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Abstract

If X is an infinite set, we may topologize the power set of X naturally so
that systems of subsets of X can be described in the language of Baire cate-
gory. Systems we consider include: subalgebra lattices of algebraic structures;
topologies; filters; and families of almost disjoint sets.
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0. Introduction. By a system of sets we mean a pair (X,S), where X is a
set and S is a collection of subsets of X. Our objective in this paper is to compare
lattice properties of S (where S is viewed as a subset of the power set lattice p(X))
with topological properties of S (where S is viewed as a subset/subspace of the set
©(X), suitably topologized). The lattice properties we have in mind include whether
S is closed under certain Boolean operations, whether S forms the subalgebra lattice
of a universal algebra structure on X, and the like. The topological properties we
consider largely deal with how “thick” § is.

A subset of a set Y is considered “thick” if its complement in Y is considered
“thin.” In pure set-theoretic terms, if Y has infinite cardinality A, then subsets of
cardinality < A\ may be fairly viewed as being “thin,” but we seek notions that are
more essentially topological. Suppose k is an infinite cardinal and that Y is equipped
with a topology satisfying the xk-Baire category property. (This means that intersec-
tions of at most x dense open sets are dense. In case k is countable, any space that
embeds as a G5 subset of a compact Hausdorff space is k-Baire; in the uncountable
case, examples are more exotic, but still plentiful.) In this setting, there are essen-
tially five gradations for subsets on the “thin-thick” scale. The “thinnest” sets are the
nowhere dense sets, those with closures that have empty interior. Unions of at most k
nowhere dense sets have empty interior, and are called k-meager. (When « is count-
able, these sets are also called meager sets, or sets of the first category.) k-meager
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sets can be dense in the space, and are thus generally “thicker” than the nowhere
dense sets. We adopt the convention that if P is an adjective describing subsets of a
set, then the subsets whose complements are P are called co-P. However, since the
term “co-k-meager” is so awkward-sounding, and since the property it names plays
such a large role in the sequel, we break the convention in this case only and use
“k-residual” instead. Note that, relative to a given topology, x-meagerness and «-
residuality become weaker with increasing x. When the k-Baire property is present,
k-residual sets (just residual when & is countable) are “thick” in the sense that any
intersection of at most x k-residual sets is still k-residual; however, k-residual sets can
have empty interior. “Thickest” of all, then, are the co-nowhere dense sets, sets with
dense interiors. The middle ground on this scale comprises those sets that are neither
k-meager nor k-residual, neither “thin” nor “thick.” (In the countable case, sets that
are not of the first category are called sets of the second category, or nonmeager sets.
Such sets are merely “not thin.”) In this paper, we use the words “thin” and “thick,”
without quotes, to convey, in most cases, the more precise notions of k-meager and
k-residual with respect to a given k-Baire topology. This somewhat vague (but less
cumbersome) terminology will be used only in informal discourse, and should cause
no confusion.

In the next section, we indicate ways in which one can topologize the power set
to obtain a space satisfying the k-Baire category property (much as we did in [1]
and [2]). In succeeding sections we first deal with general systems of sets, then with
closure systems, and finally with closure systems satisfying the exchange property.

Acknowledgement. The author would like to extend his gratitude to the referee
for many helpful comments that improved both the form and the content of this paper.

1. Topological Preliminaries. We first fix some standard notation: The
cardinality of a set X is denoted |X|; an ordinal « is the set of its ordinal prede-
cessors (« = {f : B < a}); a cardinal is an initial ordinal; w is the first infinite
cardinal; the cardinal successor of a cardinal k is denoted k*; 2° := |p(k)|; and
2<F := Sup {2* : A < k}. Let X be an infinite set. For each pair F, G of subsets of X,
let [F,G] :={Y C X:FCY C X\G}. If £ is any infinite cardinal, we let 7, be the
topology that is basically generated by those sets [F, G| where |F|, |G| < k. (Such
sets are called k-intervals.) Then, by identifying subsets with characteristic functions,
we know that (p(X),7,) is homeomorphic to the |X|-fold topological power of the
two-point discrete space. We refer to 7, as the coarse topology (closed (resp. open,
discrete, etc.) sets in this topology being termed coarse-closed (resp. coarse-open,



coarse-discrete, etc.)). This space is totally disconnected compact Hausdorff, which
is also self-dense (i.e., no isolated points) and homogeneous (i.e., any point may be
carried to any other point via an autohomeomorphism). This space also satisfies the
Baire category property (where “Baire” means “w-Baire”), so we may place systems
S C p(X) on the coarse thickness scale.

A subset FF C X is small if |F| < |X|. When we take x to be |X|, 7 is
referred to as the fine topology, and is basically generated by |X|-intervals. The
Hung-Negrepontis category theorem (Theorem 15.8 in [3]) tells us that when k = | X|
is a regular cardinal (i.e., not the union of < x small subsets), any intersection of at
most k dense open subsets of (p(X), 7,) is dense (even homeomorphic to (p(X), 7.),
provided « is not weakly compact). Thus (p(X), 7,) is a k-Baire space, and we may
also place systems S C p(X) on the fine thickness scale.

Of course, as long as a space is not a thin subset of itself, and unions of finitely
many thin sets are still thin, no subset can be both thin and thick on the same scale.
The question naturally arises as to whether a subset can be both thin on one given
scale and thick on another. A reassuring answer is given in the following.

1.1 Proposition. Let X be an infinite set, S C p(X).
(¢) If X is uncountable, then S cannot be both coarse-meager and fine-dense.

(11) If | X| is regular, then S cannot be both coarse-meager and fine-| X |-residual (or
both coarse-residual and fine-| X |-meager).

Proof. Ad (7). Suppose S is fine-dense, X an uncountable set. Then § is 7 +-dense;
hence S intersects every coarse-G set. Consequently any coarse-F, set containing S
must be all of p(X). Since the coarse topology satisfies the Baire category property,
S cannot be coarse-meager.

Ad (4). If X is countable, the conclusion is immediate; so assume X is un-
countable and regular. If S is fine-|X|-residual, then S is fine-dense by the Hung-
Negrepontis theorem cited above. Thus S is not coarse-meager by (7). If S were both
coarse-residual and fine-| X'|-meager, then p(X)\ S would be both coarse-meager and
fine-| X |-residual, an impossibility. O

Under certain circumstances, a system may itself satisfy a category property when
viewed as a subspace of p(X), suitably topologized. In particular, if S is coarse-closed,
then § is compact Hausdorff; hence a Baire space. We may then place subsystems



T C S on the relativized thickness scale in the obvious way. When we try to re-
peat this approach using the fine topology (assuming |X| is regular), we encounter
difficulties. A closed subspace in the fine topology is not a priori a | X |-Baire space.
The following result is of some help with this problem, and is an easy consequence of
Theorem 15.9 in [3].

1.2 Lemma. Let X be a set of infinite regular cardinality x, and S C p(X) a
coarse-closed fine-self-dense system of sets. Then &, as a subspace of (p(X), 7), is
homeomorphic to (p(X),7); and is hence a k-Baire space. O

The topologies T, on p(X) are always homogeneous (and self-dense when x <
|X|), hence the space (p(X),7.) admits many autohomeomorphisms. The most use-
ful seem to arise from lattice considerations. For each R C X, let Ag : p(X) — p(X)
be “symmetric difference with R;” i.e., Ag(Y):= (R\Y)U (Y \ R).

1.3 Lemma. Let X be a set, R C X, and x an infinite cardinal. Then Ap is an
involutive autohomeomorphism on (p(X), 7).

Proof. Clearly Ag is an involution. Let [F, G| be a k-interval of subsets of X, and
set F' := (F\R)U(RNG) and G' :== (G\ R)U(RNF). Then F' and G’ have
cardinality < k, and we claim Ag([F,G]) = [F',G']. For suppose FF CY C X \ G.
Then R\ (X \G) C R\Y CR\Fand F\RCY\RC (X\G)\R. Thus
(R\ (X\G)U(F\R) C Ag(Y) C (R\F)U ((X\G)\ R). The left side
is clearly F', and the right (after a brief calculation, noting that F and G are
disjoint) is X \ G'. Conversely, suppose F' C Y C X \ G'. Then, as above,
(FF\R)U(RNG") C Agr(Y) C X\ ((G"\ R)U (RN F"). After another simple
calculation, the left side is F', and the right is X \ G. O

Thus, no matter what thickness scale we use, the positions of & C p(X) and
Ag(8S) are the same for each R C X.

2. Systems of Sets. Let (X,S) be a system of sets. The elements of
S are called S-distinguished (so the elements of the dual system Ax(S) are S-co-
distinguished).

2.1 Theorem. Suppose X is an infinite set, and (X, S) is a coarse-residual (resp.
fine-| X |-residual, provided |X| is regular,) system of sets. Then every finite (resp.
small) subset of X is the intersection of two distinct members of S, whose comple-



ments are also in S. Thus every co-finite (resp. co-small) subset of X is the union of
two distinct S-distinguished sets.

Proof.  Assume S is coarse-residual (resp. fine-|X|-residual, where |X]| is reg-
ular,), let F' be any finite (resp. small) subset of X, and set R := X \ F. By
Lemma 1.3, SN Ag(S) N Ax(S) N Ar(Ax(S)) is coarse-residual (resp. fine-|X|-
residual), and is therefore coarse-dense (resp fine-dense). It consequently intersects
[F,(]. Since Ar and Ax are involutive, there is some Y € S, containing F, such that
Ar(Y),X \Y, and X \ Ag(Y) are in § also. But then F =Y N (X \Y)UF)) =
YA (X AP\ Y) U\ (X\F) = Y0 ((R\Y)U (Y \R)) =Y N Ag(Y). Since
R # 0, we have Y # Ag(Y). Also X \ F = (X \Y)U (X \ Ag(Y)). O

Theorem 2.1 is useful for showing that certain well-known systems of sets are not
thick.

2.2 Corollary. Suppose X is infinite, and S is a proper filter of subsets of X. Then
S cannot be coarse-residual. Nor can it be fine-| X |-residual, if | X| is regular. If S
is an ultrafilter, then, in addition, it cannot be coarse-meager (or fine-| X |-meager, in
the case | X]| is regular).

Proof. Otherwise, by Theorem 2.1, & would have to contain the empty set. This
takes care of the first assertion. If S were a proper ultrafilter that was coarse-meager
(or fine-| X |-meager, in the case | X| is regular),then its dual Ax(S) would have the
same status. But the dual is just p(X)\S in this case, and we obtain a contradiction.
O

So proper ultrafilters occupy the middle of whichever thickness scale one chooses.
There are other systems that can easily be placed, e.g., the infinite co-infinite subsets;
and, with a little more work, the “moieties” (i.e., those subsets that are neither small
nor co-small.)

2.3 Theorem. Let X be a set of infinite cardinality «.

(i) Sic == {Y C X : Y is infinite and co-infinite} is coarse-residual; and, if & is
regular, fine-residual as well.

(17) Sm = {Y C X : Y is a moiety} is fine-x-residual, provided « is regular, and
either a limit cardinal (i.e., weakly inaccessible) or equal to 2<.

(73i) If k is uncountable, then S, is neither coarse-meager nor coarse-residual.



Proof. Ad (i). Foreach a < w ,let 7, == {Y C X : |[Y]| > |a|}. One easily
shows that each F, is coarse-open and fine-dense, and that S;. = F N Ax(F), where
F :=Na<w Fa- (The coarse topology always satisfies the Baire category property; we
assume the regularity of x to ensure the same for the fine topology.)

Ad (i7). Assuming k is a regular limit cardinal, repeat the argument in (7), replac-
ing w with k. (Each F, is fine-open and fine-dense.) That S, contains F N A x(F)
follows from the limit assumption. In the case k = 2<%, simply note that then we
have |p(X) \ S| = k.

Ad (7i7). It is easy to see that S, is fine-dense. If k is uncountable, then, by
Proposition 1.1(¢), S, cannot be coarse-meager.

To show S, cannot be coarse-residual when & is uncountable, let F :={Y C X :
Y| < |X|}. We note that F is clearly fine-dense (coarse-dense is all we need), and
claim that it is a Baire subspace of (p(X),7,). Assuming for the moment that the
claim is true, it is easy to see that F cannot be coarse-meager. Indeed, if U, is dense
open in the coarse topology, n < w, and if ¢ is any nonempty coarse-open set, then
UNF)NU,NF)=UNU,NF # 0, solU,NF is dense open in the Baire space
F. Consequently F NNy Un # 0. Now since S, is disjoint from F, S, cannot be
coarse-residual.

To prove the claim, it suffices, by the Baire category theorem, to show that F
is a countably compact subspace of (p(X),7,). Now w-intervals are easily seen to
be coarse-closed; hence complements of w-intervals are finite unions of w-intervals,
since the coarse topology is compact. Thus the collection of all finite unions of w-
intervals furnishes a basis for the coarse-closed sets. Let {C, : n < w} be basic
coarse-closed sets such that {C, N F : n < w} satisfies the finite intersection prop-
erty. Then {C, : n < w} satisfies this property too, hence N,«,Cn # 0. This set
is a countable intersection of finite unions of w-intervals; by infinite distributivity, it
may be written as a union of countable intersections of w-intervals. At least one of
these intersections, say ,<y|Fn,Gn|, must therefore be nonempty. This says that
(Un<w Fr) N (Unew Grn) = 0. Thus U, F,, a countable set and hence in F, must be
a member of 1, ., C,. This proves the claim and hence the result. O

As an application of Theorems 2.1 and 2.3, recall that a system S of subsets of
a set X of infinite cardinality x is an almost disjoint family (resp. a strongly almost
disjoint family) if the intersection of any two distinct members of S is small (resp.
finite). It is a simple, but elegant, result (see [7]) that if k = 2<%  then p(X) contains
almost disjoint families of cardinality 2%. However, such families are generally not
thick.



2.4 Corollary. Let X be a set of infinite cardinality x, and S be a system of subsets
of X.

(7) If S is a strongly almost disjoint family, then S is not coarse-residual (or fine-
k-residual, when & is regular).

17) If S is an almost dlS_]OlIlt famlly, K is re ular, and either k is a limit cardinal or
g
KR = 2<K, then S is not fine-k-residual.

Proof. Ad (i). Assume S is a strongly almost disjoint family that is coarse-residual.
Using Theorems 2.1 and 2.3(7), there exist two distinct sets Y, Z € S N S;., whose
complements are also in §. But then YN Z and Y N (X \ Z) are both finite; hence
their union, which is Y, is also finite, a contradiction.

The proof that S cannot be fine-«-residual is a repetition of the argument above,
making use of the parts of Theorems 2.1 and 2.3(7) that deal with the fine topology.

Ad (i7). Repeat the argument in (i), making use of Theorems 2.1 and 2.3(i7). The
sets Y and Z must then be moieties. O

The question naturally arises as to the thickness of chains and antichains in p(X).
Of course chains can be neither coarse-residual nor fine-| X |-residual by Theorem 2.1.
(Another way to see this is to note that since the cardinality of any chain in p(X)
is bounded by |X|, we know that chains are automatically fine-| X |-meager. We may
then cite Proposition 1.1(i7).) The issue for antichains is only slightly less clear.

2.5 Proposition. Let X be an infinite set. Then no antichain in p(X) can be
coarse-residual (or fine-| X |-residual, when | X| is regular).

Proof. Let & C p(X) be coarse-residual (resp. fine-|X|-residual, when |X| is
regular), and let ¥ C X be any nonempty finite set. By Lemma 1.3, we have
that S N Ar(S) is coarse-residual (resp. fine-|X|-residual), so there is some Y €
SNApr(S)N[D, F]. Thus both Y and Y U F' (a proper superset) are in S, and S is
therefore not an antichain. O

3. Closure Systems of Sets. A system (X,S) is a closure system if S is
closed under arbitrary intersections. For the remainder of the paper, we concentrate
on closure systems, as well as associated systems that naturally arise. When § is a
closure system, there is the associated closure operator ( ) := ( )s mapping p(X)
to itself: for any Y C X, (V) is the intersection of all members of S containing Y.
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It is easy to verify that ( ) is expansive, monotone and idempotent (see, e.g., [6]).
A closure system is topological if it is closed under finite unions. For any infinite
cardinal k, define the closure system (X,S) to be k-algebraic (simply algebraic if
k = w) if whenever Y C X and z € (Y), then z € (Z) for some Z C Y of cardinality
< K. (8 is algebraic if and only if it is closed under unions of nonempty up-directed
subsystems [6], so Zorn’s lemma arguments come into play in this context.) (X,S)
is monotonically k-additive if whenever o < k and {Fp : f < a} is an increasing
sequence of subsets of X of cardinality < &, then (Ug<q F3) = Up<a(Fp). (Clearly
when k = w, this is no restriction.) For any closure system (X,S), a subset Y is
S-dense (resp. S-discrete) if (Y) = X (resp. x € X \ (Y \ {z}) for each z € Y'). The
words “dense” and “discrete” come from topology; nevertheless we have decided on
this terminology to apply in a more general context. Of course, when § is algebraic,
and can thus be viewed as the subalgebra lattice of some finitary universal algebra
structure on X [6], dense sets are “generating” sets (or “spanning” sets, in the vector
space context); discrete sets are “independent” sets in a weak sense (this sense being
strong enough in the context of vector spaces). We denote the associated systems
of S-dense sets and S-discrete sets by Den(S) and Dis(S) respectively. (Clearly
Den(S) (resp. Dis(S)) is closed under supersets (resp. subsets).) Finally, a closure
system (X, S) satisfies the exchange property (EP) if whenever Y C X and z,y € X
are such that y € (Y U {z}) \ (YV), then z € (Y U {y}).

3.1 Theorem. Let (X,S) be a closure system, « an infinite cardinal.
(1) If S is k-algebraic, then S is T.-closed. The converse is true when & is regular.

(17) If (X, S) satisfies the EP and Den(S) contains no subsets of cardinality < x,
then S is T-self-dense. If Den(S) does contain a subset of cardinality < x,
then X is a 7.-isolated point of S.

(73i) If K is a regular cardinal, and (X,S) is k-algebraic, monotonically k-additive
and 7.-self-dense, then |S| > 2~.

(iv) S contains all subsets of cardinality < x if and only if S is 7.-dense.

Proof. Ad (7). With very little difficulty, one can translate the assertion that S is
k-algebraic (resp. T-closed) to the following: for every Y ¢ S, for every z € (Y)\ YV
(resp. there is some z € (V) \ V), there is some F' C Y of cardinality < &, such that
z € (F).

To see the converse, assume k is a regular cardinal, and let Y ¢ S be fixed. Set
Z = J{(F) : F C Y has cardinality < k}. Then Z C (Y) and Y C Z; hence
(Y) = (Z). We show Z € S. Indeed, suppose otherwise. Then there is some G C Z



of cardinality <  such that (G) Z Z, since S is T-closed. But « is a regular cardinal,
so G C (F) for some F' C Y of cardinality < k. Thus (G) C Z after all. Therefore,
since (Y) = Z, we know that every z € (Y) is in (F) for some F' C Y of cardinality
< K.

Ad (i7). Suppose no S-dense subset of X has cardinality < «, and that the EP
holds. Let [F,G] be a r-interval that intersects S. Then (F) NG = (). We need to
find another S-distinguished set in [F, G], so it suffices to find some z € X \ (F') such
that (FU{z}) NG = (). Assuming this cannot be done, we have for each z € X \ (F),
some g(z) € GN(FU{z}). Since g(x) & (F), the EP tells us that x € (FU{g(z)});
whence X \ (F') C (F UG). This implies that F'U G is S-dense, contradicting our
hypothesis.

Now assume there is some F' € Den (S) of cardinality < x. Then [F, (] is a -
interval whose intersection with S is {X}.

Ad (4i7). Suppose A < k, and {F, : a < A\} and {G, : @ < A} are two increasing
A-sequences of subsets of X, such that for each o < A\, F, and G, are disjoint and
of cardinality < k. Then {[F,, G4] : @ < A} is a decreasing \-sequence of x-intervals.
Assume each [F,, G,| intersects S, a k-algebraic, monotonically x-additive closure
system. Let F':= Uy Fa, and G := Ugyer Go- Then we claim that [F, G] intersects
S. If not, then (F)NG # (. Assume first that A = k. Since S is k-algebraic, there is
some H C F of cardinality < « such that (H) N G # ). Because  is regular, there
is some a < k with H C F,. Thus (F,) intersects G, so there is some § < x such
that (F,) intersects Gg. Let v := maz{c, f}. Then (F,) N G, # 0, a contradiction.
If A < k, we invoke monotonic k-additivity to assert that (F') = Uy<x(Fa), and argue
much as above.

Now assume S is also 7,-self-dense. We build a k-level tree T by induction
satisfying:

(a) T is a binary tree whose nodes are (basic) 7T,-neighborhoods, ordered by reverse
inclusion;

(b) each node of T intersects S; and

(¢) the nodes at each level of T are pairwise disjoint.

It is clear, by the last paragraph, that once we establish the existence of such a tree,
we are done. The construction of T is routine: The root node consists of any 7-
neighborhood that intersects S; level a + 1 is obtained by taking each node at level
a and assigning two disjoint 7,-subneighborhoods, each intersecting S (possible be-
cause S is T.-self-dense); limit levels are obtained by taking intersections.



Ad (iv). Suppose S contains all subsets of cardinality < &, and let [F,G] be
a nonempty k-interval. Then F' and G have cardinality < &, so F' € [F,G] N S.
Conversely, suppose S is T.-dense, with F' an arbitrary subset of cardinality < . If
F ¢ S, then there is some x € (F) \ F. But [F,{z}] intersects S, so must contain
(F'), a contradiction. Thus F € §. O

For topological closure systems, being w*-algebraic means having countable tight-
ness. This property bears the same formal relationship to being 7_+-closed as the
Fréchet-Urysohn property bears to being sequential. Since sequential spaces are well
known not to be Fréchet-Urysohn in general, it came as a surprise to us that the sim-
ple (but not entirely straightforward) converse in Theorem 3.1(7) is actually true. We
would like to thank Alan Dow for indicating to us the folklore result that sequential
spaces have countable tightness. Our proof is an inessential generalization of that
result (which appears in [8]).

The EP is easily seen to be too strong for the conclusion in the first assertion in
Theorem 3.1(i7): Take X to be the (ordered) set of rational numbers, and S to be
the closed left-unbounded intervals (in the classic sense). Then § is 7,-self-dense,
but the EP clearly fails.

An immediate consequence of Theorem 3.1(4) is the following.

3.2 Corollary. Let S be a proper closure system on X. If § is algebraic, then
it is not coarse-residual; if S is |X|-algebraic, where |X| is regular, then it is not
fine-| X |-residual. O

3.3 Theorem. Let S be a proper topological closure system on X (i.e., not dis-
crete). Then S is not coarse-residual (or fine-| X |-residual, when |X]| is regular).

Proof. If S is thick in either sense, then each co-singleton subset of X is a union
of two members of S, by Theorem 2.1. But then every co-singleton subset of X is
already in S; hence every subset of X isin §. O

An ultrafilter on a set may be viewed as the dual of a topological closure system,
once we throw in the empty set. By Corollary 2.2, then, topological closure systems

can fail to be thin. The following two results give sufficient conditions for a closure
system to be thin.

3.4 Proposition. If S is a closure system on X, then S N Den(S) = {X}. Conse-
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quently, if one of S, Den(S) is coarse-residual (resp. fine-| X |-residual, where | X]| is
regular), then the other is coarse-meager (resp. fine-| X |-meager). O

Let (X,S8) be a system of sets. A subsystem P C S\ {X} is a weak base for
S if every S-distinguished proper subset of X is contained in a member of P. (A
weak base for a proper ideal of sets is the dual of a filterbase for the dual filter of the
ideal; the dual of a weak base for a topological closure system is a m-base for the dual
topology.) If  is an infinite cardinal, we say S is k-based if S has a weak base P of
cardinality at most &, such that every P-co-distinguished set has cardinality at least .

3.5 Theorem. Let (X,S) be a closure system, x € {w, |X|}, | X| a regular cardinal
(where necessary, for Baire category considerations).

(i) If S is k-based, then Den(S) is T.-k-residual; consequently S is Ty-k-meager.

(17) If S is | X|-algebraic, then Den(S) is fine-| X |-residual if and only if Den(S) is
fine-dense, if and only if no proper S-distinguished subset is co-small.

Proof. Ad (i). Assume k € {w,|X|}, and let P witness the fact that S is
k-based. We show Den(S) is Ty-x-residual; the rest follows by Proposition 3.4.
Let R :=={Y C X :forall S € P, for all @ < «,|Y \ S| > |&|}. Then clearly
R C Den(S), so we need only show R is T-k-residual. Fix S € P and a < &, and
define Rg, :={Y C X : [Y'\ S| > |a|}. Because |P| < k and R is the intersection
of all the families Rg,, we need to show now that each such family is dense open
in 7. So fix disjoint sets F,G C X of cardinality < &, and set Y := X \ G. Of
course Y € [F,G]. Since |G| < k and | X \ S| > k, we have that [Y \ S| > k as well.
Thus Y € Rg,, and we have density. Finally, suppose Y € Rg,; pick FF C Y \ S of
cardinality |«|. Then [F, ] is a T.-neighborhood of ¥ that is contained in Rg .

Ad (i7). Assume Den(S) is fine-| X|-residual. Then Den(S) is fine-dense; so for
each small subset G, [, G] contains an S-dense set. Thus X \ G is S-dense. This
says no proper S-distinguished subset is co-small.

For the third leg of the proof, we need S to be |X|-algebraic. Assume no proper
S-distinguished subset is co-small, so every co-small subset of X is in Den(S). For
each z € X, set R, .= {Y C X : 2z € (Y)}. Then Den(S) = Nyex Rz, SO We
need to show each R, is dense open in the fine topology. For density, we have
X\ G € [F,G]NR, whenever F' and G are disjoint small subsets, because co-small
subsets are S-dense. For openness, if Y € R, use |X|-algebraicity to find a small
F CY with z € (F'). Then [F, ()] is a fine-open neighborhood of Y contained in R,.. O
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Any positive result, such as Theorem 3.5, asserting that a certain system R C
©(X) is thick, implies some cardinality bounds on R (with less fuss than in Theorem
3.1(7i)). For instance, if R is coarse-residual, then |R| > 2, by standard Baire cat-
egory folklore. (One builds an w-height binary tree.) If | X| is regular and not weakly
compact, and R is fine-| X |-residual, then |R| = 2| (indeed R and (p(X), 7/x|) are
homeomorphic), by the Hung-Negrepontis category theorem [3].

The following is a known fact about ultrafilters (see, e.g., Exercises 4G.1,2 in [4]).
It is nonetheless somewhat amusing that it follows easily from Corollary 2.2 and The-
orem 3.5(7) (keeping in mind that the Baire category argument in the uncountable
case applies only for regular cardinality). Recall that an ultrafilter & on an infinite
set X is uniform if every element of I has cardinality | X|.

3.6 Theorem [4]. Let U be a nonprincipal ultrafilter on an infinite set X, with
filterbase F. Then F is uncountable. If, in addition, ¢/ is uniform, Then |F| > | X].
O

Next we examine Dis(S), the system of S-discrete subsets of X. As mentioned
earlier, Dis(S) is closed under subsets. Moreover, if Y € Dis(S) and U,V C Y
are distinct, say v € U \ V, then u ¢ (Y \ {u}); hence u ¢ (V \ {u}) = (V).
Thus u € (U) \ (V); consequently the closure operator is injective on p(Y") for any
Y € Dis(S). This implies |S| > 2V for any Y € Dis(S).

Define Bas(S) := Den(S) N Dis(S). (A member of Bas(S) is called an S-basis.)
When § is the system of vector subspaces of a vector space structure on X, Bas(S)
is the collection of vector space bases. Since bases occur only under very special
circumstances, one should expect Bas(S) to be thin; in particular one should not
expect both Den(S) and Dis(S) to be thick. This expectation is justified, as we see
presently. Let MaxzDis(S) and MinDen(S) be respectively the maximal S-discrete
and the minimal S-dense subsets of X. We collect some elementary facts in the fol-
lowing.

3.7 Proposition. Let (X,S) be a closure system.
(1) Bas(S) = MinDen(S) C MazDis(S).

(17) If (X,S) is algebraic, then MaxDis(S) is nonempty; however Bas(S) can be
empty.

(173) If (X,S) satisfies the EP, then Bas(S) = MazDis(S).
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(tv) MaxDis(S) is not coarse-residual; if |X| is regular, it is not fine-| X |-residual
either.

Proof. Ad (i). IfY € Bas(S), then Y € Den(S). Suppose U C Y,y € Y\U. Since
Y € Dis(S), y ¢ (Y \ {y}); hence y ¢ (U \ {y}) = (U). Thus Y € MinDen(S). For
the reverse inclusion, suppose Y € MinDen(S), y € Y. Then (Y \ {y}) # X = (V).
Ity € (Y \{y}), then Y C (Y\{y}),s0 X = (V) € ({(¥\{y})) = (¥ \{y}), an impos-
sibility. Thus y ¢ (Y \ {y}); hence Y € Dis(S). This proves Bas(S) = MinDen(S).
To see that Bas(S) C MaxDis(S), suppose Y € Den(S), Y CZC X. Ifze€ Z\Y,
then X = (Y) C (Y \ {z}) C(Z\{z}). Thus Z ¢ Dis(S).

Ad (i7). Every singleton set is S-discrete; so Dis(S) is never empty. Algebraic-
ity, then, allows a straightforward application of Zorn’s lemma to obtain maximal
elements in Dis(S) partially ordered by set inclusion.

To prove the second assertion, let X be the ordered set of rational numbers, and
S be the closed left-unbounded intervals (as in the paragraph before Corollary 3.2).
Then (X,S) is algebraic, the only S-discrete subsets being those of cardinality < 1.
However, Den(S) consists of the right-unbounded sets. (We are grateful to the referee
for pointing out these features of this example.)

Ad (i7i). Suppose (X,S) satisfies the EP, with Y € MaxDis(S). We show
Y € Den(S). Assume otherwise, and fix € X \ (Y). Then Y U{z} is not S-discrete,
and must contain an element y witnessing this. Since z ¢ (V) and (YU{z})\{z} C Y,
we know y # x. Thus y € Y. Since Y is S-discrete, we know y ¢ (Y \ {y}). Now
(YU{z})\{y} = (Y \{y}) U{z}, since y # z. Hence y € (Y \ {y})U{z}), so by the
EP, z € (Y \{y} U{y}) = (Y). From this contradiction, we infer that Y is S-dense
after all.

Ad (iv). MazDis(S) is clearly an antichain in p(X). The result is immediate
from Proposition 2.5. O

MaxDis(S) is never thick, by Proposition 3.7(iv); it can easily be made to be
thin, however, as the following shows.

3.8 Proposition. Let (X,S) be a closure system, with w < k < |X|. If S is
k-algebraic or if § has a weak base P such that every P-co-distinguished set has
cardinality < k, then Bas(S) is T;-nowhere dense.

Proof. Set M := Bas(S), and let [F,G] be an arbitrary nonempty k-interval.
It suffices to find a nonempty s-interval [F’, G'] C [F,G] that misses M. We may
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therefore assume [F, G] N M # 0.

Assume first that S is k-algebraic.
Case la. X \ G is S-discrete. Then [F,G]NM ={X\G}. |[FUG| <k < |X]|;
so pick z € X \ (FUG). Then 0 # [F,G'] C [F,G], and [F,G']| N M = (), where
G':=GU{z}.
Case 1b. X \ G is not S-discrete. Then there is some z € X \ G such that
z € (X \ (GU{z})). Since S is k-algebraic, there is some H C X \ (G U {z}),
|H| < k, such that x € (H). Then F' := FUH U{x} is not S-discrete, so no superset
can be S-discrete either. Thus () # [F',G] C [F,G], and [F',G] N M = (.

Next assume S has a weak base as in the hypothesis.
Case 2a. F is S-dense. Then [F,G]N M = {F}. Pick x € X \ (FUG). Then
[FU{z},G] is our desired [F',G"].
Case 2b. F'is not S-dense. Then by our assumption, there is a nonempty S-co-
distinguished set H of cardinality < x such that F N H = (. Thus [F,G U H] is our
desired [F',G']. O

An immediate consequence of Theorem 3.5(:) and Proposition 3.8 is the following.

3.9 Theorem. Let (X,S) be a k-based k-algebraic closure system, where k €
{w, | X[}, | X| a regular cardinal (where necessary for Baire category considerations).
Then Dis(S) is T-k-meager. O

3.10 Examples.

(1) Let X be a countably infinite set, with Z := {Y C X : Y is finite}. Set
S :=TU{X}. Then Den(S) ={Y C X :Y is infinite}, a residual system, and
Dis(S) = Z, a meager system.

(77) Let X again be countably infinite, with Z now a free maximal ideal of sets; S :=
ZU{X}, and U := Ax(Z), the corresponding ultrafilter. Then Den(S) = U
and Dis(S) = Z. By Corollary 2.2, both of these systems are nonmeager and
nonresidual. Note that in this example, as well as the one above, Bas(S) = ()
and both hypotheses of Proposition 3.8 fail.

(73) Suppose (X,S) is a topological closure system satisfying the 77 axiom; i.e., the
singleton subsets of X are S- distinguished. Then Bas(S) # 0 if and only if
there is an S-dense set, of S-isolated points; in which case that set is the unique
element of Bas(S). O

4. EP-Systems of Sets. By an EP-system, we mean a closure system
satisfying the exchange property. As an immediate consequence of Lemma 1.2 and
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Theorem 3.1(%,4i), we have the following.

4.1 Theorem. Let (X,S) be an algebraic EP-system of infinite regular cardinality,
such that no small subset of X is S-dense. Then &, with the topology inherited from
7T x|, is homeomorphic to (p(X), 7[x|), and is hence a |X|-Baire space. O

Algebraic EP-systems are also called “independence spaces,” or “infinite matroids”
in the literature (see, e.g., [5, 9]). Since the notion of “independence” makes sense
in contexts far removed from what these systems encompass, we avoid using the first
alias. Since finiteness is almost universally built in to the definition of “matroid,” we
avoid using the second as well. A celebrated feature of algebraic EP-systems (X, S)
is that bases (i.e., subsets that are dense and discrete/minimal dense/maximal dis-
crete) exist (as shown in Proposition 3.7(7,47)), and that any two bases have the
same cardinality [9], called the dimension (dim(S)) of the system. Furthermore, ev-
ery S-dense (resp. S-discrete) subset of X contains (resp. is contained in) an S-basis.

Theorem 4.1 allows us to relativize our fine topology scale to subsystems of alge-
braic EP-systems of large (i.e., not small) dimension. (Of course, there is no problem
relativizing the coarse topology scale to subsystems of arbitrary algebraic systems.)
If (X,S8) is any system of sets and S € S, let Sg:={T'N S : T € S}. It is clear that
if (X,8) is a closure system, then so is (S, Ss); further refinements of closure, e.g.,
being algebraic, satisfying the EP, are also inherited. The following is a relativized
algebraic version of Theorem 2.3.

4.2 Theorem. Let (X,S) be an algebraic EP-system of infinite cardinality x.

(1) If dim(S) > w, then §; := {S € § : dim(Ss) > w} is coarse-residual in S; if
dim(8S) = k, where k is regular, then §; is fine-residual in S as well.

(17) If dim(S) = k, then §; := {S € S : dim(Ss) = k} is fine-k-residual, provided
is regular, and either a limit cardinal or equal to 2<".

(73i) If dim(S) = k and k is uncountable, then S, is neither coarse-meager nor coarse-
residual in S.

Proof. Ad (i). Foreach a <w,let R, :={S € §: S contains an S-discrete subset
of cardinality |«|}. Then S; = Ny<, Ra, so it suffices to show each R, is coarse-open
and coarse-dense in S. First let S € R,, say F' C S is an |«/-element S-discrete set.
Then S € [F,0]NS C R, s0 R, is coarse-open in S.

Next let [F, G] NS be a nonempty relatively coarse-open set. Then (F) NG = 0.
Since dim(S) > w, we can argue, much as in the proof of Theorem 3.1(i7), that
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there is some zy € X \ (F) with (F'U {z0}) NG = (. (Indeed, if not, then for all
xz € X \ (F), we have some g(z) € G N (FU{zx}). Since g(x) ¢ (F), the EP ensures
that z € (F U {g(x)}); hence X \ (F) C (FUG). But then FFUG is a finite S-
dense set, which must then contain an infinite S-basis.) Proceeding by induction, we
obtain I := {zg : f < w} such that for each f < w, 25 € X \ (FU{z, : v < }) and
(FU{z,:v < B})NG = 0. Algebraicity ensures that (F UI) NG = 0; we need to
show that I is an S-discrete set. Indeed, suppose § < w is fixed and z5 € (I \ {z3}).
Then there is some finite Iy C I \ {zg} such that xz € (Ip). Assume [ has the least
possible cardinality for this to happen, and let v < w be largest such that z., € I;. By
the inductive definition of I, it follows that 8 < . Because |I;| is minimal, we know
that x5 ¢ (Ip\{z,}). By the EP, however, we then infer that z, € ((Ip\{z,})U{zs}).
But this contradicts the inductive definition of I, and establishes the claim.

Set S := (FUI). Then S € [F,G]NS; C [F,G]NR,, so S; (and therefore R,) is
coarse-dense in S.

Now assume dim(S) = k, where & is regular. We have only to show each R, is
fine-dense in §. The proof is essentially identical to that just given above, and in fact
shows that S; is fine-dense in S.

Ad (ii). Assuming dim(S) = k, where k is a regular limit cardinal, repeat the
argument in (¢) with & replacing w. (The weak inaccessibility of x ensures that
S = Na<k Ra-.) In the event kK = 2<% note that |S\ §| < k.

Ad (#44). Since S is coarse-closed in p(X), and is hence a Baire space, the argument
in the proof of Proposition 1.1(¢) relativizes to S. Thus S, cannot be both coarse-
meager and fine-dense in §. Now the argument in (7¢) above (adapted from that in
(1)) showing each R, to be fine-dense in S actually shows &; is fine-dense in S. Thus
S, is not coarse-meager in S.

To see that S is not coarse-residual in S, we mimic the proof of the corresponding
statement in Theorem 2.3(i77). Solet F :={S € § : dim(Ss) < k}. It suffices to show
that F is not coarse-meager; for this it suffices to show that F is both coarse-dense
in S as well as a countably compact subspace of S relative to the coarse topology.
Re the question of coarse-denseness, let [F, G] be an w-interval intersecting S. Then
(F) € FN[F,G]. Re the question of countable compactness, it suffices to show that
if a countable intersection of w-intervals intersects S (a compact space because of
the algebraic condition, by Theorem 3.1(7)), then, it also intersects F. But this is
easy. Let {[F},,G,] : n < w} be such a countable collection of w-intervals. Then the
intersection must contain (U,«,, Fy), a member of F. O

Another application of Lemma 1.2 and Theorem 3.1(iz) allows us to measure topo-
logically families of pairs of subsets.
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4.3 Theorem. Let (X,S8) be an infinite algebraic EP-system, x € {w,|X]|}.
If dim(S) = k, then S, in the T,-topology, is homeomorphic to its own topological
square; and, if we assume that ({a,b}) # ({a})U({b}) whenever {a, b} is an S-discrete
doubleton subset of X, then R := {(S,T) € §%: (SUT) = X} is Tp-r-residual in S2.

Proof. That S and 8% are homeomorphic is an easy consequence of Lemma 1.2
and Theorem 3.1(77) (|X| being assumed to be regular, where appropriate). To see
that R is T.-k-residual, let B € Bas(S) have cardinality x. For each b € B, let
Ry :={(S,T) € §? : b € (SUT)}. Clearly R = Nyep Rs, so it suffices to show each
R is open and dense in S2.

If (S,T) € Ry, let F C S,G C T be finite such that b € (F U G). Then
(S,T) € ([F,0] x [G,0]) N S* C Ry, so Ry is coarse-open in S2.

Next suppose [Fi,G1] X [Fy, Gs] is a product of k-intervals that intersects S2.
Then (F;) NG; = 0,5 = 1,2. Let a € X \ (F; U F, UGy UGy U {b}) (since
dim(S) = k). Then {a,b} is S-discrete, so fix ¢ € ({a,b}) \ (({a}) U ({b})), and
set S = (FyU{a}),T := (F, U {c}). By the EP, b € ({a,c}), so (S,T) € R,.
Also, S NGy = 0; since otherwise a € (F; U G;), again by the EP, a contra-
diction. Thus S € [Fi,Gy]. It remains to show T"N Gy = (. Suppose other-
wise. Then, by the EP, we have ¢ € (Fy U G3). The EP further tells us that
a € ({b,c}) C ((F; UGs) U{b}) = (F» UGy U {b}); another contradiction, and
the proof is complete. O

4.4 Example. The hypothesis on doubleton subsets cannot be dropped in The-
orem 4.3: Let X be any infinite set, with S := p(X). Then § is trivially an alge-
braic EP-system of dimension |X|. But R misses any coarse-open set of the form
[0, {b}] x [0, {b}], so cannot be coarse-dense in §%. O

4.5 Concluding Remarks. The Baire category theorem, while strictly speaking a
result in general topology, has been applied in areas far beyond the boundaries of its
discipline. In terms of its use as a tool for producing existence theorems, it may well be
compared to Zorn’s lemma, itself a result in the theory of partial orders. Like Zorn’s
lemma, the Baire theorem converts “local existence” (Vz3y...) into “global existence”
(JyVz...); however, unlike Zorn’s lemma, the Baire theorem has a countability bound
on its universal quantifier. This cardinality restriction is somewhat redressed in the
Hung-Negrepontis category theorem [3], which can be viewed as a “theorem schema,”
one theorem for each regular cardinal k. In [1] and [2] we put this view to work
in the case kK = 2“ (assuming the regularity of the continuum in the process); in
the present paper we lean more toward the view that these theorems of Baire and
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Hung-Negrepontis provide us with a more refined notion of universal and existential
quantification.

We close with two questions in this vein, which we were unable to answer during
the course of our investigation.

Let (X,S) be an infinite closure system, w < x < | X|.

(1) Is Bas(S) necessarily thin in the coarse and fine topologies?

(1) Tt is easy to show, by Theorem 3.1(iv), that Dis(S) is T.-dense if and only if S
itself is T,-dense. Can one replace “dense” with “k-residual” when x € {w, | X|}
is regular?
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