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Topological extensions and subspaces of 7,-sets
by

Paul Bankston (Milwaukee, Wi.)

Abstract. The n,-sets of Hausdorff have large compactifications (of cardinality > exp(«);
and of cardinality > exp(exp(2<“)in the Stone-Cech case). If Q, denotes the unique (when it exists)
ng-set of cardinality «, then Q, can be decomposed (= partitioned) into homeomorphs of any
prescribed nonempty subspace ; moreover the subspaces of Q, can be characterized as those which
are regular Ty, of cardinality and weight < o, whose topologies are closed under <« intersections.

Let {4, <) be a linearly ordered set. If B and C are subsets of 4, we
use the notation B < C to mean that b <c¢ for all beB, ceC. If o is an
infinite cardinal number, we say that {4, <) is an z,-set if whenever

B, C < A have cardinality < « and B < C then there is an element ac 4 with

B < {a} < C. Such ordered sets, invented by Hausdorff [8] (see also [5, 6,
7]), are the forerunners and prototypical examples of saturated relational
structures in model theory (see [5, 6]). Our interest in the present note
centers on topological issues related to 7,-sets, considered as linearly ordered
topological spaces (LOTS’s) with the open interval topology.

Roughly stated, our results are these: (i) certain Hausdorff extensions of
n.-sets must have cardinality > 2%, and some (the compact C*-extensions)
must have cardinality > exp(exp(2<9); (ii) the (unique when it exists; ie.
when o = 0<% n,-set Q, of cardinality « can be decomposed (= partitioned)
into homeomorphs of any prescribed nonmempty subspace; and (iii) the
subspaces of @, are precisely the regular T, spaces, of cardinality and
weight < o, whose topologies are closed under < a intersections.

1. Preliminaries. We follow the convention that ordinal numbers are the
sets of their predecessors and that cardinals are initial ordinals. If « is an
infinite cardinal, «* denotes the cardinal successor of « (w =10, 1, 2,...},
w; =", etc) If A is a set, | 4| denotes the cardinality of A. If B is another set
then ®4 is the set of all functions f: B — 4. For cardinals «, f, we let of = |°«|
and «<f = Sup{a?: y < B}. exp(x) sometimes denotes 2% especially in interac-
tions: exp?(x) = exp(exp()), etc. A useful application of K&nig’s Lemma is
the following. o
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1.1. Lemma (see [6]). Let o be an infinite cardinal. Then o = a™* iff o is
regular and o = 2%%

The basic properties of 7,-sets can be summarized as follows.

1.2 THeoreM. Let « be an infinite cardinal,

() If <A, <> is an n,-set then the ordering is dense without endpoints.
Moreover, no co-initial or cofinal sequence can huve cardinality < o.
(i) (Hausdorff) There exists an n,..-set of cardinality 2*.

(iii) (Hausdorf) Any two n,-sets of cardinality o are order isomorphic (call
this set Q,, when it exists).

(iv) (Gillman) If «* < 2* then there are at least two nonisomorphic i, -
sets of cardinality 2 :

(v) (Gillman, B. Jénsson) Q, exists iff o = o ™%

13. Remark. @, is, of course, the rational line Q. From (v) above plus
Lemma 1.1 we can also infer that Q,, exists iff a™ = 2% Q, does not exist for
a a singular cardinal, and Q, always exists for o strongly inaccessible. Thus if
the Generalized Continuum Hypothesis holds then. Q, exists iff o is a regular
cardinal. .

Let X be a topological space. Then:

(i) X is a-compact if every open cover has a subcover of cardinality
< o (compact = o-compact, Lindeldf = w,-compact);

(i) X is a-additive [10] (= a P,-space [6]) if intersections of < a open
sets are open (P-space = P,, -space); and

(i) X is a-Baire if intersections of < « dense open sets are dense (Baire
= w,-Baire). )

2. Extensions. A topological space X is an 5,-LOTS if there is a linear
ordering on the underlying set of X which makes that set an. r,-set and
whose open intervals basically generate the topology of X. The following is
an easy application of the definition of #,-set.

21 LemMaA. Let X be an n,-LOTS, and let % be the open interval basis
arising from a suitable n,-order on X.

(i) (a-intersection condition) If % < # has cardinality < o and U = O
then %o = Q for some finite U, S U.

(ii) (o-cover condition) If % < B has cardinality < o and \J# = X then
U%, = X for some finite U, < U. ‘

(iii) (cc-additivity condition) If % = 2 has cardinality < o then (% is an
open set.

2.2 THeOREM. Let X be an n,-LOTS. C

() X is a-additive, hence strongly. zero-dimensional when « > o.
(ii) X is o-~Baire.
Proof. (i) That X is o-additive follows immediately. from Lemma 2.1

(iii). If « > ¢, X is a regular T; P-space; and such spaces are well known to
be strongly zero-dimensional.

icm®

Topological extensions and subspaces of n-sets 193

(ii) This is essentially the proof of Theorem 2.2 in [3]: use Lemma 2.1
(i, iii). =

2.3. THEOREM. Let X be an n,~LOTS.

(i) There is a family of 2<% pairwise disjoint open subsets of X.

(i) X has a closed discrete subset of cardinality 2=°.

(ili) X is not 2<*-compact.

Proof. (i) Pick an appropriate n,-ordering for X and let {x,;: & < A
be an increasing well ordered cofinal sequence in X. Then 4> a, so let I,
= {xeX: xy < X < Xg4,} for £ < a. For each £ < a use the properties of the
open interval basis given in Lemma 2.1 to construct in I, a binary tree, of
height a, consisting of 2" pairwise disjoint open sub-intervals at each level y
< a (ordering is reverse inclusion). This gives Sup {2¢l: & < o} = 2<% pair-
wise disjoint open subsets of X.

(i) If « = w, use the increasing sequence from (i) above and stop at w;
i, use the closed discrete set S = (x,: & < w), of cardinality » = 2% If
o > o use zero-dimensionality: by (i) there is a set % of 2=* pairwise disjoint
clopen subsets of X. Let S consist of one point from.each member of %.

@iii) This is immediate from (ii). = ‘

The main result in this section can now be stated.

24. Tueorem. Let X be an n,-LOTS and let Y be an a-compact, regular
T, topological extension of X.

@ Yj=2%

(ii) If X is dense in Y then Y is a*-Baire.

(iii) If Y is compact Hausdorff and X is C*-embedded in Y then |Y|
> exp?(2°9).

Proof. (i) Since a-compactness is a closed-hereditary property, we can
assume X is dense in Y. For each S < Y let S™, S° denote respectively the
closure and the interior of § in Y. Using Lemma 2.1, let # be an open basis
for X with the a-intersection condition. We show first that for U = Y open,
Un X < (Ur X)"% To see this, let xeU~. Since X is dense and every open
V containing x intersects U, we have xe(U nX)™. Thus (UnX)™ =U" and
weget UnXcUcU °=(UrX)™°

We build an a-level tree T in Y by induction satisfying: (a) T is a binary
tree of sets, ordered by reverse inclusion; (b) each member of T is of the form
B~ where @ % Bed#; (c) the members of each level of T are pairwise
disjoint; and (d) whenever By < B; in T, it is also true that B, € B,.

For each ordinal ¢ < « define the ¢éth level T; inductively: Ty = {Bg'}
where @ # Boed®. Assuming T(E+1)=U{T: vy < ¢} has been defined,
define Ty, as follows: Let B~ eT;. Then there js an open UcY with B
=Ur X c(Ur X)"%=B"% Use regularity to find open sets U,, U, # )
(all nonempty open sets are self-dense) with Uy wU; < B % and Uy nU3;
= (. Since B is dense in B~, there are B;, B,& %, nonempty, such that

3 ~ Fundamenta Mathematicae CXVIIL,3
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B,cU;rB, i=1,2 So défine T, = {[B],B7}: B"eT;}. In the case

where ¢ is-a limit ordinal and T [¢ is already constructed, let &, = (B, : y

< &) be a branch in T[¢& By the inductive hypothesis, \ B, # @ and
<

¥<¢
contains a nonempty Bye #. Let T, = {B; : 4, is a branch of T [ ¢}, and let
T= () T;. By a-compactness, each branch of T has nonempty intersection.
é<a .
Since T has 2* branches, we conclude that |Y| > 2%
(i) Let X, Y, # be as above. Let {U,: ¢ <) be a family of o dense
open subsets of ¥, with § = () U,. We show S is dense in Y. To this end let

V < Y be nonempty open. 9'1‘“0 show ¥ § # @, use induction on «., We
construct a decreasing chain (B; : £ <a) where B, 2B, for y<¢ <a,
@ # B;e B for £ <o, and By <V ([) U,). This is possible since X is dense

. . 0 ‘y<c . - [ .
in ¥, Y is regular T;, and & satisfies the a-intersection condition. Using a-
compactness we get @ % [} Bf < ¥V nS.

&<a
(iii) Assume Y is compact Hausdorff and X is C*-embedded in Y. Using
Theorem 2.3 (ii), let S be any closed discrete subset of X of cardinality 2<%
Since X is normal S is C*-embedded in X, hence in Y. Therefore S~ is

homeomorphic to the Stone-Cech compactification of S, so |¥]>|S™| "

=exp?(2¥%). m !

2.5. Remark. Both estimates in Theorem 2.4 (i, iii) can be realized as
follows: (i) the order compactification (= Dedekind completion-plus-
endpoints) of Q, has cardinality 2*; (ii) the Stone-Cech compactification of
Q, has cardinality exp®(a) = exp?(2<%).

3. Subspaces. In this section we will focus on topological subspaces of
the spaces Q,.

A space X partitions a space Y (see [4]) if there is a family of
embeddings of X into ¥ whose images form a cover of Y by pairwise disjoint
sets. Our first aim is to show that any nonempty subspace of Q, partitions
Q, (a property shared by the space of irrational numbers and the Cantor
discontinuum, but not the real line [4]). The proof for « = w is quite easy
and rests on the following well known result [9].

3.1. Lemma (Sierpiniski). Ler X be countable, first countable, regular T,,
and self-dense. Then X is homeomorphic to Q (X ~ Q).

3.2. TeoreM. Let X be a nonempty subspace of Q,, = Q. Then X par-
titions Q,,. '

Proof. Simply note that by Lemma 3.1, XxQ~Q.

’[.‘o prove an analogue to Theorem 3.2 for a > w, we will need some
machinery a bit more involved, namely the ultraproduct construction [1,3,
5] of which we give only a sketch here.

Let <{4;: iel) be an indexed family of sets, with D an ultrafilter of
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subsets of I. ITpA; (respectively A, when A4; = A4 for all iel) denotes the D-
ultraproduct (respectively D-ultrapower), namely the set of equivalence classes
[@lp; where @] 4;, and dy b iff {i: a@)=b(@)}eD. If R, < A} is an
iel

n-ary relation on A;, 0 <n <, then IILR; = {{[a@]1p,...,[E.dp> €TIpR)":
{i: <a,(9),...,a,()yeR;}eD}. In the ultrapower case, there is a natural D-
diagonal map, denoted by 4,: 4 - AP, which takes aeA to [const a]p.
When A carries additional finitary relations (e.g., order structure, algebraic
structure) this mapping is an “elementary embedding”, in the parlance of
model theory.

Since some of the following arguments use techniques from model
theory, in particular the theory of ultraproducts and saturated models, we
refer the reader to [5] for the basic theory and terminology. Regrettably we
cannot make the paper self-contained for topologists who do not have some
grounding in model theory. )

When X is a topological space (“X™ also stands for the underlying point
set) and £ is a basis for the open sets of X, we use (X ; #) to denote the
relational structure whose universe is X U 4%, and whose distinguished re-
lations are X (unary for points), # (unary for basic open sets), and e (binary
for membership between members of X and members of #). Thus (X; %)
=(XUB, X, H,e). If Dis an ultrafilter then (X®; B = (X u B,
XD gD @ Note that (X v #)P and XP U P can be put in a natural
one-to-one correspondence, and that #® is a topological basis for X® (see
also [1, 3] for a more complete treatment of topological ultraproducts).

A very simple but important result from [1] is that if < is a linear order
on X, & is a topological basis for the order topology, and D is any ultrafilter
then #® is a topological basis for the order topology on X® arising from
<®

By way of a brief digression into general model theory, suppose A
= {A,...,R,...) is a relational structure (over a countable language). If D is
an ultrafilter then 4, is an elementary embedding. In particular, if {X; #) is
a topological basis structure then for each Be#, 4,[B] = 4,(B)n4,[X].
Thus 4, | X is a topological embedding, provided it is continuous. We will
come back to this later.

We assume the reader to be familiar with what it means for a relational
structure A to be a-saturated, for « a cardinal number. In particular, the 7,-
sets are precisely the o-saturated dense linearly ordered sets without
endpoints. : ‘

Of mdjor importance to us are the following well known results.

3.3, LeMMa. Let A be a relational structure and let D be a B*-good
countably incomplete ultrafilter on a set of cardinality B. Then A® is B*-
saturated, and of cardinality |AJ*.
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34. LEMMA. Any two a-saturated elementarily equivalent relational struc-
tures of cardinality o are isomorphic.

Fix o = o< If « is a successor we fix a = p* =2 and let D be a f*-
good countably incomplete ultrafilter on B. If a is a limit cardinal, we let
{Bs: & <ad be a fixed increasing sequence of cardinals which is cofinal in «
(note: a is regular; and for ¢ <a, BF <, and 2t < a.); and for each & < a
we let D; be a B -good countably incomplete ultrafilter on f,. If A is a
relational structure of cardinality < « we form an elementary extension A®
of A, which is a-saturated and of cardinality o, as follows: If o = f§ * set A®
= A® ¥ o = Sup{f: £ <a} let A be the union of the elementary chain
{49: £ <o} where A® = AP0, 4¢+D = 4OPr1) and 40 = () A9 where
y is a limit ordinal. e=y

3.5. THEOREM. Let o = a<* Then Q, is an “n,-field” (i.e, a field which is
ordered by an 1,-set). Hence Q, is a homogeneous LOTS.

Proof. Letting A be the ordered field of rational numbers, we obtain
A® via the machinery outlined above. Then the order structure on 4 is an
ne-set of cardinality o, hence Q,. To get (point) homogeneity, we use the
additive abelian group structure on Q, to translate points. w

3.6. THEOREM. Let o = <% and let X be a regular T, space which is self-
dense, and of cardinality and weight < a. Then X® ~ Q,.

Proof. Choose a’ basis # for X which has cardinality <o, and let
{(Xo; B,> be a countable elementary substructure of (X; #). Then
{Xo; By> (more precisely (Xo; {Bn X,: BeB,})) generates a regular T
space which is self-dense, and of countable cardinality and weight. By
Lemma 3.1 there is a basis % for the open sets of Q such that {(X,; %,)
={Q; ¥>. Therefore (X; #) and {Q; %) are elementarily equivalent. So
we use Lemma 3.4, plus the machine for constructing the A®s, and conclude
that ¢(X; #>® = (Q; C>®. Thus X® is homeomorphic with Q,. =

37. CoroLLARY. Q, =~ Q2 (with the usual product topology).

Proof. Simply use Theorem 3.6 to conclude Q, >~ Q*™. It is then easy
to verify (since ultraproducts commute with finite cartesian products) that
QW= Q¥ =02 u

We can now prove our analogue to Theorem 3.2 for uncountable a.

38. THeorREM. Let X = Q, be nonempty. Then X partitions Q,.

Proof. We actually prove that X partitions Q2 and then invoke
Corollary 3.7. We use the technique of Theorem 2.5 in [3], in analogy with
the question of subsets of the real line partitioning Euclidean 3-space.

By Theorem 3.5 we can use the n,-field structure of Q, to treat Q7 as
affine 3-space. Thus we can talk of affine lines anu planes in Q2 as if we were
in Euclidean space. In particular, lines are (affine) homeomorphs of Q,, a line
L not contained in a plane P must intersect P in at most one point, each
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point pe P is contained in « distinct lines in P, and each point pe Q}is
contained in o distinct planes.

Let @ # X = Q,, and let {p,: ¢ < &) be a well ordering of the points of
Q2. Inducting on «, we assunfe that p; is the first point not covered by a
copy of X, that p,e X, ~ X for y <¢, and that distinct X,’s are disjoint and
embedded in affine lines L, = Q7. Since |£] < a there is a plane P; containing
p; but failing to contain any L, for y < €.

Thus [P~ X,| <1 fory<§ so|P;n U X,| <a Since there are o lines

y<§ '

in P, containing p,, there is one, say L;, which misses (U X, altogether.
<

Since L¢~ Q, is homogencous, there is a copy X; yof¢ X such that
p:€ X, < Ly, and the induction is complete. m

We next turn to characterizing those topological spaces X which embed
as subspaces of @,, for @ = a=* Clearly if X does embed in Q, then (i) X is
regular T;; (i) both the cardinality and the weight of X are < a; and (i) X
is a-additive. We will show that these three conditions suffice for X to embed
in Q,. When a =w, a simple application of Lemma 3.1 does the trick. For
uncountable o, however, it seems necessary to resort again to model-theoretic
methods.

3.9. THEOREM. Assume a = o~* and suppose X is a space which is regular
T;, both of whose cardinality and weight are < «, and which is a-additive.
Then X embeds in Q,. ’

Proof. First let Y =X xQ,. Then Y has all of the above properties
and is self-dense as well. By Theorem 3.6, then, Y® ~ Q,; so it remains to
show that ¥ embeds in Y®. This will suffice since X clearly embeds in Y.

Suppose a = * = 2%. Then Y® = Y. To show that 4,: ¥ — Y™ is a
topological embedding we need only show continuity. Let <8 be a basis for the
topology on X, and let [B], e #®. Then 45* [[B]p] = U N.B(&), an open set

JeD el

in Y since Y is a-additive.

Suppose a = Sup{f,: £ <a}, and Y® is constructed as a chain union of
the Y®s using the ultrafilters D, & < a. For each ¢ <o, let d; = 4 Dy Y@
— Y@+ and let ¢;: Y— Y be the natural elementary embedding. Since a is a
limit ordinal, e,: Y — Y will be continuous provided the same is true for each
&. The only difficulty in a proof by induction on « is at the successor stages, but
that case has essentially been taken care of : Let 4 be a basis for the topology on
Y®, and let [Bly, e #”?. Then

egi [[Blp,] = e * [d:* [[Bo,]]
=e;'[U N B

J ED;; yeJ

= U N e ' [BOL

J eD,: yeJ
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an open set in Y since e, is continuous by the inductive hypothesis, [J| < s < a
for all Je Dy, £ < a, and Y is a-additive (note: The maps d, are generally not
continuous.). &

3.10. Remark. Although the subspaces of Q, can be characterized in a
purely topological manner, it seems the same cannot be said for Q, itself: some
sort of saturatedness condition must be imposed; and that involves the
semantics of artificial language. The following example dashes any hope of
achieving the obvious analogue to Lemma 3.1 for uncountable a.

Call a space X Q,-like if X is regular T;, of cardinality and weight «, which
is a-additive and self-dense. Clearly, there are no Q,-like spaces of singular
cardinality, and Q is the only Q -like space.

3.11. Exampre. For any regular uncountable « there exists a Q,-like space
which is not a Baire space.

Construction. Weusea §ve11 known example due to Sikorski [10]. Let
(29, (see also [6]) denote the space formed by allowing as basis all <a
intersections of open sets in the usual product topology on *2; and let

@, ={fe®2: f(&) =0 for all but finitely many ¢ < o} € (2%,.
Then 2, is Q,-like but is the union of countably many nowhere dense subsets. =

3.12. QuesTioN. Are there Qa;like spaces which are not homeomorphic to
Q, but which have open bases with the a-intersection condition (see Lemma
2.1 @)

To end on a more positive note; it is easy to prove that every subspace X of .

O can be embedded as a closed subspace of Q: X is closed in X x Q@ ~ Q. A
similar statement can be made for @, when « is uncountable. (We are thankful to
R. L. Levy for bringing this question to our attention.) We will first need a
lemma, the proof of which ¢an be easily adapted from the proof of New Theorem
7.7 in [2]. '

3.13. LemMa ([2]). Let X be an a-additive regular T, sp.ace and let D be an
ultrafilter on a set of cardinality < «. Then A, embeds X as a closed subset of X'V

3.14. TueoreM. (i) Every subspace of Q, embeds as a closed subspace of Q,.
(ii) Let X be a nonempty subspace of Q,. Then Q, can be partitionied into
homeomorphs of, X, each of which is closed and nowhere dense in Q,.

Proof. (i} Let X < @, and refer to the proof of Theorem 3.9. We show
that Y = X x Q, embeds as a closed subspace of Y®. In the case o = * =2,
we apply Lemma 3.13 directly. When o = Sup {,: ¢ < a}, use induction on «:
at the successor stages, the only stages where difficulties miay arise, use Lemma
3.13 again. . )

(i) This follows easily from (i) above plus the proof of Theorem 3.8. w
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