : {xi, yi} ⊆ Li} ∈ D. Thus {i ∈

I : [xi, yi] ⊆ Li} ∈ D too. Hence
∑
D[xi, yi] ⊆ ~LD. This gives us

∑
D[xi, yi] ⊆ K,

and we infer that
∑
D[xi, yi] ⊆ [~xD, ~yD].

Suppose that each [xi, yi] is the intersection of at most n subcontinua of Xi;
without loss of generality we may assume n = 2, and write [xi, yi] as the intersection
Ki ∩ Mi of subcontinua of Xi, i ∈ I. Then ~KD and ~MD are subcontinua of ~XD
containing {~xD, ~yD}; so we have∑

D
[xi, yi] ⊆ [~xD, ~yD] ⊆ ~KD ∩ ~MD =

∑
D

(Ki ∩Mi) =
∑
D

[xi, yi],

and the desired equality holds. �

Question 3.4. Are bracket-regular intervals always regular sets?

The next result is an immediate corollary of Theorem 3.3. Recall that a continuum
is unicoherent if it cannot be the union of two subcontinua whose intersection is
disconnected; it is hereditarily unicoherent if each of its subcontinua is unico-
herent. It is easily shown that a continuum is hereditarily unicoherent if and only
if each of its intervals is connected.

Corollary 3.5. Let xi, yi ∈ Xi, i ∈ I, where each Xi is a hereditarily unicoherent
continuum. Then [xD, yD] =

∑
D[xi, yi]. In particular, bracket-regular intervals are

regular subcontinua.

Remark 3.6. In [22], the layer of a point µ ∈ ID is defined to be the intersection
of all bracket-regular intervals containing µ. This is clearly the point hull R(µ), by
Corollary 3.5.

Ultracoproducts both preserve and reflect unicoherence of continua [8, Theorem
5.1]; also if {i ∈ I : Xi is not hereditarily unicoherent} ∈ D, then it is easy to form
two regular subcontinua of ~XD with disconnected intersection. So hereditary uni-
coherence is reflected by the ultracoproduct construction, but we do not currently
know whether it is also preserved. Corollary 3.5 provides only a weak affirmative
answer; here is a second one.

Theorem 3.7. In an ultracoproduct of hereditarily unicoherent continua, the in-
tersection of any two semiregular subcontinua is connected. Hence any semiregular
interval is connected as well.

Proof. Assume each Xi is hereditarily unicoherent, i ∈ I, with K and M two
overlapping semiregular subcontinua of ~XD. By Theorem 3.2, we may write K =⋂
R(K) and M =

⋂
R(M). If ~AD and ~BD are both in R(K)∪R(M), then–because

each Xi is hereditarily unicoherent– ~AD ∩ ~BD =
∑
D(Ai ∩ Bi) is a subcontinuum

containing K ∩M 6= ∅. Let P be the family of pairwise intersections of sets from
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R(K) ∪ R(M). Then P is a downwardly directed family of subcontinua of ~XD;
hence

⋂
P = K ∩M is a subcontinuum of ~XD.

Now suppose [µ, ν] is a semiregular interval in ~XD, and let K be the family of
subcontinua of ~XD that contain {µ, ν}. Then each subcontinuum in K is semireg-
ular; hence, by the argument above, the family K is downwardly directed. Thus
[µ, ν] =

⋂
K is connected. �

Question 3.8. Does the ultracoproduct construction preserve hereditary unico-
herence? (In the very special situation with ultra-arcs, the answer is yes: H∗ is well
known to be hereditarily unicoherent, by an old result of L. Gillman and M. Hen-
riksen [18, Theorem 5.6]. Ultra-arcs embed in H∗, and are therefore hereditarily
unicoherent too.)

The argument in the last proof gives us information about regular hulls.

Corollary 3.9. In an ultracoproduct of hereditarily unicoherent continua, all reg-
ular hulls of subsets are subcontinua.

In the sequel we will be interested in whether regular hulls of subcontinua are
connected; and for this, we do not need the full power of hereditary unicoherence.
Given finite cardinal n ≥ 1, define continuum X to be hereditarily n-coherent if
the intersection of any two subcontinua of X has ≤ n components. (So hereditary
unicoherence is synonymous with hereditary 1-coherence; simple closed curves are
hereditarily 2-coherent.)

Theorem 3.10. Let n ≥ 1 be finite. In an ultracoproduct of hereditarily n-coherent
continua, all regular hulls of subcontinua are subcontinua.

Proof. Let K be a subcontinuum of ~XD, where each constituent continuum is hered-
itarily n-coherent. It suffices to show that the collection R(K) of regular subcon-
tinua containing K is downwardly directed. But if M = ~PD and N = ~QD are in
R(K), then M ∩ N =

∑
D(Pi ∩ Qi). Because of hereditary n-coherence, we have

some 1 ≤ m ≤ n such that for D-almost every i ∈ I, Pi ∩Qi = Pi,1 ∪ · · · ∪ Pi,m, a
union of m pairwise disjoint subcontinua of Xi. Thus M ∩N = L1∪· · ·∪Lm, where
Lj is the subcontinuum

∑
D Pi,j . For some unique k ∈ {1, . . . ,m}, we have K ⊆ Lk;

hence Lk ∈ R(K). Thus R(K) is downwardly directed, and R(K) =
⋂
R(K) is a

subcontinuum of ~XD. �

A continuum X is irreducible about S ⊆ X if no proper subcontinuum of X con-
tains S. (So X is irreducible about {a, b} just in case X = [a, b].) X is irreducible
if it is irreducible about some two-point subset. The next result is another easy
consequence of Theorem 3.2.

Proposition 3.11. If each continuum Xi is irreducible about Si ⊆ Xi, i ∈ I,
then ~XD is irreducible about ~SD. In particular, if Xi is irreducible about {xi, yi},
then ~XD is irreducible about {~xD, ~yD}; so ultracoproducts of irreducible continua
are irreducible.

Proof. If K is a proper subcontinuum of ~XD containing ~SD, then K is semiregular;
hence Theorem 3.2 affords us a proper regular subcontinuum ~KD ⊇ K. But then

{i ∈ I : Ki is a proper subcontinuum of Xi containing Si} ∈ D,

a contradiction. �
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Question 3.12. To what extent is it true that the ultracoproduct construction
reflects irreducibility in continua?

We will see in the next section (i.e., Remark 4.8 (i)) that XD can be irreducible,
while X is not. However, we can produce an interesting scenario in which there is
an affirmative answer.

Recall that a continuous surjection between topological spaces is monotone if
pre-images of subcontinua of the range are subcontinua of the domain. A space is
locally connected if each point has a neighborhood base consisting of connected
open sets.

Lemma 3.13. ([9, Propositions 2.2, 2.3]) A compactum X is locally connected if
and only if every codiagonal map pD : XD → X is monotone.

Theorem 3.14. Let X be a locally connected continuum. Then X is irreducible if
and only if every (some) ultracopower of X is irreducible.

Proof. First assume X is an irreducible continuum. Then XD is irreducible, by
Proposition 3.11, regardless of whether X is locally connected.

As for the converse, assume X is a locally connected continuum and that XD
is irreducible. By Lemma 3.13, pD is a monotone map. If XD is irreducible about
{µ, ν}, then X is plainly irreducible about {pD(µ), pD(ν)}. �

4. Composants

As promised after Lemma 3.1, we have the following.

Proposition 4.1. For each i ∈ I, let xi be a point in continuum Xi. Then∏
D κ(Xi, xi) ⊆ κ( ~XD, ~xD) ⊆ (

∏
D κ(Xi, xi))]. (Hence (

∏
D κ(Xi, xi))] is a con-

nected dense subset of ~XD.)

Proof. Set Ci = κ(Xi, xi), and let ~yD ∈ ~CD. For D-almost each i ∈ I, we have a
proper subcontinuum Ki ⊆ Xi with xi, yi ∈ Ki. Then ~KD is a proper subcontinuum
of ~XD containing both ~xD and ~yD; hence ~yD ∈ κ( ~XD, ~xD), establishing the first
inclusion.

Now suppose µ ∈ κ( ~XD, ~xD). Then there is a proper subcontinuum K of ~XD
containing both µ and ~xD. K is semiregular; hence there is a proper regular
subcontinuum ~MD ⊇ K, by Theorem 3.2. We then have

{i ∈ I : Mi is a proper subcontinuum of Xi containing xi} ∈ D,

thus {i ∈ I : Mi ⊆ Ci} ∈ D; and hence µ ∈ K ⊆ ~MD ⊆ (~CD)]. This gives us the
second inclusion. The parenthetical claim is immediate because composants are
always connected dense subsets. �

The composant structure of a continuum is closely tied to whether the continuum
is decomposable; i.e., expressible as the union of two of its proper subcontinua.
A continuum that is not decomposable is deemed indecomposable. The following
is an old result whose proof makes essential use of Lemma 3.1.

Proposition 4.2. ([17, Proposition 11]) The ultracoproduct ~XD is a decomposable
continuum if and only if {i ∈ I : Xi is a decomposable continuum} ∈ D.

The basic facts about decomposability and composant structure are well known,
and may be summarized as follows.
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Lemma 4.3. Let X be a nondegenerate continuum.
(i) (See [24]) If X is decomposable but not irreducible, then the only composant

of X is X itself; i.e., κ(X, x) = X for all x ∈ X.
(ii) (See [24]) If X is decomposable and irreducible about {x, y}, then X has

exactly three composants: κ(X, x), κ(X, y), and X.
(iii) (See [21]) If X is indecomposable, then any two composants of X are dis-

joint. If X is also metrizable, then the number of its composants is c := 2ℵ0 .

Our case for the composants of ultracoproducts of decomposable continua is the
following.

Theorem 4.4. Suppose Xi is a nondegenerate decomposable continuum for i ∈ I.
Then ~XD is a decomposable continuum and:

(i) If each Xi has three composants and Xi = κ(Xi, zi), then ~XD has three
composants as well, and ~XD = κ( ~XD, ~zD).

(ii) If each Xi equals the same locally connected continuum X with just one
composant, then XD has just one composant also.

Proof. Ad (i): From Lemma 4.3 (i), each Xi is irreducible. By Proposition 3.11 and
Proposition 4.2, ~XD is a decomposable irreducible continuum. Now apply Lemma
4.3 (ii) to conclude that ~XD has three composants. Suppose each Xi is irreducible
about {xi, yi}, and that zi is a point whose composant is Xi. Then there are proper
subcontinua Ki and Mi such that {xi, zi} ⊆ Ki and {zi, yi} ⊆ Mi. Then {Ki,Mi}
is a decomposition of Xi with zi ∈ Ki∩Mi, and hence { ~KD, ~MD} is a decomposition
of ~XD with ~zD ∈ ~KD ∩ ~MD. Thus κ( ~XD, ~zD) = ~XD.

Ad (ii): Assuming X to be locally connected, we still know that XD is decom-
posable. Apply Theorem 3.14 and Lemma 4.3 (i,ii). �

Question 4.5. If each Xi is a nondegenerate continuum and zi ∈ Xi, i ∈ I, when
can we be sure that (

∏
D κ(Xi, zi))] = κ( ~XD, ~zD) ?

Remark 4.6. Let D be a nonprincipal ultrafilter on ω. As is proved in [22] (see
also [18, Corollary 2.10]), the layers of the ultra-arc ID form an upper semicon-
tinuous partition into subcontinua, the quotient of which is a generalized arc (i.e.,
a totally ordered continuum). As a consequence of the study of layers, bracket-
regular intervals define their sets of bracket points; i.e., if [µ, ν] = [~xD, ~yD], then
{µ, ν} = {~xD, ~yD}. From this we may conclude that κ(ID, tD) = ID \ {(1− t)D} =
(κ(I, t)D)], for t ∈ {0, 1}, and we have a partial answer to Question 4.5.

We now turn our attention to the analysis of composants of ultracopower continua
that are indecomposable. We first remark that the metrizability assumption in
Lemma 4.3 (iii) is essential: D. Bellamy [12] has produced indecomposable continua,
of weight ℵ1, which have one and two composants.

The following is a continuum-theoretic consequence of some deep results in model
theory.

Theorem 4.7. Every nondegenerate indecomposable continuum has an ultracopower
with at least c composants.

Proof. Let X be a nondegenerate indecomposable continuum, with A a lattice base
for X. A is an infinite Wallman lattice; hence, by the Löwenheim-Skolem Theorem
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(e.g., [16, Theorem 3.1.6]), there is a countably infinite Wallman lattice A0 elemen-
tarily equivalent to A. By the Shelah Ultrapower Theorem [16, Theorem 6.1.15],
there is a countably incomplete ultrafilter D such that the ultrapower lattices AD
and AD

0 are isomorphic. If B is any Wallman lattice, let σ(B) denote its “maximal
spectrum space;” i.e., the compactum consisting of the maximal filters of B (topol-
ogized by taking sets of the form {µ ∈ σ(B) : b ∈ µ}, b ∈ B, as a closed-set base).
Then–with “'” denoting homeomorphism–X ' σ(A) and XD ' σ(AD). Since AD
and AD

0 are isomorphic lattices, we have XD ' σ(AD
0 ) ' YD, where Y = σ(A0).

The continuum Y is indecomposable, by Proposition 4.2. Also, since it has a
countable base, it is metrizable. Using Lemma 4.3 (iii), let S ⊆ Y be a subset of
cardinality c, such that Y is irreducible about any two points of S. By Proposition
3.11, YD is irreducible about any two points of SD. Since D is countably incomplete,
the cardinalities |SD| and |SD|ℵ0 are equal [16, Proposition 4.3.9]. Since |S| = c
(all we need is that S is infinite), we have |SD| ≥ c. Thus YD–and hence XD–has
at least c composants. �

Remarks 4.8.

(i) Let us call a nondegenerate indecomposable continuum with just one com-
posant a Bellamy continuum. (Bellamy continua are not all that rare;
every continuum embeds as a retract of one of them [12, 25].) Regarding
Question 4.5: the sets (

∏
D κ(Xi, zi))] need not be composants at all, even

if κ(Xi, zi) = Xi for all i ∈ I. Indeed, if X is any Bellamy continuum, X is
a composant of itself. Theorem 4.7 gives us an ultracopower XD with many
composants, all disjoint from one another. Hence XD is not a composant
of itself. This example also shows that Question 3.12 has a negative answer
in general, but we do not know whether the ultracoproduct construction
reflects irreducibility for families of decomposable (or locally connected)
continua.

(ii) Continuing with our Bellamy continuum X, let XD be an ultracopower with
many composants. Proposition 4.1 tells us that XD ⊆ κ(XD, ~xD) for any
regular point xD. Since the composants of XD form a partition, this says
that κ(XD, ~xD) = κ(XD, ~yD) for any two regular points ~xD, ~yD ∈ XD. Thus
only one composant is semiregular. If C is any of the irregular composants,
with K ⊆ C a subcontinuum, then the regular hull R(K) is all of XD, and
therefore a proper superset of K (see Theorem 3.2 for contrast).

(iii) While the semiregularity hypothesis in Theorem 3.2 cannot be discarded
altogether, it is not strictly necessary: using a Martin’s Axiom argument
(see [18, Proposition 7.3 and Theorem 8.3]), one can show that a point hull
(layer) R(µ) of ID can equal {µ} for an irregular point µ.

(iv) It is worthy of note that while H∗ is well known to be indecomposable, the
number of its composants is contingent upon the ambient set theory: if
the CH holds this number is 2c; if the (equally consistent with ZFC) Near
Coherence of Filters axiom holds, this number is exactly one, and H∗ is a
Bellamy continuum (see, e.g., [14, 18] for details).

5. Relative Composants

The notion of relative composant is important for the discussion of noncut points
in the next section.
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Let X be a continuum, with K a nonempty subcontinuum of X and A ⊆ X.
Then the composant of X at K relative to A is the union of all subcontinua of
X \A that contain K, and is denoted κ(X, K; A). In degenerate cases we simplify
notation in the obvious way; so, e.g., κ(X, {x}; ∅) = κ(X, x), consistent with the
usual composant notation.

If K 6= X, then “boundary bumping” [24] tells us that κ(X, K) is dense in X.
And while it is true that κ(X, K; y) always contains y in its closure, it can easily
fail to be dense in X. The question of when relative composants are dense was first
addressed by R. H. Bing [13]; the following is an immediate corollary of the proof
of Theorem 5 in that paper.

Theorem 5.1. Let K be a proper subcontinuum of a metrizable continuum X.
Then there exists a point y ∈ X with κ(X, K; y) dense in X.

D. Anderson [1] defines a continuum X to be coastal at x ∈ X if κ(X, x; y) is
dense in X for some y ∈ X. Theorem 5.1 says that a metrizable continuum is not
only coastal at each of its points, but coastal at each of its proper subcontinua (in
the obvious broader sense). In the interests of extending this result to all continua,
the following “reduction” theorem is an immediate consequence of the techniques
developed in [1], and is a minor improvement on [1, Corollary 4.16].

Theorem 5.2. If all indecomposable continua are coastal at their points, than all
continua are coastal at their proper subcontinua.

Remarks 5.3.
(i) Obviously an indecomposable continuum with more than one composant is

coastal at all its proper subcontinua; so in order to apply Theorem 5.2, we
need only concentrate on Bellamy continua.

(ii) Continuing the discussion in Remark 4.8 (iv), H∗ is a Bellamy continuum
if and only if the Near Coherence of Filters (NCF) axiom holds; hence H∗

is coastal at each of its proper subcontinua if NCF does not hold. On
the other hand, Anderson has recently shown [2, Theorem 3.11] that H∗

fails to be coastal at any of its proper subcontinua if NCF holds. So the
question of whether Bing’s Theorem 5.1 can be extended to all continua
has a conditional negative answer.

We prove the following as we did Proposition 4.1.

Proposition 5.4. For each i ∈ I, let Ki be a subcontinuum of continuum Xi, with
yi ∈ Xi. Then∏

D
κ(Xi,Ki; yi) ⊆ κ( ~XD, ~KD; ~yD) ⊆ (

∏
D

κ(Xi,Ki; yi))].

Theorem 5.5. For each i ∈ I assume continuum Xi is coastal at each of its
proper subcontinua. Then ~XD is coastal at each of its points and at each of its
proper semiregular subcontinua.

Proof. If K is a proper semiregular subcontinuum of ~XD, then use Theorem 3.2 to
obtain a proper regular subcontinuum ~MD ⊇ K. For D-almost every i ∈ I we have
yi ∈ Xi with κ(Xi,Mi; yi) dense in Xi. Then

∏
D κ(Xi,Mi; yi) is dense in ~XD.

By Proposition 5.4, we have the density of κ( ~XD, ~MD; ~yD), which is contained in
κ( ~XD,K; ~yD). Thus ~XD is coastal at K.
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Now suppose µ ∈ ~XD. If it happens that there is some ν ∈ ~XD \ κ( ~XD, µ), then
κ( ~XD, µ; ν) = κ( ~XD, µ), which is dense in the ultracoproduct. Hence assume that
κ( ~XD, µ) = ~XD, and fix a regular point ~xD. Then there is a proper subcontinuum
K ⊆ ~XD containing both µ and ~xD. K is semiregular; so by the previous paragraph,
we have κ( ~XD,K; ~yD) dense in ~XD, for some regular point ~yD. Thus κ( ~XD, µ; ~yD) ⊇
κ( ~XD,K; ~yD) is also dense therein. �

When we add in Bing’s Theorem 5.1, we obtain the following.

Corollary 5.6. An ultracoproduct of metrizable continua is coastal at each of its
points and each of its proper semiregular subcontinua.

Question 5.7. Can we remove “semiregular” from the conclusions of Theorem 5.5
and Corollary 5.6?

6. Varieties of Noncut Point

A topological space is continuumwise connected if any two of its points are
contained in a subcontinuum. Each space is partitioned into its maximal contin-
uumwise connected subsets, called the continuum components of the space. A
point c in a connected space X is a weak cut point of X if X \ {c} is not a
continuumwise connected set. (So c is a weak cut point if and only if c ∈ [a, b] for
some a, b ∈ X \ {c}.) Clearly being a cut point implies being a weak cut point; so
we say that a point is a strong noncut point if it is not a weak cut point.

The existence of at least two noncut points in nondegenerate metrizable continua
was first proved by R. L. Moore [23], and significantly improved by G. T. Whyburn
[28].

Theorem 6.1. ([24, Corollary 6.7]) Every compact connected T1 space is irreducible
about its set of noncut points.

It is well known that continua need not contain strong noncut points; indeed, any
indecomposable continuum with more than one composant serves as an example.
However, if the continuum is aposyndetic; i.e., if for each pair of its points there
is a subcontinuum containing one of them in its interior and excluding the other
(clearly a condition weaker than local connectedness), then weak cut points and cut
points are the same. This fact is expressed as the Cut Point Equivalence Theorem
in F. B. Jones’ survey [19], where it is stated for metrizable continua and attributed
to Whyburn [27]. The proof does not rely essentially on metric notions, however.

Theorem 6.2. Every noncut point of an aposyndetic continuum is a strong noncut
point.

As mentioned above, an indecomposable continuum with more than one composant
is evidently devoid of strong noncut points. However, in the case of Bellamy con-
tinua, the situation is a bit less clear. It is known [18] that H∗ is an indecomposable
continuum, but its number of composants can be one or many, depending on the
set theory. Nevertheless, no strong noncut points exist in this continuum.

Theorem 6.3. ([2, Theorem 3.1]) Every point of H∗ is a weak cut point. Indeed,
if z ∈ H∗ is any given point, there are x, y ∈ κ(H∗, z) \ {z} with z ∈ [x, y].
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Returning to the role of cut points and their kin to ultracoproducts, we first address
the question of how the connectedness of a regular set (~SD)] relates to that of its
factor sets. We know the answer if the sets Si are closed, and the following tells
what we know then they are open.

Lemma 6.4. Suppose Ui ⊆ Xi is open for i ∈ I.
(i) If {i ∈ I : Ui is disconnected} ∈ D, then (~UD)] is disconnected.
(ii) If {i ∈ I : Ui is continuumwise connected} ∈ D, then (~UD)] is connected.

Proof. Ad (i): If for D-almost every i ∈ I we have a disconnection Ui = Vi ∪Wi,
then we have a disconnection (~UD)] = (~V D)] ∪ ( ~WD)] because the ultraproduct
formation commutes with finite Boolean operations.

Ad (ii): Suppose ~xD and ~yD are two regular points in (~UD)]. Then for D-almost
every i ∈ I we have a subcontinuum Ki ⊆ Ui containing both xi and yi. But
then ( ~KD)] = ~KD is a subcontinuum of (~UD)] containing both ~xD and ~yD. If we
now write (~UD)] as a union V ∪W of open subsets of ~XD, we use the density of
~UD in (~UD)] to find regular points ~xD ∈ V and ~yD ∈ W . The existence of the
subcontinuum ~KD as argued above tells us that V and W cannot be disjoint. Hence
(~UD)] is connected. �

Theorem 6.5. Assume each Xi is a continuum, with ci ∈ Xi, i ∈ I.
(i) If {i ∈ I : ci is a weak cut point of Xi} ∈ D, then ~cD is a weak cut point of

~XD.
(ii) If {i ∈ I : ci is a cut point of Xi} ∈ D, then ~cD is a cut point of ~XD.
(iii) If {i ∈ I : ci is a strong noncut point of Xi} ∈ D, then ~cD is a noncut

point of ~XD.

Proof. Ad (i): Assume that for D-almost each i ∈ I there are points ai, bi ∈ Xi\{ci}
such that ci ∈ [ai, bi]. Since ~aD and ~bD are both in ~XD \ {~cD}, it suffices to show
~cD ∈ [~aD,~bD]. But ~cD ∈

∑
D[ai, bi], and this set is contained in [~aD,~bD], by

Theorem 3.3.
Ad (ii): This follows immediately from Lemma 6.4 (i).
Ad (iii): This follows immediately from Lemma 6.4 (ii). �

Combining the above with Theorem 6.2 quickly affords the following.

Corollary 6.6. Assume each Xi is an aposyndetic continuum, with ci ∈ Xi, i ∈ I.
Then ~cD is a cut point of ~XD if and only if {i ∈ I : ci is a cut point of Xi} ∈ D.

We round out this section with a push toward improvements of Theorem 6.5 (iii).
The two obvious ones–when we replace “strong noncut” with “noncut,” and vice
versa–are open questions, as far as we know. However there is an interesting con-
dition on points that interpolates between the stated ones.

If c ∈ X, we say c is a nonblock point of X if some continuumwise connected
subset of X \ {c} is dense in X. If X is coastal at x, then any y ∈ X for which
κ(X, x; y) is dense is a nonblock point; conversely, if A ⊆ X \ {y} is continuumwise
connected and dense in X, then X is coastal at any x ∈ A. So a continuum is
coastal at some point if and only if it has a nonblock point. Clearly every strong
noncut point is nonblock, and every nonblock point is noncut.

Remarks 6.7.
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(i) Nonblock points are first identified in [15] as a direct response to the paper
[20] of R. Leonel, in which Theorem 5.1 is used to show the existence of at
least two shore points in every nondegenerate metrizable continuum. While
the definition in [20] is formulated in hyperspace metric terms, one may also
use more topological language: c ∈ X is a shore point if whenever U is
a finite family of nonempty open subsets of X, there is a subcontinuum
of X \ {c} that meets each member of U . (Intuitively, this says that “ar-
bitrarily large” subcontinua of X miss c.) The authors of [15] show the
notion of shore point to interpolate strictly between those of nonblock point
and noncut point ; they then use Bing’s Theorem 5.1 to observe that any
metrizable continuum is irreducible about its set of nonblock points.

(ii) If X is an indecomposable continuum with more than one composant, then
each point is a nonblock point which is also weak cut.

(iii) If X results from the disjoint union of two sin( 1
x ) curves, with the vertical

segments identified in the obvious way, and if c is any point on that common
segment, then c is a noncut point which fails to be shore. Hence being non-
block interpolates strictly between being strongly noncut and being shore.

(iv) In addition to the reduction result Theorem 5.2, Anderson [1] also ex-
tended Bing’s Theorem 5.1 to separable continua. Hence every separable
continuum (e.g., β(H)) is irreducible about its set of nonblock points. The
existence of nonblock points in arbitrary continua, however, is not provable
in ZFC (see Remark 5.3 (ii)).

Our strengthening of Theorem 6.5 (iii) is now the following easy consequence of
Proposition 5.4.

Corollary 6.8. Assume each Xi is a continuum, with ci ∈ Xi, i ∈ I. If {i ∈ I :
ci is a nonblock point of Xi} ∈ D, then ~cD is a nonblock point of ~XD.

Proof. For D-almost every i ∈ I, we have the existence of a point ai ∈ Xi, with
κ(Xi, ai; ci) dense in Xi. By Proposition 5.4, κ( ~XD,~aD;~cD) is dense in ~XD, making
~cD a nonblock point of the ultracoproduct. �

Now we put Theorem 6.8 together with Proposition 3.11.

Corollary 6.9. Assume, for each i ∈ I, that Xi is a continuum that is irreducible
about its set of nonblock points. Then so is ~XD.

With another appeal to Theorem 5.1, we then have the following.

Corollary 6.10. An ultracoproduct of metrizable continua is irreducible about its
set of nonblock points.

When we add in the fact that each continuum has an ultracopower which is home-
omorphic to an ultracopower of a metrizable continuum (see the proof of Theorem
4.7), we can state a weak version of the desired nonblock point existence theorem.

Corollary 6.11. Every continuum has an ultracopower which is irreducible about
its set of nonblock points.

Question 6.12. Is there a ZFC example of a continuum with no coastal (or non-
block) points? What about the existence of shore points? (Anderson [3] has recently
shown that every point of H∗ is a shore point.)



14 PAUL BANKSTON

7. Point Hulls

In this section we return to the topic of regular hulls of an ultracoproduct con-
tinuum, focusing our attention on point hulls. As mentioned in Remarks 3.6 and
4.6, the point hulls and the layers of ID coincide, and partition the ultra-arc into
subcontinua in such a way that the resulting quotient is a generalized arc. (As
we saw earlier in Theorem 3.10, it is the hereditary n-coherence (n = 1) on the
part of I that guarantees the connectedness of regular hulls in ID, and hence the
monotonicity of the associated quotient map.)

At the opposite extreme–as mentioned in Remark 4.8 (ii)–if X is a Bellamy
continuum, then there is an ultracopower XD with many composants, and therefore
many points µ with R(µ) = XD. We would like to investigate just what it takes
for continuum ultracoproducts to have point hulls that behave in interesting ways.
To do this we introduce an equivalence relation whose equivalence classes partition
each point hull.

In any ultracoproduct continuum, we define a subcontinuum ultraproduct
to be an ultraproduct of the form ~KD, where Ki is a subcontinuum of Xi, i ∈ I.
(Note that an I-sequence ~K gives rise to both the subcontinuum ultraproduct ~KD

and its compactification ~KD = ( ~KD)]. As a topological space, a subcontinuum
ultraproduct is hardly ever compact or connected.)

We recall that members of ~XD are maximal filters in the bounded lattice of all
closed subset ultraproducts. However, no continuum ultraproduct other than ~XD

itself is guaranteed to be a member of any given µ ∈ ~XD. Define two points in
~XD to be R-equivalent if they contain the same continuum ultraproducts. Since
~FD ∈ µ if and only if µ ∈ ~FD, we see that µ and ν are R-equivalent (µ ∼R ν) if and
only if R(µ) = R(ν). From this definition it is plain that each point hull is a union
of R-(equivalence) classes; in particular the R-class of a regular point is degenerate.
Hence ∼R partitions a nondegenerate ultracoproduct into many equivalence classes,
each having empty interior (because nonempty open sets contain many regular
points).

The regularization map is the quotient map rD := r ~X,D : ~XD → ~XR
D from

the ultracoproduct to its associated space of R-classes. We refer to ~XR
D as the

regularized D-ultracoproduct of ~X.

Proposition 7.1. Every regularized ultracoproduct is a connected compact T0 space.

Proof. Connectedness and compactness are immediate because rD is a continuous
surjection. Suppose x, y ∈ ~XR

D are distinct points, say x = rD(µ) and y = rD(ν).
Then R(µ) 6= R(ν). Suppose we have R(µ) 6⊆ R(ν). Then there is a continuum
ultraproduct ~MD that is a member of any µ′ ∼R µ but not of any ν′ ∼R ν. For
each i ∈ I, let Ui = Xi \ Mi. Then (~UD)] is an open neighborhood of ν which
is R-saturated–i.e., a union of R-classes–and which misses µ. Hence rD[(~UD)]]
is an open neighborhood of y = rD(ν) that misses x = rD(µ). This shows the
regularization to be a T0 space. �

Remark 7.2. Referring to Remark 4.8 (ii), let X be a Bellamy continuum, with
XD an ultracopower having more than one composant. Let CR be the composant
of XD containing XD. If µ ∈ XD \CR, then R(µ) = {XD}; hence the R-class of µ
contains XD \ CR. On the other hand, if ν ∈ CR, then–see the proof of Theorem
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5.5–there is a proper regular subcontinuum containing ν. Hence XD \CR is a single
R-class, and XR

D is a fortiori not a T1 space.

We next pursue conditions that ensure stronger separation properties for regularized
ultracoproducts.

Lemma 7.3. Let µ and ν be points in the ultracoproduct continuum ~XD. Then the
following two conditions are equivalent.

(i) R(µ) ∩R(ν) 6= ∅.
(ii) If ~MD and ~ND are subcontinuum ultraproducts such that ~MD ∈ µ and

~ND ∈ ν, then ~MD ∩ ~ND 6= ∅.

Proof. Suppose (i) holds, with π ∈ R(µ) ∩ R(ν). If ~MD ∈ R(µ), and ~ND ∈ R(ν)
are arbitrarily chosen, then π ∈ ~MD ∩ ~ND; and so the corresponding subcontinuum
ultraproducts are in the same maximal filter π. Thus ~MD ∩ ~ND 6= ∅.

Conversely, if (ii) holds, let M (resp., N ) be the family of all subcontinuum
ultraproducts in µ (resp., ν). Then M∪N , as a family of elements of the lattice of
all closed-set ultraproducts from ~X, has the finite meet property, and hence extends
to a maximal filter π on that lattice. Clearly π ∈ R(µ) ∩R(ν). �

If X is a continuum and K ⊆ X a subcontinuum, we say X is n-semilocally
connected at K (abbreviated n-SLC at K) if K has arbitrarily small open neigh-
borhoods whose complements have at most n components. (Being n-SLC at a point
has its obvious meaning.) X is n-SLC if it is n-SLC at each of its subcontinua.

Remarks 7.4.
(i) Simple closed curves are 1-SLC; arcs are 2-SLC; simple triods are 3-SLC;

any topological graph is n-SLC for some finite n ≥ 1.
(ii) For infinite cardinals κ, it is more useful to define κ-SLC by stipulating

fewer than –instead of at most–κ components. For example, being ℵ0-SLC
at x ∈ X is Whyburn’s notion of semilocal connectedness (SLC) at the
point. In 1941, Jones proved that a continuum is SLC at each of its points
if and only if it is aposyndetic (see [19, Equivalence Theorem]).

(iii) The shrinking harmonic fan, a dendrite in the euclidean plane, given as the
union of segments {〈t, t

m 〉 : 0 ≤ t ≤ 1
m}, m = 1, 2, . . . , is locally connected

and ℵ0-SLC, but not n-SLC at its vertex 〈0, 0〉 for any finite n.
(iv) The harmonic fan, a dendroid given as the closure in the euclidean plane

of the union of segments {〈t, t
m 〉 : 0 ≤ t ≤ 1}, m = 1, 2, . . . , is ℵ1-SLC, but

not ℵ0-SLC at its vertex. If we add to this space the vertical line segment
{1} × [0, 1], we obtain a 1-SLC continuum which is not locally connected.

(v) A nondegenerate indecomposable continuum fails to be ℵ1-SLC at any of
its proper subcontinua.

Theorem 7.5. Suppose n ≥ 1 is finite and each continuum Xi is n-SLC. If µ, ν ∈
~XD, then µ ∼R ν if and only if R(µ) ∩ R(ν) 6= ∅. Hence the point hulls of ~XD
coincide with the R-classes, and form a partition into nowhere dense subcompacta.
In particular, ~XR

D is a compact connected T1 space, and R(µ) is a semiregular set
if and only if µ is a regular point.

Proof. If µ ∼R ν, then R(µ) = R(ν); so one direction of the equivalence is trivial.
Suppose now that R(µ) ∩ R(ν) 6= ∅. If ~MD ∈ R(µ), then ~MD is a subcontinuum
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ultraproduct that is contained in µ. We show it is also contained in ν, by showing
that it intersects every member of ν, and then using the fact that ν is a maximal
filter. So, for the sake of a contradiction, let ~FD ∈ ν be disjoint from ~MD. Without
loss of generality, we may assume Fi ∩ Mi = ∅ for all i ∈ I. Using the fact that
each Xi is n-SLC, there is some 1 ≤ m ≤ n such that, for D-almost each i, we have
subcontinua Ki,1, . . . ,Ki,m of Xi, all disjoint from Mi, with Fi ⊆ Ki,1 ∪ · · · ∪Ki,m.
Then

∏
D Ki,1 ∪ · · · ∪

∏
D Ki,m ∈ ν; and–again because maximal filters are prime–

therefore there is some 1 ≤ k ≤ m with
∏
D Ki,k ∈ ν. But by Lemma 7.3, we have

~MD ∩
∏
D Ki,k 6= ∅, an impossibility. Hence ~MD ∈ ν, and we have ~MD ∈ R(ν).

This gives us the inclusion R(µ) ⊆ R(ν); by symmetry, the reverse inclusion is also
true, and we conclude that µ ∼R ν.

That the point hulls of ~XD form a partition into subcompacta and coincide with
the R-classes is now immediate. The point hulls are nowhere dense because they
are closed, and coincide with the R-classes (which have empty interior). ~XR

D is a
T1 space because point pre-images under the regularization map are closed; and
the last assertion follows from the fact that R(µ) = {µ} whenever µ is a regular
point. �

Proposition 7.6. Any semiregular subcontinuum of ~XD is R-saturated.

Proof. Suppose K is a semiregular subcontinuum, with µ ∈ K. if ν ∈ ~XD \K, then
Theorem 3.2 gives us a regular subcontinuum containing K and missing ν. Thus
ν 6∼R µ. �

Corollary 7.7. Suppose n ≥ 1 is finite and each continuum Xi is n-SLC. Then
every semiregular subcontinuum of ~XD is a union of point hulls.

Proof. Add Theorem 7.5 to Proposition 7.6. �

Corollary 7.8. Let X be locally connected. Then the point pre-images under the
codiagonal map pD : XD → X are R-saturated, and there is a unique continuous
surjection f : XR

D → X such that f ◦ rD = pD (i.e., pD factors through rD). If, in
addition, X is n-SLC for some finite n ≥ 1, then the point pre-images of pD are
unions of point hulls.

Proof. By Lemma 3.13, pD is monotone; hence each point pre-image is a semiregular
subcontinuum of XD. Now apply Proposition 7.6. For the additional assertion, use
Corollary 7.7. �

Remark 7.9. Still weaker than aposyndesis for a continuum (see [11, Theorem
3.2]) is being antisymmetric. This means that for any triple 〈a, b, c〉 of points,
with b 6= c, there is a subcontinuum containing a and exactly one of {b, c}. If ~XD
contains a nondegenerate R-class R, let 〈a, b, c〉 be chosen so that a is regular and
b 6= c are both in R. Then any subcontinuum containing a and intersecting {b, c}
must contain R, by Proposition 7.6. Thus an ultracoproduct continuum cannot be
antisymmetric unless its R-equivalence relation coincides with equality.

We now specify conditions sufficient for regularized ultracoproducts to be Hausdorff
spaces.

Theorem 7.10. Suppose n ≥ 1 is finite and each continuum Xi is n-SLC and
locally connected. Then ~XR

D is a continuum.
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Proof. The Hausdorff condition for ~XR
D is equivalent to the condition that the

partition of ~XD into R-classes is upper semicontinuous.
Fix point hull R and open set U ⊆ ~XD such that R ⊆ U . We need to find an

open set V ⊆ U such that R ⊆ V , and S ⊆ U for any point hull S that intersects V .
Because of n-semilocal connectedness on the part of each constituent Xi, the point
hulls coincide with the R-classes (Theorem 7.5), and hence constitute a partition
of ~XD.

By the definition of point hull, and the fact that point hulls are compact, there is
a regular subcontinuum ~KD with R ⊆ ~KD ⊆ U . And because ~KD is compact, there
is an I-sequence ~W of open subsets such that ~KD ⊆ ( ~WD)] ⊆ U . Without loss of
generality, we may assume Ki ⊆ Wi for each i ∈ I. Because every Xi is locally
connected, we may find a connected open set Vi such that Ki ⊆ Vi ⊆ clXi(Vi) ⊆ Wi.
Let V = (~V D)]. If S is any point hull intersecting V , then it intersects the regular
subcontinuum

∑
D clXi(Vi) as well. By Corollary 7.7, S is contained in

∑
D clXi(Vi),

and hence in U . �

We end this article with a partial answer to the question of when ~XD is guaranteed
to have at least some nondegenerate R-classes (and therefore nondegenerate point
hulls). Toward that goal, we prove the following generalization of [18, Proposition
2.12] (attributed to Mioduszewski [22]).

Proposition 7.11. Let D be a countably incomplete ultrafilter, with ~X an I-
sequence of generalized arcs. Then not all R-classes of ~XD are degenerate.

Proof. By Theorem 7.5, the R-classes and the point hulls of generalized arcs are
one and the same.

For each i ∈ I, let Xi be totally ordered by <i, with < the ultraproduct order∏
D <i. As mentioned earlier, < gives rise to the ultraproduct topology on ~XD.
In ~XD, let A be a countably infinite discrete subset, ordered as a strictly <-

increasing ω-sequence. It is known that an ultracoproduct of compacta via a
countably incomplete ultrafilter is an F -space (see [4, Proposition 6.2]), and any
countable subset of an F -space is C∗-embedded (see [26, Proposition 1.6.4]). Hence
the closure A := cl ~XD

(A) contains a copy of β(ω); in particular A\A is uncountable.
Let B consist of all <-upper bounds of A in ~XD. For each ~aD ∈ A and~bD ∈ B, it

is clear that A ⊆ A∪[~aD,~bD]; hence if µ ∈ A\A, then [~aD,~bD] ∈ R(µ) (see Corollary
3.5). Every member of R(µ) is an interval of the form [~xD, ~yD]; thus we have
~yD ∈ B and ~xD < ~aD for some ~aD ∈ A; so R(µ) =

⋂
{[~aD,~bD] : ~aD ∈ A,~bD ∈ B}

and contains A \A. �

Theorem 7.12. Let n ≥ 1 be finite, with ~X an I-sequence of hereditarily n-coherent
continua, each of which contains a generalized arc. If D is a countably incomplete
ultrafilter on I, then not all R-classes of ~XD are degenerate.

Proof. For each i ∈ I, let Ai ⊆ Xi be a generalized arc, with ~AD the associated
“generalized ultra-arc.” By Proposition 7.11 there are distinct points µ, ν ∈ ~AD,
where µ and ν are R-equivalent, relative to ~AD. By symmetry, it suffices to show
that R(µ) ⊆ R(ν) (in ~XD).

So let ~MD ∈ µ be a subcontinuum ultraproduct. We are done once we show
~MD ∈ ν. By assumption, we also have ~AD ∈ µ; so using n-coherence in each
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coordinate Xi, we argue as in the proof of Theorem 3.10 to obtain some 1 ≤ m ≤ n
such that for D-almost every i ∈ I, Mi ∩Ai = Pi,1 ∪ · · · ∪Pi,m, where each Pi,j is a
subcontinuum of Xi. Thus ~MD ∩ ~AD =

⋃
1≤j≤m

∏
D Pi,j . And since µ is a prime

filter, we have
∏
D Pi,k ∈ µ for some 1 ≤ k ≤ m. But µ and ν are R-equivalent

relative to A; hence
∏
D Pi,k ∈ ν. Since Pi,k ⊆ Mi for each i ∈ I, we have ~MD ∈ ν,

completing the proof. �

As is well known [24, Theorem 8.23], any nondegenerate metrizable locally con-
nected continuum contains plenty of arcs. So combining Remark 7.9 and Theorem
7.12 gives the following.

Corollary 7.13. Let n ≥ 1 be finite. Using a countably incomplete ultrafilter, an
ultracoproduct of nondegenerate hereditarily n-coherent locally connected metrizable
continua has nondegenerate R-classes, and hence fails to be antisymmetric.

To summarize the results of Theorems 3.10, 7.5, and 7.10, along with Corollary
7.13, we have the following.

Corollary 7.14. Let n ≥ 1 be finite, with ~X an I-sequence of locally connected
continua which are n-SLC and hereditarily n-coherent. If D is an ultrafilter on I,
then the point hulls (i.e., the R-classes) form an upper semicontinuous partition of
~XD into nowhere dense subcontinua. If each Xi is also metrizable and D is count-
ably incomplete, then some R-classes are nondegenerate, and the ultracoproduct is
not antisymmetric.

Question 7.15. What makes the partition of ~XD into R-classes more (or less) like
that for an ultra-arc? (For example–see [18]–the layers of an ultra-arc are indecom-
posable subcontinua. They are also terminal, in the sense that any subcontinuum
intersecting a layer either contains the layer or is contained within it.)
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