190

R. A. Knight

References

- S. Ahmad, Strong attraction and classification of certain continuous flows, Math. Systems Th. 5 (1971), pp. 157-163.
- [2] R. Ellis, Distal transformation groups, Pacific J. Math. 8 (1958), pp. 401-405.
- 3] Lectures on Topological Dynamics, W. A. Benjamin, New York 1969.
- [4] W. Gottschalk, Characterizations of almost periodic transformation groups, Proc. Amer. Math. Soc. 7 (1956), pp. 709-712.
- [5] and G. Hedlund, Topological Dynamics, Amer. Math. Soc. Coll. Publ, Vol. 36, Providence 1955.
- [6] R. Knight, A characterization of certain compact flows, Proc. Amer. Math. Soc. 64 (1977), pp. 52-54.
- [7] Structure and characterizations of certain continuous flows, Funkcialaj Ekvacioj 17 (1974), pp. 223-230.
- [8] Prolongationally stable discrete flows, Fund. Math. 108 (1980), pp. 137-144.
- Compact dynamical systems, Proc. Amer. Math. Soc. 72 (1978), pp. 501-504.
- [10] R. McCann, Continuous flows with Hausdorff orbit spaces, Funkcialaj Ekvacioj 18 (1975), pp. 195-206.
- [11] D. Sullivan, A counterexample to the periodic orbit conjecture, Inst. Hautes Études Sci. Publ. Math. 46 (1976), pp. 5-14.
- [12] T. Ura, Sur le courant extérieur à une region invariante; Prolongements d'une caractéristique et l'order de stabilité, Funkcialaj Ekvacioj 2 (1959), pp. 143-200; nouv. édition pp.105-143.

NORTHEAST MISSOURI STATE UNIVERSITY Kirksville, Missouri 63501

Accepté par la Rédaction le 163.1981

Topological extensions and subspaces of η_{α} -sets

by

Paul Bankston (Milwaukee, Wi.)

Abstract. The η_{α} -sets of Hausdorff have large compactifications (of cardinality $\geqslant \exp(\alpha)$; and of cardinality $\geqslant \exp(\exp(2^{-\alpha}))$ in the Stone-Čech case). If Q_{α} denotes the unique (when it exists) η_{α} -set of cardinality α , then Q_{α} can be decomposed (= partitioned) into homeomorphs of any prescribed nonempty subspace; moreover the subspaces of Q_{α} can be characterized as those which are regular T_1 , of cardinality and weight $\leqslant \alpha$, whose topologies are closed under $< \alpha$ intersections.

Let $\langle A, \rangle$ be a linearly ordered set. If B and C are subsets of A, we use the notation B < C to mean that b < c for all $b \in B$, $c \in C$. If α is an infinite cardinal number, we say that $\langle A, \rangle$ is an η_{α} -set if whenever $B, C \subseteq A$ have cardinality $< \alpha$ and B < C then there is an element $a \in A$ with $B < \{a\} < C$. Such ordered sets, invented by Hausdorff [8] (see also [5, 6, 7]), are the forerunners and prototypical examples of saturated relational structures in model theory (see [5, 6]). Our interest in the present note centers on topological issues related to η_{α} -sets, considered as linearly ordered topological spaces (LOTS's) with the open interval topology.

Roughly stated, our results are these: (i) certain Hausdorff extensions of η_{α} -sets must have cardinality $\geqslant 2^{\alpha}$, and some (the compact C^* -extensions) must have cardinality $\geqslant \exp(\exp(2^{-\alpha}))$; (ii) the (unique when it exists; i.e., when $\alpha = \alpha^{-\alpha}$) η_{α} -set Q_{α} of cardinality α can be decomposed (= partitioned) into homeomorphs of any prescribed nonempty subspace; and (iii) the subspaces of Q_{α} are precisely the regular T_1 spaces, of cardinality and weight $\leqslant \alpha$, whose topologies are closed under $< \alpha$ intersections.

1. Preliminaries. We follow the convention that ordinal numbers are the sets of their predecessors and that cardinals are initial ordinals. If α is an infinite cardinal, α^+ denotes the cardinal successor of α ($\omega = \{0, 1, 2, ...\}$, $\omega_1 = \omega^+$, etc.) If A is a set, |A| denotes the cardinality of A. If B is another set then BA is the set of all functions $f: B \to A$. For cardinals α , β , we let $\alpha^{\beta} = |{}^{\beta}\alpha|$ and $\alpha^{<\beta} = \sup\{\alpha^{\gamma}: \gamma < \beta\}$. $\exp(\alpha)$ sometimes denotes 2^{α} , especially in interactions: $\exp^2(\alpha) = \exp(\exp(\alpha))$, etc. A useful application of König's Lemma is the following.

P. Bankston

1.1. Lemma (see [6]). Let α be an infinite cardinal. Then $\alpha = \alpha^{<\alpha}$ iff α is regular and $\alpha = 2^{<\alpha}$.

The basic properties of η_{α} -sets can be summarized as follows.

- 1.2 Theorem. Let α be an infinite cardinal.
- (i) If $\langle A, < \rangle$ is an η_{α} -set then the ordering is dense without endpoints. Moreover, no co-initial or cofinal sequence can have cardinality $< \alpha$.
 - (ii) (Hausdorff) There exists an $\eta_{\alpha+}$ -set of cardinality 2^{α} .
- (iii) (Hausdorff) Any two η_{α} -sets of cardinality α are order isomorphic (call this set Q_{α} , when it exists).
- (iv) (Gillman) If $\alpha^+ < 2^{\alpha}$ then there are at least two nonisomorphic $\eta_{\alpha+}$ sets of cardinality 2^{α} .
 - (v) (Gillman, B. Jónsson) Q_{α} exists iff $\alpha = \alpha^{<\alpha}$.
- 1.3. Remark. Q_{α} is, of course, the rational line Q. From (v) above plus Lemma 1.1 we can also infer that $Q_{\alpha+}$ exists iff $\alpha^+ = 2^{\alpha}$, Q_{α} does not exist for α a singular cardinal, and Q_{α} always exists for α strongly inaccessible. Thus if the Generalized Continuum Hypothesis holds then Q_{α} exists iff α is a regular cardinal.

Let X be a topological space. Then:

- (i) X is α -compact if every open cover has a subcover of cardinality $< \alpha$ (compact = ω -compact, Lindelöf = ω_1 -compact);
- (ii) X is α -additive [10] (= a P_{α} -space [6]) if intersections of $< \alpha$ open sets are open (P-space = P_{ω_1} -space); and
- (iii) X is α -Baire if intersections of $< \alpha$ dense open sets are dense (Baire $=\omega_1$ -Baire).
- **2. Extensions.** A topological space X is an η_{α} -LOTS if there is a linear ordering on the underlying set of X which makes that set an η_a -set and whose open intervals basically generate the topology of X. The following is an easy application of the definition of η_{α} -set.
- 2.1 Lemma. Let X be an η_a -LOTS, and let \mathscr{B} be the open interval basis arising from a suitable η_{κ} -order on X.
- (i) (α -intersection condition) If $\mathscr{U} \subseteq \mathscr{B}$ has cardinality $< \alpha$ and $\cap \mathscr{U} = \emptyset$ then $\bigcap \mathcal{U}_0 = \emptyset$ for some finite $\mathcal{U}_0 \subseteq \mathcal{U}$.
- (ii) (α -cover condition) If $\mathcal{U} \subseteq \mathcal{B}$ has cardinality $< \alpha$ and $| \mathcal{U} = X$ then $\bigcup \mathcal{U}_0 = X$ for some finite $\mathcal{U}_0 \subseteq \mathcal{U}$.
- (iii) (α -additivity condition) If $\mathcal{U} \subseteq \mathcal{B}$ has cardinality $< \alpha$ then $\bigcap \mathcal{U}$ is an open set.
 - 2.2 THEOREM. Let X be an η_{α} -LOTS.
 - (i) X is α -additive, hence strongly zero-dimensional when $\alpha > \omega$.
 - (ii) X is α -Baire.

Proof. (i) That X is α -additive follows immediately from Lemma 2.1 (iii). If $\alpha > \omega$, X is a regular T_1 P-space; and such spaces are well known to be strongly zero-dimensional.

- (ii) This is essentially the proof of Theorem 2.2 in [3]: use Lemma 2.1 (i, iii). =
 - 2.3. THEOREM. Let X be an η_{σ} -LOTS.
 - (i) There is a family of $2^{<\alpha}$ pairwise disjoint open subsets of X.
 - (ii) X has a closed discrete subset of cardinality $2^{<\alpha}$.
 - (iii) X is not $2^{<\alpha}$ -compact.

Proof. (i) Pick an appropriate η_{α} -ordering for X and let $\langle x_{\xi} : \xi < \lambda \rangle$ be an increasing well ordered cofinal sequence in X. Then $\lambda \geqslant \alpha$, so let I_{ε} = $\{x \in X: x_{\xi} < x < x_{\xi+1}\}$ for $\xi < \alpha$. For each $\xi < \alpha$ use the properties of the open interval basis given in Lemma 2.1 to construct in I_{ξ} a binary tree, of height α , consisting of $2^{|\gamma|}$ pairwise disjoint open sub-intervals at each level γ $<\alpha$ (ordering is reverse inclusion). This gives Sup $\{2^{|\xi|}: \xi < \alpha\} = 2^{<\alpha}$ pairwise disjoint open subsets of X.

- (ii) If $\alpha = \omega$, use the increasing sequence from (i) above and stop at ω ; i.e., use the closed discrete set $S = \langle x_{\xi} : \xi < \omega \rangle$, of cardinality $\omega = 2^{<\omega}$. If $\alpha > \omega$ use zero-dimensionality: by (i) there is a set $\mathscr U$ of $2^{<\alpha}$ pairwise disjoint clopen subsets of X. Let S consist of one point from each member of \mathcal{U} .
 - (iii) This is immediate from (ii).

The main result in this section can now be stated.

- 2.4. THEOREM. Let X be an η_a -LOTS and let Y be an α -compact, regular T_1 topological extension of X.
 - (i) $|Y| \ge 2^{\alpha}$.
 - (ii) If X is dense in Y then Y is α^+ -Baire.
- (iii) If Y is compact Hausdorff and X is C*-embedded in Y then |Y| $\geqslant \exp^2(2^{<\alpha}).$

Proof. (i) Since α-compactness is a closed-hereditary property, we can assume X is dense in Y. For each $S \subseteq Y$ let S^- , S^0 denote respectively the closure and the interior of S in Y. Using Lemma 2.1, let B be an open basis for X with the α -intersection condition. We show first that for $U \subseteq Y$ open, $U \cap X \subseteq (U \cap X)^{-0}$. To see this, let $x \in U^-$. Since X is dense and every open V containing x intersects U, we have $x \in (U \cap X)^-$. Thus $(U \cap X)^- = U^-$ and we get $U \cap X \subseteq U \subseteq U^{-0} = (U \cap X)^{-0}$.

We build an α -level tree T in Y by induction satisfying: (a) T is a binary tree of sets, ordered by reverse inclusion; (b) each member of T is of the form B^- where $\emptyset \neq B \in \mathcal{B}$; (c) the members of each level of T are pairwise disjoint; and (d) whenever $B_1^- \subseteq B_2^-$ in T, it is also true that $B_1 \subseteq B_2$.

For each ordinal $\xi < \alpha$ define the ξ th level T_{ξ} inductively: $T_0 = \{B_0^-\}$ where $\emptyset \neq B_0 \in \mathcal{B}$. Assuming $T \upharpoonright (\xi + 1) = \bigcup \{T_{\nu} : \nu \leqslant \xi\}$ has been defined, define $T_{\xi+1}$ as follows: Let $B^- \in T_{\xi}$. Then there is an open $U \subseteq Y$ with B $=U \cap X \subseteq (U \cap X)^{-0} = B^{-0}$. Use regularity to find open sets $U_1, U_2 \neq \emptyset$ (all nonempty open sets are self-dense) with $U_1^- \cup U_2^- \subseteq B^{-0}$ and $U_1^- \cap U_2^ = \emptyset$. Since B is dense in B^- , there are $B_1, B_2 \in \mathcal{B}$, nonempty, such that $B_i \subseteq U_i \cap B$, i=1, 2. So define $T_{\xi+1} = \bigcup \{\{B_1^-, B_2^-\}: B^- \in T_\xi\}$. In the case where ξ is a limit ordinal and $T \upharpoonright \xi$ is already constructed, let $\mathscr{B}_{\xi} = \langle B_\gamma^- : \gamma < \xi \rangle$ be a branch in $T \upharpoonright \xi$. By the inductive hypothesis, $\bigcap_{\gamma < \xi} B_\gamma \neq \emptyset$ and contains a nonempty $B_{\xi} \in \mathscr{B}$. Let $T_{\xi} = \{B_{\xi}^- : \mathscr{B}_{\xi} \text{ is a branch of } T \upharpoonright \xi\}$, and let $T = \bigcup_{\xi < \alpha} T_{\xi}$. By α -compactness, each branch of T has nonempty intersection. Since T has 2^{α} branches, we conclude that $|Y| \geqslant 2^{\alpha}$.

(ii) Let X, Y, \mathscr{B} be as above. Let $\langle U_{\xi} \colon \xi < \alpha \rangle$ be a family of α dense open subsets of Y, with $S = \bigcap_{\xi \leq \alpha} U_{\xi}$. We show S is dense in Y. To this end let $V \subseteq Y$ be nonempty open. To show $V \cap S \neq \emptyset$, use induction on α . We construct a decreasing chain $\langle B_{\xi}^- \colon \xi < \alpha \rangle$ where $B_{\gamma} \supseteq B_{\xi}$ for $\gamma < \xi < \alpha$, $\emptyset \neq B_{\xi} \in \mathscr{B}$ for $\xi < \alpha$, and $B_{\xi}^- \subseteq V \cap (\bigcap_{\gamma < \xi} U_{\gamma})$. This is possible since X is dense in Y, Y is regular T_1 , and \mathscr{B} satisfies the α -intersection condition. Using α -compactness we get $\emptyset \neq \bigcap_{\gamma \in S} B_{\xi}^- \subseteq V \cap S$.

(iii) Assume Y is compact Hausdorff and X is C^* -embedded in Y. Using Theorem 2.3 (ii), let S be any closed discrete subset of X of cardinality $2^{<\alpha}$. Since X is normal, S is C^* -embedded in X, hence in Y. Therefore S^- is homeomorphic to the Stone-Čech compactification of S, so $|Y| \ge |S^-|$, $= \exp^2(2^{<\alpha})$.

2.5. Remark. Both estimates in Theorem 2.4 (i, iii) can be realized as follows: (i) the order compactification (= Dedekind completion-plus-endpoints) of Q_{α} has cardinality 2^{α} ; (ii) the Stone-Čech compactification of Q_{α} has cardinality $\exp^{2}(\alpha) = \exp^{2}(2^{<\alpha})$.

3. Subspaces. In this section we will focus on topological subspaces of the spaces \mathcal{Q}_{α} .

A space X partitions a space Y (see [4]) if there is a family of embeddings of X into Y whose images form a cover of Y by pairwise disjoint sets. Our first aim is to show that any nonempty subspace of Q_{α} partitions Q_{α} (a property shared by the space of irrational numbers and the Cantor discontinuum, but not the real line [4]). The proof for $\alpha = \omega$ is quite easy and rests on the following well known result [9].

- 3.1. Lemma (Sierpiński). Let X be countable, first countable, regular T_1 , and self-dense. Then X is homeomorphic to Q ($X \simeq Q$).
- 3.2. Theorem. Let X be a nonempty subspace of $\mathbf{Q}_{\omega}=\mathbf{Q}$. Then X partitions \mathbf{Q}_{ω} .

Proof. Simply note that by Lemma 3.1, $X \times Q \simeq Q$.

To prove an analogue to Theorem 3.2 for $\alpha > \omega$, we will need some machinery a bit more involved, namely the ultraproduct construction [1, 3, 5] of which we give only a sketch here.

Let $\langle A_i : i \in I \rangle$ be an indexed family of sets, with D an ultrafilter of

Since some of the following arguments use techniques from model theory, in particular the theory of ultraproducts and saturated models, we refer the reader to [5] for the basic theory and terminology. Regrettably we cannot make the paper self-contained for topologists who do not have some grounding in model theory.

When X is a topological space ("X" also stands for the underlying point set) and \mathcal{B} is a basis for the open sets of X, we use $\langle X; \mathcal{B} \rangle$ to denote the relational structure whose universe is $X \cup \mathcal{B}$, and whose distinguished relations are X (unary for points), \mathcal{B} (unary for basic open sets), and \in (binary for membership between members of X and members of X. Thus $\langle X; \mathcal{B} \rangle = \langle X \cup \mathcal{B}, X, \mathcal{B}, \in \rangle$. If X is an ultrafilter then $\langle X^{(D)}; \mathcal{B}^{(D)} \rangle = \langle (X \cup \mathcal{B})^{(D)}, X^{(D)}, \mathcal{B}^{(D)} \rangle = \langle (X \cup \mathcal{B})^{(D)}, X^{(D)}, \mathcal{B}^{(D)} \rangle$. Note that $\langle X \cup \mathcal{B} \rangle^{(D)}$ and $\langle X^{(D)} \cup \mathcal{B}^{(D)} \rangle$ can be put in a natural one-to-one correspondence, and that $\mathcal{B}^{(D)}$ is a topological basis for $X^{(D)}$ (see also X a more complete treatment of topological ultraproducts).

A very simple but important result from [1] is that if < is a linear order on X, \mathscr{B} is a topological basis for the order topology, and D is any ultrafilter then $\mathscr{B}^{(D)}$ is a topological basis for the order topology on $X^{(D)}$ arising from $<^{(D)}$.

By way of a brief digression into general model theory, suppose $A = \langle A, ..., R, ... \rangle$ is a relational structure (over a countable language). If D is an ultrafilter then Δ_D is an elementary embedding. In particular, if $\langle X \rangle$ is a topological basis structure then for each $B \in \mathcal{B}$, $\Delta_D[B] = \Delta_D(B) \cap \Delta_D[X]$. Thus $\Delta_D \upharpoonright X$ is a topological embedding, provided it is continuous. We will come back to this later.

We assume the reader to be familiar with what it means for a relational structure A to be α -saturated, for α a cardinal number. In particular, the η_{α} -sets are precisely the α -saturated dense linearly ordered sets without endpoints.

Of major importance to us are the following well known results.

3.3. Lemma. Let A be a relational structure and let D be a β^+ -good countably incomplete ultrafilter on a set of cardinality β . Then $A^{(D)}$ is β^+ -saturated, and of cardinality $|A|^{\beta}$.

3.4. Lemma. Any two α -saturated elementarily equivalent relational structures of cardinality α are isomorphic.

Fix $\alpha = \alpha^{<\alpha}$. If α is a successor we fix $\alpha = \beta^+ = 2^\beta$ and let D be a β^+ -good countably incomplete ultrafilter on β . If α is a limit cardinal, we let $\langle \beta_{\xi} \colon \xi < \alpha \rangle$ be a fixed increasing sequence of cardinals which is cofinal in α (note: α is regular; and for $\xi < \alpha$, $\beta_{\xi}^+ < \alpha$, and $2^{\beta \xi} \leqslant \alpha$.); and for each $\xi < \alpha$ we let D_{ξ} be a β_{ξ}^+ -good countably incomplete ultrafilter on β_{ξ} . If A is a relational structure of cardinality $\leqslant \alpha$ we form an elementary extension $A^{(\alpha)}$ of A, which is α -saturated and of cardinality α , as follows: If $\alpha = \beta^+$, set $A^{(\alpha)} = A^{(D)}$. If $\alpha = \sup\{\beta_{\xi} \colon \xi < \alpha\}$ let $A^{(\alpha)}$ be the union of the elementary chain $\{A^{(\xi)} \colon \xi < \alpha\}$ where $A^{(0)} = A^{(D_0)}$, $A^{(\xi+1)} = A^{(G)(D_{\xi+1})}$, and $A^{(\gamma)} = \bigcup_{\xi < \gamma} A^{(\xi)}$ where γ is a limit ordinal.

3.5. THEOREM. Let $\alpha = \alpha^{<\alpha}$. Then Q_{α} is an " η_{α} -field" (i.e., a field which is ordered by an η_{α} -set). Hence Q_{α} is a homogeneous LOTS.

Proof. Letting A be the ordered field of rational numbers, we obtain $A^{(\alpha)}$ via the machinery outlined above. Then the order structure on $A^{(\alpha)}$ is an η_{α} -set of cardinality α , hence Q_{α} . To get (point) homogeneity, we use the additive abelian group structure on Q_{α} to translate points.

3.6. THEOREM. Let $\alpha = \alpha^{<\alpha}$ and let X be a regular T_1 space which is self-dense, and of cardinality and weight $\leq \alpha$. Then $X^{(\alpha)} \simeq Q_{\alpha}$.

Proof. Choose a basis \mathscr{B} for X which has cardinality $\leq \alpha$, and let $\langle X_0; \mathscr{B}_0 \rangle$ be a countable elementary substructure of $\langle X; \mathscr{B} \rangle$. Then $\langle X_0; \mathscr{B}_0 \rangle$ (more precisely $\langle X_0; \{B \cap X_0 \colon B \in \mathscr{B}_0\} \rangle$) generates a regular T_1 space which is self-dense, and of countable cardinality and weight. By Lemma 3.1 there is a basis \mathscr{C} for the open sets of Q such that $\langle X_0; \mathscr{B}_0 \rangle \cong \langle Q; \mathscr{C} \rangle$. Therefore $\langle X; \mathscr{B} \rangle$ and $\langle Q; \mathscr{C} \rangle$ are elementarily equivalent. So we use Lemma 3.4, plus the machine for constructing the $A^{(\alpha)}$'s, and conclude that $\langle X; \mathscr{B} \rangle^{(\alpha)} \cong \langle Q; C \rangle^{(\alpha)}$. Thus $X^{(\alpha)}$ is homeomorphic with Q_{α} .

3.7. COROLLARY. $Q_{\alpha} \simeq Q_{\alpha}^2$ (with the usual product topology).

Proof. Simply use Theorem 3.6 to conclude $Q_{\alpha} \simeq Q^{2(\alpha)}$. It is then easy to verify (since ultraproducts commute with finite cartesian products) that $Q^{2(\alpha)} \simeq Q^{(\alpha)^2} \simeq Q_{\alpha}^2$.

We can now prove our analogue to Theorem 3.2 for uncountable α .

3.8. Theorem. Let $X \subseteq Q_{\alpha}$ be nonempty. Then X partitions Q_{α} .

Proof. We actually prove that X partitions Q_a^3 and then invoke Corollary 3.7. We use the technique of Theorem 2.5 in [3], in analogy with the question of subsets of the real line partitioning Euclidean 3-space.

By Theorem 3.5 we can use the η_{α} -field structure of Q_{α} to treat Q_{α}^{3} as affine 3-space. Thus we can talk of affine lines and planes in Q_{α}^{3} as if we were in Euclidean space. In particular, lines are (affine) homeomorphs of Q_{α} , a line L not contained in a plane P must intersect P in at most one point, each

point $p \in P$ is contained in α distinct lines in P, and each point $p \in Q^3_{\alpha}$ is contained in α distinct planes.

Let $\emptyset \neq X \subseteq Q_{\alpha}$, and let $\langle p_{\xi} : \xi < \alpha \rangle$ be a well ordering of the points of Q_{α}^{3} . Inducting on α , we assume that p_{ξ} is the first point not covered by a copy of X, that $p_{\gamma} \in X_{\gamma} \simeq X$ for $\gamma < \xi$, and that distinct X_{γ} 's are disjoint and embedded in affine lines $L_{\gamma} \subseteq Q_{\alpha}^{3}$. Since $|\xi| < \alpha$ there is a plane P_{ξ} containing p_{ξ} but failing to contain any L_{γ} for $\gamma < \xi$.

Thus $|P_{\xi} \cap X_{\gamma}| \le 1$ for $\gamma < \xi$, so $|P_{\xi} \cap \bigcup_{\gamma < \xi} X_{\gamma}| < \alpha$. Since there are α lines in P_{ξ} containing p_{ξ} , there is one, say L_{ξ} , which misses $\bigcup_{\gamma < \xi} X_{\gamma}$ altogether. Since $L_{\xi} \simeq Q_{\alpha}$ is homogeneous, there is a copy X_{ξ} of X such that $p_{\xi} \in X_{\xi} \subseteq L_{\xi}$, and the induction is complete.

We next turn to characterizing those topological spaces X which embed as subspaces of Q_{α} , for $\alpha = \alpha^{<\alpha}$. Clearly if X does embed in Q_{α} then (i) X is regular T_1 ; (ii) both the cardinality and the weight of X are $\leq \alpha$; and (iii) X is α -additive. We will show that these three conditions suffice for X to embed in Q_{α} . When $\alpha = \omega$, a simple application of Lemma 3.1 does the trick. For uncountable α , however, it seems necessary to resort again to model-theoretic methods.

3.9. THEOREM. Assume $\alpha = \alpha^{<\alpha}$ and suppose X is a space which is regular T_1 , both of whose cardinality and weight are $\leq \alpha$, and which is α -additive. Then X embeds in Q_{α} .

Proof. First let $Y = X \times Q_{\alpha}$. Then Y has all of the above properties and is self-dense as well. By Theorem 3.6, then, $Y^{(\alpha)} \simeq Q_{\alpha}$; so it remains to show that Y embeds in $Y^{(\alpha)}$. This will suffice since X clearly embeds in Y.

Suppose $\alpha = \beta^+ = 2^{\beta}$. Then $Y^{(\alpha)} = Y^{(D)}$. To show that $\Delta_D: Y \to Y^{(D)}$ is a topological embedding we need only show continuity. Let \mathscr{B} be a basis for the topology on X, and let $[\overline{B}]_D \in \mathscr{B}^{(D)}$. Then $\Delta_D^{-1}[[\overline{B}]_D] = \bigcup_{J \in D} \bigcap_{\xi \in J} \overline{B}(\xi)$, an open set in Y since Y is α -additive.

Suppose $\alpha = \sup\{\beta_{\xi} \colon \xi < \alpha\}$, and $Y^{(\alpha)}$ is constructed as a chain union of the $Y^{(\xi)}$'s using the ultrafilters D_{ξ} , $\xi < \alpha$. For each $\xi < \alpha$, let $d_{\xi} = \Delta_{D_{\xi}} \colon Y^{(\xi)} \to Y^{(\xi+1)}$, and let $e_{\xi} \colon Y \to Y^{(\xi)}$ be the natural elementary embedding. Since α is a limit ordinal, $e_{\alpha} \colon Y \to Y^{(\alpha)}$ will be continuous provided the same is true for each ξ . The only difficulty in a proof by induction on α is at the successor stages, but that case has essentially been taken care of: Let \mathcal{B} be a basis for the topology on $Y^{(\xi)}$, and let $[\overline{B}]_{D_{\xi}} \in \mathcal{B}^{(D_{\xi})}$. Then

$$\begin{split} e_{\xi+1}^{-1}\left[\left[\bar{B}\right]_{D_{\xi}}\right] &= e_{\xi}^{-1}\left[d_{\xi}^{-1}\left[\left[\bar{B}\right]_{D_{\xi}}\right]\right] \\ &= e_{\xi}^{-1}\left[\bigcup_{J\in D_{\xi}}\bigcap_{\gamma\in J}\bar{B}(\gamma)\right] \\ &= \bigcup_{J\in D_{\xi}}\bigcap_{\gamma\in J}e_{\xi}^{-1}\left[\bar{B}(\gamma)\right], \end{split}$$

icm©

an open set in Y since e_{ξ} is continuous by the inductive hypothesis, $|J| \leq \beta_{\xi} < \alpha$ for all $J \in D_{\xi}$, $\xi < \alpha$, and Y is α -additive (note: The maps d_{ξ} are generally not continuous.).

3.10. Remark. Although the subspaces of Q_{α} can be characterized in a purely topological manner, it seems the same cannot be said for Q_{α} itself: some sort of saturatedness condition must be imposed; and that involves the semantics of artificial language. The following example dashes any hope of achieving the obvious analogue to Lemma 3.1 for uncountable α .

Call a space X Q_{α} -like if X is regular T_1 , of cardinality and weight α , which is α -additive and self-dense. Clearly, there are no Q_{α} -like spaces of singular cardinality, and Q is the only Q_{ω} -like space.

3.11. Example. For any regular uncountable α there exists a Q_{α} -like space which is not a Baire space.

Construction. We use a well known example due to Sikorski [10]. Let $(2^n)_{\alpha}$ (see also [6]) denote the space formed by allowing as basis all $< \alpha$ intersections of open sets in the usual product topology on α^2 ; and let

$$\mathcal{Q}_{\alpha} = \{ f \in {}^{\alpha}2 \colon f(\xi) = 0 \text{ for all but finitely many } \xi < \alpha \} \subseteq (2^{\alpha})_{\alpha}.$$

Then \mathcal{D}_{σ} is Q_{σ} -like but is the union of countably many nowhere dense subsets.

3.12. Question. Are there Q_{α} -like spaces which are not homeomorphic to Q_{α} but which have open bases with the α -intersection condition (see Lemma 2.1 (i))?

To end on a more positive note, it is easy to prove that every subspace X of Q can be embedded as a closed subspace of Q: X is closed in $X \times Q \simeq Q$. A similar statement can be made for Q_{α} when α is uncountable. (We are thankful to R. L. Levy for bringing this question to our attention.) We will first need a lemma, the proof of which can be easily adapted from the proof of New Theorem 7.7 in [2].

- 3.13. Lemma ([2]). Let X be an α -additive regular T_1 space and let D be an ultrafilter on a set of cardinality $< \alpha$. Then Δ_D embeds X as a closed subset of $X^{(D)}$.
- 3.14. THEOREM. (i) Every subspace of Q_{α} embeds as a closed subspace of Q_{α} . (ii) Let X be a nonempty subspace of Q_{α} . Then Q_{α} can be partitioned into homeomorphs of X, each of which is closed and nowhere dense in Q_{α} .
- Proof. (i) Let $X \subseteq Q_{\alpha}$ and refer to the proof of Theorem 3.9. We show that $Y = X \times Q_{\alpha}$ embeds as a closed subspace of $Y^{(\alpha)}$. In the case $\alpha = \beta^+ = 2^{\beta}$, we apply Lemma 3.13 directly. When $\alpha = \sup\{\beta_{\xi} \colon \xi < \alpha\}$, use induction on α : at the successor stages, the only stages where difficulties may arise, use Lemma 3.13 again.
 - (ii) This follows easily from (i) above plus the proof of Theorem 3.8.

References

- P. Bankston, Ultraproducts in topology, Gen. Top. and Appl. 7 (1977), pp. 283-308, MR56 #16554.
- 72] Note on 'Ultraproducts in topology', Gen. Top. and Appl. 10 (1979), pp. 231-232.
- [3] Topological reduced products via good ultrafilters, Gen. Top. and Appl. 10 (1979), pp. 121-137.
- [4] and R. J., McGovern, Topological partitions, Gen. Top. and Appl. 10 (1979), pp. 215-229.
- [5] C. C. Chang and H. J. Keisler, Model Theory, North Holland, Amsterdam 1973.
- [6] W. W. Comfort and S. Negrepontis, The Theory of Ultrafilters, Springer-Verlag, Berlin 1974.
- [7] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton 1960.
- [8] F. Hausdorff, Gundzüge der Mengenlehre, Leipzig 1914.
- [9] W. Sierpiński, Sur une propriété topologique des ensembles dénombrables dense en soi, Fund. Math. 1 (1920), pp. 11-16.
- [10] R. Sikorski, Remarks on some topological spaces of high power, Fund. Math. 37 (1950), pp. 125-136.

DEPARTMENT OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE MARQUETTE UNIVERSITY MINUMENT WISCONSIN 53233

Accepté par la Rédaction le 6.4.1981