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We define a reduced product (in particular an ultraproduct) construction in topology which
yields a class of quotients of the box product. Retention of certain properties under the formation
of ultraproducts, as well as the role of ultraproducts in the study of zero dimensional spaces are
investigated. Certain analogies and disanalogies with the box product are also pointed out.
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0. Introduction

The Lo$ ultraproduct construction in model theory provides motivation for
defining a similar concept in general topology. This construction is shown to
preserve many popular topological properties (e.g. Hausdorffness, complete regu-
larity, non-compactness, linear orderability) and to fail to preserve many others
(e.g. non-(complete regularity), normality, non-normality, compactness). In this
paper we focus on preservation and develop several techniques whose applications
are seen to go beyond preservation per se. :

Among the results we have:

(i) Every regular space has a paracompact ultrapower.
(ii) Ultraproducts of normal spaces needn’t be normal.

(iii) Any two regular perfect spaces have homeomorphic ultrapowers.

"\ A word about set theory, notations and conventions: Firstly, our underlying set
H theory is ZFC (= Zermelo-Fraenkel set theory with the Axiom of Choice);’
3 secondly, cardinals are initial ordinals, where each ordinal is the set of its

.4 predecessors (w = Mo = the first infinite ordinal, w; = @* = N, = the first uncounta-

ble ordinal, etc.); and lastly, we denote the end of a proof with a little box, “[7”.

* This paper is an outgrowth of the core of the author’s Doctoral Dissertation completed at the
University of Wisconsin under the Supervision of H.J. Keisler. The author is grateful to the referee for
valuable suggestions regarding exposition.
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1. Elementary properties

Let (%, :i € I) be a family of topological spaces, ¥; = (X, 7,), with F a filter on I.
To form the topological reduced product TI.¥, we first form, as is done in model
theory and algebra, the (Los) reduced product I1.X, of the underlying sets by taking
F-equivalence classes [f] of elements of the cartesian product II;X, where
(flr ={g €ILX :{i: g(i) = f(i)} € F}. We next topologize [I-X; by taking, for
basic open sets, all “open reduced boxes™ OM, = {[fls:{i: f(i)€ M.} € F} where
M, € 7. It is an easy exercise to verify that the reduced product topology can also be
obtained by allowing the sets M, to range over a basis 8; for 7.

Note that if F = {I} then I1%, is the usual box product of the ¥;’s. Note also that
the natural projection Iy :IL# —II.% is always an open identification
(Fe(LM,) = II:M,; and I (I1:M,) = U, ILM, where ILM, = [I,N, N, ={xigr)-

In the case of reduced powers there is a natural F -diagonal map 4 : ¥ - [1.(¥)
taking x € X to the F-equivalence class of the constant map at x. 4z is always
one-one but is hardly ever continuous. In the few cases where Ar is continuous,
however, it is an embedding. We will study this mapping in more detail later on,

We now restrict our attention to reduced products via ultrafilters. One helpful
simplification which arises in the study of ultraproducts is that the complement of
an ultrabox is again an ultrabox. Thus if v: is a basis for the closed sets of ¥, and U
is an ultrafilter on I then Iluy, = {IIuC; : G € v, i € I} is a basis for the closed sets
of I1.%.

A topological class is a class of spaces closed under homeomorphic images. Such
a class will be called closed if ultraproducts of spaces from the class are again in the
class. A class is open if its complement is closed; and is clopen if it is both open and
closed. The central theme of this paper is to inventory some of the more popular
topological classes vis 3 vis their status as closed (etc.) classes. Exemplary results
involving only elementary methods follow:

1.1 Examples. The classes of discrete, To, Ty, T, and T spaces are clopen.

Proof. We illustrate the kind of argument by showing that the class T, (i.e. of
regular T, spaces) is closed. Let [f]u € ITX; where each X; is T, and let II,C bea
basic closed set not containing [f]y. Then J = {i:f(i)& C.}€ U.Fori € J let M, N,
be open such that f(i)E M, G, C N, and M, NN; =0, and for i& Flet M, = N, =
X. Then [f]y € lIuM, II,C, CIuN, and TIuM, NTILN, = g. O

1.2 Example. The class T,s of completely regular-spaces is closed.

Proof. There are several ways of proving this. For our purposes the most
convenient is to use the characterization (due to Frink, see [2]) of T, spaces as
those which possess normal bases for closed sets (i.e. bases y for closed sets which
are closed under finite unions and finite intersections, and which have the property
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that whenever C;, C: € y are disjoint there are disjoint open sets M, 2 Ci, M2 2 C:
such that the complements M3, M3 are members of y). So assume each &, has a
normal basis . Then I1uy, is a normal basis for I.%. ]

1.3 Example. Suppose for each i € I we are given a function ¢ - U is
an ultrafilter on I then the ultraproduct of the maps ¢, denoted by [T, is the
assignment [f]y — [g]u where g(i)= & (f(i)). Many of the standard properties
(e.g. injectivity, surjectivity, continuity, openness) which one can express about
maps hold for I1u¢, iff they hold for almost all (modulo U) ¢.. Thus in particular the
class of homogeneous spaces is closed while the class of spaces with the fixed point
property is open.

1.4 Example. The class of (locally) compact spaces is open.

Proof. Let (¥, :i € I) be a family of noncompact spaces. For each i €1 let M, be
an open cover with no finite subcover. Then II, IR, is an open cover of % with
no finite subcover. For suppose {IIuM.p, ..., [IuM,.} were such a finite subcover.
Then [uMoU ... UIloM,, =[lo(MipU...UM,.) because U is an ultrafilter.
Thus for almost all i € I (modulo U){M,, ..., M.} is a finite subcover for Z. The
argument for local compactness is just as easy. O

1.5 Example. The class of spaces with the countable chain condition (c.c.c.) is open.

1.6 Example. The class of connected spaces is open; the classes of totally discon-
nected and zero dimensional (in the sense of weak inductive dimension) spaces are
closed.

Proof. We illustrate by proving that the zero dimensional spaces form a closed
class. Suppose each F; has a basis 8 such that each member of B is clopen. Then it
is easy to see that Il B; is just such a basis for [IZ. (]

1.7 Example. The class of extremally disconnected spaces is open.

Proof. This contrasts in a sense with (1.6). Suppose each %, has an open set M,
whose closure is not open. Then IIuM; is an open set in I1,#, whose closure is not
open. Indeed MuM) = [1uM.,. Since for (almost) every i € I we can find a point
x, € Mi— M, it follows that, by letting f(i) = %, [f]v € [IuM,— [IoM, O

1.8 Example. The class of non-Archimedean spaces is closed.
Proof. For each %, let B be a basis with the defining property that each pair of

elements is either disjoint or related under inclusion. Then, since U is maximal,
[T.B, has the same property. ]
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1.9 Example. The class of separable spaces is open.

Proof. Suppose [[,.%, is separable but that the %,’s are not (either almost all %,’s
are separable or almost all &.’s are nonseparable). Let D CII,#, be countable
dense, say D = {[folu, ..., [fi]w-. .} let D, = {fi(i),..., fu(i),.. .}; and let J = {i: D,
is not dense} € U. Then clearly IIuD; is not dense in [I,&. But D cIl,D. O

1.10 Example. Many classes of topological algebras are closed. One can prove
easily that ultraproducts commute with finite cartesian products (i.e. [I,.%, x 9, and
% x 11,9, are naturally homeomorphic). Thus if each %, is equipped with, say, a
continuous binary operation u, : &, X # — ¥, then it makes sense to talk of the
“lifting” [Typ, : Ilo&, x [Ty & — I,%, again a continuous binary operation. In this
way it can be easily shown that wultraproducts of topological groups (rings, fields) are
again topological algebras of the same (first order) axiomatic type.

L.11 Example. Suppose each %, is equipped with a linear order structure <, Then
the ultraproduct [1, =, is again a linear ordering on Il X. If, in addition, = is
basically generated by open <;-intervals then Ilyr, is basically generated by open
Il <, -intervals. Thus ultraproducts of linearly orderable spaces are also linearly
orderable spaces.

1.12 Examples. As another example of extra-topological structure let us consider
uniform spaces. We say a uniformity 1! on X is linear if there is a basis for 11
{considered as a filter on X X X) whose elements are linearly ordered by inclusion.
A space X is linearly uniformizable if there is a linear uniformity on X which
generates the topology. For every infinite cardinal x, the x-metrizable spaces are
those linearly uniformizable spaces with a linearly ordered basis of cofinality . The
w-metrizable spaces are the metrizable ones. X is ultrametrizable if ¥ is linearly
uniformizable but not metrizable. As a word of preview it turns out that linearly
uniformizable spaces are (hereditarily) paracompact; and that in addition ultramet-
rizable spaces are non-Archimedean (see [14]). We will show presently that the
class of linearly uniformizable spaces is closed.

Proof. Let (¥ :i € I) be a family of linearly uniformizable spaces; and for each
i €1 let B; be a linearly ordered basis for a uniformity which generates 7. Then
8 = [I,%; is a linearly ordered basis for a uniformity which generates [1,7 (strictly
speaking, since B, CP(X, x X;), we have that II,%B, CII,P(X, x X;). But
ITyP(X: x X;) naturally embeds within P(I1.X; x I1,X; ) so we think of II, B, in this
light, wilfully abusing notation). To see this, it is first clear that B is indeed linearly
ordered since U is an ultrafilter. That %8 is a basis for a uniformity is equally
straightforward. Now suppose 8; is the topological basis generated by B, Then
every open ultrabox of [1 8 arises as a B-neighborhood. Conversely every
B-neighborhood arises as a [1,8,-ultrabox. The details are completely straightfor-
ward. O
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2. Ultrapowers of Euclidean spaces

This paper is not about nonstandard analysis; nor is it about nonstandard
topology. Both of these topics are treated in [21] as well as in other excellent
references. What does concern us partly is the topology of the nonstandard
extensions of Euclidean space (what Robinson calls the “Q-topology” in [21] (see
also [4,5])). We would indeed be doing nonstandard topology if we confined our
attention to “‘internal’” open sets etc. (i.c. the open ultraboxes).

Let U be a nonprincipal ( = free) ultrafilter on a countable set, and let *R denote
[T, (R) (the topology being, as we have seen, the ultraproduct order topology).
Since ultraproducts commute with finite cartesian products we can identify R
with *R X *R, etc. Although questions arising as to dimensionality and invariance of
domain (3 la Brouwer) can be better dealt with once we develop some more
machinery, let us for the present merely preview some of the results in this
connection and then return to more mundane tasks.

Most of the following remains true if we do not assume the Continuum
Hypothesis (CH), however certain adjustments have to be made regarding the
combinatorial nature of U. So for convenience assume CH.

2.1 Fact. If V is another free ultrafilter on @ then IIy(R) and Il (R) are order
isomorphic (algebraically isomorphic as well); hence, in particular, homeomorphic.

2.2 Fact. *R and (*R)? are (noncanonically) homeomorphic. Thus Brouwer in-
variance of domain fails for nonstandard Euclidean space. In fact every U-
nonstandard Euclidean space without isolated points is homeomorphic to the
U-nonstandard rationals *Q; and all U-nonstandard Euclidean spaces are ul-
trametrizable and hence have dimension zero (in every known sense of the term).

We now rejoin the search for closed classes and use the U-nonstandard unit
internal *[0, 1] to refute some possible conjectures. Let t €{0,1]. We define the
monad i (1) = pu(t) tobe the set {[f]y : forall 0 < n < o, {i :|f(i)—t|<1/n}E UL
We call members of u{0) infinitesimals and use letters ¢, 8 to denote them. For
[flu € *[0,1] we let limy([f]u) be the unique ¢ €[0,1] with [f]v € u(r).

Now each monad, being a union of open intervals, is open. Consequently the set
M ={u(t):t €[0,1]} forms an uncountable clopen partition of *[0,1]; whence
*[0,1] is not connected, path connected, second countable, separable, Lindeldf,
¢.c.c., or compact; all properties enjoyed by [0, 1]. These classes are hence not
closed. Not quite as obvious is the fact that, although [0,1] has the fixed point
property, *[0, 1] does not. To see this let £ >0 be an infinitesimal and define & by
the rule

[flo+ e if limu([flu) <1

[flv—¢e if limg([flu)=1.
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¢ is defined piecewise on an open partition of *[0, 1] and is continuous on each of
the pieces. Thus ¢ is continuous everywhere but cannot have a fixed point.

3. Countably complete ultraproducts

Let k = w be a cardinal. An ultrafilter U is i-complete if whenever E C U has
cardinality <« then NE & U. U is countably complete if U is w,-complete.
Although the main emphasis of this paper is on ultraproducts via countably
incomplete ultrafilters, there do arise instances where in order to show that a
particular class is closed it seems necessary to cleave the proof into two parts
dictated by whether or not the ultrafilter in question is countably complete.

By way of reference we list some of the salient facts relating to countably
complete ultrafilters and ultraproducts. All of the proofs can be found in (8].
However in some cases we include proof sketches.

We first define a cardinal k > » to be measurable if there is a free x-complete
ultrafilter on «. Measurable cardinals are quite large.

3.1 Fact. If x is measurable then there is an increasing sequence {A;: £ < k) of
strongly inaccessible cardinals, each of which is less than «. In particular « is
strongly inaccessible and so exceeds the power of the continuum,

3.2 Fact (D. Scott). If there exists a measurable cardinal then Gédel’s Axiom of
Constructibility (V = L) fails.

3.3 Fact. Let U be any free ultrafilter. Then there is a greatest cardinal « such that
U is k-complete. And if x >  then « is measurable (if there is an @,-complete free
ultrafilter U on A, we say A is Ulam -measurable. Thus A is Ulam-measurable iff
A = the first measurable cardinal).

Proof, sketch. Since U is free there is a least cardinal A such that U is not
A-complete. A cannot be a limit cardinal since if it were then U would clearly be
A-complete. Thus A = k* for some «. Since U is not k*-complete there is a
partition {J; : £ < «) of I so that no J; is in U. Let fil>xtakeito¢(ifiEJ,
Then V ={K C« : f(K)E U}isa x-complete ultrafilter on «, showing that either

= @ Or Kk is measurable. O

A corollary of (3.2, 3.3) is the following:
3.4 Fact. If V =L then every free ultrafilter is countably incomplete.

3.5 Fact, Let U be «-complete and let # be a space of power < k. Then
4y : ¥ -1y (¥) is a homeomorphism.
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Proof. The trick is in showing that Ay is onto. Assume otherwise. Then there is an
f:I— X such that for each x € X {i:f(i)# x} € U. Since | X|<x and U is
x-complete, we have {i : for all x € X, f(i) # x} € U; and hence some { € I has no
image under f, a contradiction. : O

A corollary of (3.3, 3.5) is the following:

3.6 Fact. Let U be countably complete and let X be a space whose power is
smaller than the first measurable cardinal. Then 4y is a homeomorphism.

3.7 Theorem. The following properties are preserved under taking ultraproducts via
countably complete ultrafilters: first and second countability, separability, metrizabil-
ity, path disconnectedness; and w,-openness (i.e. Gy sets are open).

Proof, sketch. Re second countability: Let each £ have a countable base 8. Then
[I,%: has a countable base I1,8.

Re metrizability: Let d; be 2 metric on #.. Then II.d, is a I1,(R)-valued “metric”
on II %, (i.e. Tudid{[f)w (glu) = [R]u € IIuR), where h (i) = d.(f(i), g (i))); and the
ultraproduct topology is easily seen to be generated by this ““metric” (which clearly
satisfies the usual metric laws). But U is countably complete; so by (3.1, 3.6), Mo (R)
is canonically isomorphic to R.

Re path disconnectedness: Suppose Il &, is path connected; and for each i €1
let x, y: € X.. Let [f]w [g)u € IIuX: be such that f(i)=x, g(i)=y, i €I; and let
p 10,11 = I1,X; connect [f]v, [g]o- Identify p with its graph in [0, 1] X IIuX.. Then
(p|=exp(w); whence pod7 :I1y([0,1])— I is an ultraproduct Ilup where
almost every p; is a path from x; to y.

Re w;-openness: Countably complete ultraproducts commute with countable set
operations. 0

Although a property may be “countable”, it may not be preserved under
countably complete ultraproducts. Such a property seems to be Lindeldfness (and
its negation).

In the next section we will show that the class of w;-open spaces (otherwise
known as P-spaces) is closed. Here it seems to be necessary to divide the-proof into
two cases as we mentioned in the first paragraph of the present section.

4. Countably incomplete ultraproducts

In ZFC the existence of free countably complete ultrafilters is a knotty question;
for not only can it not be shown that such ultrafilters exist (viz. Scott’s theorem and
the consistency of V = L), it cannot even be shown that the existence question is
consistent (If M were a model of ZFC which had a measurable cardinal then M
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would have an inaccessible cardinal and so would contain a model of ZFC. This
would contradict Godel’s Incompleteness Theorem). By contrast countably incom-
plete ultrafilters are a dime a dozen. One way to measure the degree of countable
incompleteness is to introduce the notion of *‘k-regularity” for x = w a cardinal.
We say U is «-regular if there is a point-finite collection E C U of power (.e.
each i € I is contained in only finitely many members of E). It can easily be shown
that U is countably incomplete iff there is a sequence J,2 J, > ... of members of U
whose intersection is empty. Thus countable incompleteness is w-regularity.
Clearly «-regularity gets stronger as « increases. Also if k = |I| then there are no
« *-regular ultrafilters on I for if there were one, say U, and if E C U were a
“regularizing set” of power x* then there would be a choice function
X :E—I(x(J)E€J). Since for each i € I |x7'(i)| < w, this would force |I|=|E],
an impossibility). However there are lots of x-regular ultrafilters on sets of power k.
To see this we have only to regard I as the set of all finite subsets of some other set J
of power k (I=P.(J)). For each i€ let i"={i'€I1:iCi’}. Then I*=
{i*:i€I}CP(I) has the finite intersection property (¥Nn...Ni%=
(i:U...Ui.)") and thus extends to a «-regular ultrafilter on I, the regularizing set
being I*.

A space X is « -open iff its topology is closed under < x intersections. All spaces
are w-open; and ¥ is w;-open iff X is a P-space (see [12]) iff every x € X is a
P-point. We prove the following:

4.1 Theorem (Openness Lemma). An ultrafilter U is x-regular iff all topological
U-ultraproducts are x*-open.

Proof. Model-theoretic analogues of this theorem can be found in [19]. We prove
the most useful direction first. Assume U is «-regular and that (¥,:iE€ ) is a
family of spaces. To check k-openness in a space it clearly suffices to restrict
attention to families of basic open sets, so let (II,M,; : £ < k) be such a family in
[Iu% and let [flv € N, [IoM,. By x-regularity there is a (well-ordered)
regularizing set E=(J, : £ <«)C U. Let K; ={i: f(i)€ M,;} € U; and for each
i€ 1Ilet F(i)={¢ <« :i €J N K.}. Each F(i) is finite, so the set N, = n;em,M,,f
is open. We show [f]u € IIuN, € M, .. IluM,. Indeed {i : f(i} € N;} = I € U. Now
suppose B <«. Then {i : N, CM,,}2{i:n €F(i}2J, NK, € U We thus have
the desired conclusion.

For the converse (only the first half is proved in {3]) assume all topological
U-ultraproducts are «*-open, and let X be a set (of power = «). Then X has
«-regular ultrafilters; in particular there is a set 8 =(Y; : ¢ < k) CP(X) with the
finite intersection property such that no x € X is contained in infinitely many
members of S. Let p be an ultrafilter extending S and let X' = X U{p} (disjoint
union). We form the space X’ using X' for points, by letting points of X be
isolated, and by letting the sets (Y, U{p}: £ < x) form a neighborhood subbase for
p. Observe that Il (X) is a discrete subset of II, (£, a x “-open space. Now
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M1, (Y: U{p}), being a neighborhood of Au(p), contains a set I1,Z, where
Z - {p}E p. Thus there is a point [flv € MVeallo (Ye). Let Jp ={i: f(i) € Yebh
& <k, andlet E = {J; : £ < «). Then E is clearly a k -regularizing set for U. O

An immediate corollary of (4.1) is that all countably incomplete topological
ultraproducts are P-spaces. We have already observed that w,-openness is pre-
served under countably complete ultraproducts. Thus we have

4.2 Corollary. The class of P-spaces is closed. |
A little less immediate is the following:
4.3 Theorem. The class of path-disconnected T, spaces is closed.

Before proving (4.3) we first define a space to be totally non-compact if its only
compact subsets are the ones that have to be, namely the finite ones (one could
define “totally non-P” for any property P, e.g. connectedness, in a similar manner).

4.4 Lemma. T; P-spaces are totally non-compact.

Proof. Assume X is a T, P-space with an infinite compact subset C. C is also an
infinite T, P-space, so if A C C is countable then A is closed (hence compact) and
discrete, an impossibility. O

Remark. The referee has produced a totally non-compact Hausdorff space which is
not a P-space. Let (L, : n < ») be a partition of an n;-set L (i.e. a linearly ordered
space such that to each pair of countable A, B C Lwitha<bforalla€ A bEB
there exists a point ¢ € L with a < ¢ <b for all a € A, b € B) into dense sets and
let X={(x,n)EL X (w+1):x € L,} inherit the subspace topology. Then X is
Hausdorff, totally non-compact, and ultraparacompact (i.e. open covers refine to
clopen partitions); but it is not a P-space.

Proof of 4.3. Let (¥, : i € I) be a collection of path-disconnected T, spaces. If U is
countably complete then II.# is path-disconnected T, by (1.1, 3.7). If U is
countably incomplete then [, being a T. P-space by (1.1, 4.1), is totally
non-compact. Thus [l & has only constant paths, so indeed [I,% is totally
path-disconnected. Since its cardinality must exceed 1, it is path-disconnected T,. {1

Further applications of (4.1) are the following:
4.5 Theorem. No countably incomplete ultraproduct of non-discrete T, spaces is first

countable. Thus if there are no measurable cardinals then the classes of non-(first
countable), non-(second countable), and non-metrizable T, spaces are closed.
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Proof. Let the ¥,’s be non-discrete T, spaces. Then 1. #; is non-discrete T,. If I1,Z,
were first countable then every point would be the intersection of its countable nbd
basis so would be isolated by (4.1). Now if there are no measurable cardinals then
every free ultrafilter is countably incomplete; and if the %,'s are non-(first
countable) T, then by the above (since they must then be non-discrete) [I,&; is
non-(first countable) T;. If the #.’s are non-(second countable) T, then II,.% isa T,
P-space so cannot be second countable unless.it is discrete. But second countable
discrete spaces are necessarily countable; and it is an elementary fact in the theory
of ultraproducts (see [8]) that infinite ultraproducts via countably incomplete
ultrafilters are uncountable. Thus [1.#; is non-(second countable) T,. Finally if the
Z.’s are non-metrizable and T, then I1,Z, is not discrete but is a T, P-space. Hence
it cannot be first countable, let alone metrizable. O

4.6 Theorem. No infinite countably incomplete Hausdorff ultraproduct has the c.c.c.

Proof. Suppose II¥ is infinite. Then for each n < w{i (X |>n}EU. Let
I=J0,27J12... be a descending sequence of members of U with empty
intersection. Without loss of generality we may assume that for each n < o, i € Jo
| Xi|> n. Now for each n < w, i €J, — J..,, find n points in X, and separate them
via n disjoint open sets, thereby creating a family I, = {M.,,..., M,,} of mutually
disjoint nonempty open sets. Since U is countably incomplete, I1,IM; is an
uncountable collection of mutually disjoint nonempty open sets in II,%, a

We will see later on that topological ultraproducts, endowed with suitable
separation properties, are totally disconnected in very strong ways. However, they
are not often extremally disconnected, as the next theorem shows.

4.7 Theorem. Let (X, :i € I) be a family of nondiscrete regular spaces such that
none of the cardinals | X;| (i € I), | I| are Ulam -measurable. Then if U is countably
incomplete on I, [1,X, cannot be extremally disconnected.

Proof. A cardinal is moderate if it is not Ulam-measurable. Now II,%, is a
nondiscrete regular P-space. If the cardinals | X;| (i € I), |I| are moderate then,
since measurable cardinals are strongly inaccessible, [T1u%; | is moderate too. Let
& =I1,Z: and assume that ¥ is extremally disconnected. Pick a non-isolated p € X,
Now regular P-spaces are zero dimensional (in the weak inductive sense) since if
¥xE€X and M, is a nbd of x we can find a nbd M, with x € M, C M, C M,.
Repeating for M,, we obtain M;, M;, andso on. Thus (1, M, isa clopen nbd of x
contained in Mo. Clearly there is a family 3 of pairwise disjoint nonempty clopen
sets not containing p; and by Zorn’s Lemma, we can pick I maximal with this
property. p is not isolated so U is dense in X, i.e. p€ UM Let U= {I'C
M:p € UM} We show U is a countably complete free ulirafilter on IR. This will
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force |} to be Ulam-measurable; and since || < | X |, this will yield a contradic-
tion.

Clearly, 8¢ 11, EUB € 11, 11 is closed under superset, and no singleton {M} is in I
(since elements M € I are clopen) Moreover if U,,<ww2,, € 1 then, since ¥ is a
P-space, p€ U(U, .. M=, . . (UM,)= U, <., (UD.). Thus for some n <
w, I, € 1. It remains to show that 11 is closed under finite intersections. Let M,
M,ell with M, = UIM,, M= UIM,. Then p EMlﬂMZDMlﬂ M, N M,. To show
equality, suppose N is open, N C M, N M,. Then N-M,, N — M, are closed
nowhere dense, thus so is N — (M, N M,). We then conclude that NC M, N M,,
Now X is extremally disconnected. Therefore M, N M, = Int(M;) N Int (M,)=
Int (M, N M) CInt(M, N M;)=M, NM, so M, NI, 1l O

Remark. The above proof derives its inspiration from [12] problem 12H. R. Button
(in a personal communication) also noted the same problem and independently
obtained a similar result for Q-topologies.

4.8 Corollary. The class of extremally disconnected spaces is not closed. O

5. Strong disconnected properties

Since proving that the class of T, spaces is both open and closed, we have been
assuming all spaces to obey the T, axiom. We will continue to do so. We define the
disconnectedness classes {D, :n =0,1,2,3,3.5,4) as follows:

D, = totally path-disconnected spaces.

D, = totally disconnected spaces.

D, = ultra-Hausdorff spaces = those spaces in which two distinct points are separa-
ble via disjoint clopen sets.

D, = ultra-regular spaces = those spaces in which a point and a disjoint closed set
are separable via disjoint clopen sets = the weak inductive zero-dimensional spaces.
D;s = strongly zero-dimensional spaces = those Tichonov spaces in which two
disjoint zero sets are separable via disjoint clopen sets.

D. = ultranormal spaces = those spaces in which two disjoint closed sets are
separable via disjoint clopen sets = the strong inductive zero-dimensional spaces.
Clearly D2 D: 2 D2 D352 D,; and if ¥ is compact T, then ¥ebh it e D,
iff ¥ is Boolean.

Three more disconnectedness classes, listed in decreasing order with respect to
inclusion (see [1, 14]) are ultraparacompactness, non-Archxmedeanness, and ultra-
metrizability. The following facts are well-known:

8.1 Fact. D,= T,N D, (by Tietze's extension theorem).

5.2 Fact. X € Ds; iff B(X), the Stone-Cech compactification of %, is Boolean.
5.3 Fact. ¥ is ultraparacompact iff ¥ is paracompact and D, {(see [11]).

5.4 Fact. ¥ is D, iff  has covering dimension zero (i.e. finite open covers refine to
{(finite) clopen partitions).
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5.5 Fact. If X is ultraparacompact, C C ¥ is closed, and f:C—9 is (bounded)
continuous to a complete metric space, then f extends to a (bounded) continuous
F: XY (see [11)).

5.6 Fact. Boolean spaces are ultraparacompact (we will see later that they needn’t
be non-Archimedean),

5.7 Fact. Separable metric D, spaces are ultraparacompact, since they are D, and
paracompact {use (5.3) plus standard dimension theory [20]).

P-spaces enter the picture as follows:

5.8 Theorem. (i) T, P-spaces are D,.
(i) Functionally Hausdorff P-spaces are D,
(iii) Regular P-spaces are D,
(iv) Normal P-spaces are D,.
(v) Paracompact P-spaces are ultraparacompact.

Proof, Let X be a P-space.

Re (i): If Z is T, then by (4.4) X is totally non-compact, hence D,.

Re (ii): Let & be functionally Hausdorff with x, y € X distinct, let f: X£—=]0,1]
be continuous taking x to 0, y to 1, and let M, = f7*([0,1/n + 1)), n < w. Then
MoDM, DM, 2 M.D...,and M =, M, is a clopen nbd of x missing y.

Re (iif): Let £ be regular with Z,, Z, disjoint zero sets, say Z,= £7'(0),
Z,= f3'(0) for f,,f: ¥—[0,1] continuous. For each x € X, flx)+ B(x)>0 so
f=Ffl(fi+ fo): £—[0,1] is continuous, takes Z, to 0, and takes Z, to 1. For 1 < «
let M, =f7'([0,1/n +1)). Then the M,’s are open; and for m < n < w we have
Z,CM,CM,CM.CX-2Z, Let M={,..M, Then M is a clopen separation
of Z,, Z;. We need ¥ to be completely reguiar (= Tichonov). But we saw in the
proof of (4.7) that X is actually ultraregular.

Re (iv): Similar to (jif).

Re (v): If ¥ is paracompact then ¥ is normal, hence D,. Then use (3. 0O

6. Normal and paracompact ultraproducts

Since regularity is preserved under uitraproducts, any countably incomplete
ultraproduct of regular spaces is D, s. However, there are examples to be seen later
to show that ultrapowers of compact Hausdorff spaces needn’t even be normal.
How then might we hope to ensure normality and paracompactness in ultra-
products? One way is to condition the spaces ¥ by letting them have closed
properties which are stronger than the properties we want [T, to enjoy. Such
closed properties are at our disposal, namely linear orderability (implying collec-
tionwise normality), linear uniformizability (implying paracompactness (see [13])),
and non-Archimedeanness (also implying paracompactness (see'[1])). In fact, if X is
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cither linearly uniformizable or non-Archimedean then F is hereditarily
paracompact. Thus we have the following corollary of (1.8), (1.11), (1.12):

6.1 Theorem. Let U be countably incomplete, (%, : i € I) a family of spaces. If the
¥.'s are linearly orderable then T1,% is ultranormal; and if the X.’s are either
non-Archimedean or linearly uniformizable then TI,% is hereditarily ul-
traparacompact. 0

A second way to obtain paracompact ultraproducts is to condition the ultrafilter.
We will show (using the Generalized Continuum Hypothesis) that to every
collection (&, : i € I} of regular spaces (where I is sufficiently large) there is an
ultrafilter U so that II.#, is hereditarily ultraparacompact (in an appendix we will
give a more model-theoretic proof which avoids the GCH and which shows that
every regular space has an ultrametrizable ultrapower). An immediate consequence
of this result is that the classes of Tichonov, normal, hereditarily normal, collection-
wise normal and paracompact (as well as lots of other classes, e.g. linearly orderable
spaces etc.) spaces are not open.

6.2 Theorem. Assume x* = exp (k) and suppose for each i € I, X is a regular space
with weight =< x=|I|. If U is regular on I then I1 %, is hereditarily ultraparacompact.

Proof. I1,.%, is regular and «*-open, hence zero-dimensional. Also since each &,
has a basis 8 of power =« we know that II,¥ has a basis 1,8, of power
= |k*| = exp(x) = «*. Thus the ultraproduct is hereditarily «*-Lindelof (i.e. open
covers have subcovers of power < x*). Now regular e-open a-LindelSf spaces are
paracompact for @ = » and ultraparacompact for & > w. The countable case is
well-known; the uncountable case even easier. For let £ be given with open cover
9R. Since X is zero-dimensional and a-Lindelsf (& > @) we can assume IR can be
well-ordered in type a, say (M, : £ < a) where each M, is clopen. Use a-openness
to refine P to a clopen partition by letting N; = M, —- UM, for £ <a. The
result follows immediately. |

6.3 Corollary (GCH). Every regular space has a hereditarily ultraparacompact
ultrapower. O

7. Ultrapowers and diagonals

We concentrate for much of the remainder of this paper on ultrapowers. In this
special case there is the additional structure accorded us by the presence of the
diagonal Ay : ¥ — Iy (¥). When context permits we drop the U-subscript so that
4 will denote the diagonal map with A(¥) its image in I1,,(¥). Now for box powers
and cartesian powers the diagonal is always a retract of the power, for we can
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simply fix io € I and map f to f(io). This mapping is no longer well-defined in the
ultrapower case so a natural question to ask is what conditions suffice to force the
diagonal to be a retract of the ultrapower. As a dividend, the techniques we
develop here will yield a normal space with a non-normal ultrapower.

We assume all spaces to be Hausdorff. Let ¥ and U be given. The coarse topology
on [l (¥) is that topology on the set II,{(X) which is basically generated by the
open ultracubes [I, (M), MC ¥ open. If Y CII,(X), Y denotes the underlying
set of Y topologized via the coarse topology (thus 4 (XY’ is homeomorphic, via 4,
to X). For x € X define u(x) = puu(x), the monad of x,tobe N{Hy(M):xeM
open}. By Hausdorfiness, x#y implies p(x)Nu(y)=0. The near-diagonal
N(X)= Ny(¥) is the union of the monads, and the U-limir map lim = lim,, takes
[f]1 € p(x) to x. Clearly lim is a left-inverse for 4. lim is diagonal continuous if it is
continuous as a map from N(¥) to A (%) (i.e. if 4 olim is continuous). lim is coarse
continuous if it is continuous as a map from N(¥)° to %,

Note that 4 is rarely continuous. In fact if & is first countable and U is countably
incomplete then A(X) is discrete.

The character ch (¥) of a space ¥ is the least cardinal « such that each x € X has
a nbd basis of power «. The regularity reg(U) of an ultrafilter U is the least x such
that U is not x-regular. Observe that ¥ is first countable iff ch (¥)= w and that U
is countably complete iff reg(U)= o (its least possible value). U is regular iff
reg(U) = |I|” (its greatest possible value).

We now look to the continuity of lim,

7.1 Theorem. If either X is regular or ch(¥)< reg (U) then lim is continuous. If
ch (¥) <reg (U) then each monad is open so N (%) is open and A(X) is discrete.

Proof. Suppose first that & is regular. We show lim to be coarse continuous, a
result which will be useful later on, If M C ¥ is open we show that lim™ (M) =
N@E)n U I, (M"): M’ open, M'C M}. Indeed suppose [f] € lim (M), say
lim([f])=x. By regularity there is an open M' with x € M'CM'CM, so
[f] € I1,(M"). For the reverse inclusion suppose [f]€ N(X)NII, (M), M’ open,
M CM. If M" is any nbd of x =1lim{([f]) then [f] € Il,(M"} so that in particular
(M) NTTu(M") = I1,(M’ N M) # . This gives x € M, so [f] € im™'(M).

Now lift the regularity condition but impose ch (¥) < reg (U ). Let x € X with T}
a nbd basis of power ch(¥). Then p(x)= N{II.(M):MEM}. Now U is
ch (¥)-regular so by (4.1) Iy (%) is (ch X))*-open, whence p(x) is open, It then
follows immediately that lim is continuous, N(¥) is open, and A (X) is discrete.

0O

To answer the retraction question there are two broad avenues which present
themselves: Firstly we could find out when 4 (¥) is a retract (via lim, say) of N(¥)
and try to retract I, (¥) onto N(&); and secondly we could determine when A (¥)
is closed discrete in Il (¥) with [T, (%) ultraparacompact. For then we could apply
Ellis’ theorem [11] directly since discrete spaces are complete metrizable.
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Let % be a space, « a cardinal. We form the x-modification (%¥). of ¥ by using
the closure of the topology of X under <« intersections as a new basis. The
operation (%), can easily be made functorial for the benefit of category theorists;
and the result is a coreflection of the category Top of spaces and continuous maps
onto its full subcategory of «-open spaces. We abuse notation and write (f). again
as f since the two functions are point-wise identical.

7.2 Theorem. Let U be regular on a set of power k. Then A (E)—u(X) is a
homeomorphism onto A(X). :

Proof. It is a triviality to show that A is relatively open (i.e. for M C X open,
A(M) = A(F)N L, (M), so is open in 4(¥)). To show that (4). is also relatively
open we note first that since 4 is one-one it preserves intersections. Also since
I, (%) is «*-open it follows that A(M e M) = e A(M,) is open in A(X). As
for continuity let TI.M, be open in II,(#). Then A7'([IM)) = Useo Nies M,
which is open in (¥).- since |J|= k. O

7.3 Corollary. Let U be regular on a set of power x. If either & is regular or
ch ()< k then lim is diagonal continuous, so that A(X) is a retract of N(X). O

To get N(¥) to be a retract of I, (¥) we will try to ensure that N(X)is clopen in
1, (X); for clopen sets are always retracts. One straightforward approach is to ask
when N(Z) = [I,(¥). The answer goes back to Robinson; the following is a slight
modification of a result in [21].

7.4 Theorem. N(¥)=I[1y(¥) for all ultrafilters U iff ¥ is compact.

Proof. Let ¥ be compact with [f] € [Io(¥) — N(X). Then for x € X there is a2 nbd
M, of x with [f]&IIu(M,). Take a finite subcover of the M.’s. We can then
conclude that {i : f(i) € X} € U which is nonsense.

Conversely if # is noncompact and 2R is an open cover with no finite subcover,
we let =P, (), I*={i*:i €I}, where i"={j€1:iCj}, andlet U2 I” be an
ultrafitter on I. Then, letting f(i) € X — Ui, we show [f] € I, (¥)— N(X). For if
M € M then, supposing i € {P}”* (i.e. M € i), we have f(i) € M. But {M}* e U, so

More generally we have the following:

7.5 Theorem. If X is locally compact and reg{U)-compact (where a-compact
means that every open cover has a subcover of power < a. N.B. a-Lindeldf = a’-
compact) then N(¥) is clopen in II(Z).

Proof. Assume % is locally compact and pick for each x € X a nbd M, with M,
compact. Then N(¥) = U{llu(M.): x € X}. For on the one hand if [f] € x (x) for
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some x € X then by definition [f] € Il (M. ); and on the other hand, since each M,
is compact, the elements of II, (M. ) must be near-diagonal by (7.4). Now ¥ is also
reg (U)-compact so that we may take a subcover (M, : § < x) of the M.’s where
k <reg(U). Then N(¥)= U,.. HU(M,), a union of < « closed setsina x *-open
space. Hence N (&) is also closed. |

Collecting what we know so far, we can state the following:

7.6 Theorem. Let ¥ be a Hausdorff space, U an ultrafilter on a set I of power x. Then
A(X) is a remract of I1,(X) if any of the following holds:
@ | X+ ch (%) <reg (U);
(ii) £ compact, U regular; or
(iii) X locally compact «-Lindelsf, U regular.

Proof. Re (i): By (7.1) N(X) is open. Also, since I, (¥) is | X[*-open and each
monad is closed, N(¥) is closed as well. By (7.3) A(¥) is a retract of N (F).
Re (ii): This is a special case of (iii).
Re (iii): By (7.3) (locally compact spaces are regular) A (%) is a retract of Nu(X).
Invoke (7.5). (|

Let us now return to our earlier-mentioned second tack, namely to insure that
Iy (¥) is ultraparacompact and that A (%) is both discrete and closed. We already
know how to obtain ultraparacompactness and discreteness, so the trick is to get
A(X) closed. Until further notice assume I is countable, say I = w. An ultrafilter U
on w is preselective (selective) if whenever we partition o into countably many
blocks each of which fails to be in U there is a set J € U which intersects each
member of the partition in at most finitely many (< 1) points. There is quite a
literature on preselective and selective ultrafilters (as points of the space B(w)— w),
see [7] or [22] for details. An important property of preselective ultrafilters (the
P-points of B(w)—w) U is that for any countable sequence (J,:n < w) of
members of U there is an element J € U “contained in each J, modulo 2 finite set”
(i.e. [J—J,| < w for each n < w). The existence of such ultrafilters is ensured by
Martin’s Axiom (MA) (= Every c.c.c. compact T, space is ¢ = exp (w)— Baire). It is
unknown whether MA is necessary.

7.7 Theorem. Let X be regular, U preselective. Then A(X) is closed in [y (¥).

Proof. Let [f] €Il (X))~ A(X). We show that [f] has a representative g such that
there are nbds N, n < w, pairwise disjoint, such that g(n)E N, for all n < w. Then
[f]1€ IIuN, which is disjoint from 4 (¥).

Let J ={m < o :lim ([f]) # f(m)}. Then if either [f] € N(¥) or lim {IfN#f(m)
for any m < w, we have J = w. Otherwise if lim ([f1) = f(mo) then since X is
Hausdorft and [f] is not U-constant, we have that J 2 {m : f(m) # f(mo) € U. In
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any event, J€ U. Now for each m €J let M,, be a nbd of f{m) such that
K,={n<o:f(n)&M,}e U, and by preselectivity let K€ U be such that
K - K., is finite foreach m € J, with L =JNK € U. Then{n €K : f(n) E M,.} is
finite for each m € J so shrink M,, to a nbd M., of f(m) so that {n EK : f(n)€
M} = {m}. Now use regularity plus the countability of our index set. By regularity
there is an open M. with f(m)€E MICMLCM,. For each m€L
{neL :f(n)em ={m}.Solet N,, = M}, ~ U, .. M", m € L. Then the N,.’s are
pairwise disjoint so [I,N, is a nbd of [f] missing 4 (¥) as promised. O

We can now state another theorem like (7.6).

7.8 Theorem. Let ¥ be a first countable regular space, U a preselective ultrafilter.
Then A(X) is a retract of I1u(X) if any of the following holds:
(i) & is non-Archimedean;
(ii) X is linearly uniformizable; or
(iii) (CH) X has weight =c.

Proof. We want A (X) to be closed discrete and for II, (¥) to be ultraparacompact.
Then Ellis’ Theorem will come into play. If X is first countable regular then A(X) is
discrete closed by (4.1), (7.7). If either (i) or (ii) holds, then I (%) is ul-
traparacompact by (6.1). If CH and X has weight <c then [T, (¥) has weight
<|c”|= ¢ = w,. We then proceed as in the proof of (6.2) to show that I, (%) is
ultraparacompact. O

Remark. The operation Il (-) acts on functions between spaces as well as on
spaces themselves; and it is a triviality to show that f : ¥ — ) is continuous iff I ()
is continuous. However, I1y (f) needn’t be the only g : Il (£)— [1,(9) extending f
(i.e. A of = g o A). In fact under a variety of conditions (i.e. where 4 (X) is a discrete
retract of I1,(¥), (see (7.6), (7.8))) any function f:¥ —¥ has a continuous
extension g : [y (¥)— [1u(®). This approach can also be used to find continuous
fixed point free maps on ultrapowers (cf. the end of Section 2) with diagonals that
are discrete retracts. Merely take a fixed point free permutation of the diagonal and
compose with inclusion and the retraction.

8. Non-normal ultraproducts

In this section we produce a normal space (in fact a perfect Boolean space) which
has a non-normal ultrapower. Not only will this show that the classes of normal,
collection-wise normal, and paracompact spaces fail to be closed, but also that a
Boolean space needn’t be linearly orderable, linearly uniformizable, or non-
Archimedean. There are two proofs known to us: the first (in order of discovery)
uses MA plus (7.2), {7.7); the second uses merely (7.2), (7.4). We are indebted to
Kunen [16] for the following:
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8.1 Theorem. Let « = ¢” (¢ = exp(w)) and let ¥ =2 with the cartesian product
topology. Then X is a perfect Boolean space whose -modification fails to be normal.
0

Remark. Via personal communication from E. K. van Douwen, we have learned
that (8.1) holds for « = w, (van Douwen and Borges). Now if x < A then 2~
canonically imbeds within 2* as a closed subset. Thus (2~ Ju, sits as a closed subset of
(2*)a,. Kunen’s theorem can then be strengthened to read: Forx Z wa, (27)a, failsto
be normal.

8.2 Theorem. Let X = 2" for k = w,. Then there is an ultrafilter U on w such that
IIo (%) is not normal.

First proof (MA). Let U be preselective on w. By (7.2), (7.7), (¥ )a, sits as a closed
subset of Il (¥). Since (¥ Ju, is non-normal so also is [T, (¥). ]

Second preof. Let U be any free ultrafilter on . By (7.2), (7.4), (¥ Ju, sits as a
retract of [I,(¥). But retracts are always closed. ]

8.3 Corollary, The classes of normal, collectionwise normal, and paracompact
spaces are not closed. O

8.4 Corollary. The space 2° is a perfect Boolean space which is linearly orderable,
linearly uniformizable (indeed metrizable), and non-Archimedean (indeed non-
Archimedean metric). However, for k > w, the spaces 2" fail to have these properties.

Proof. The properties in question are closed, and each implies normality. If 2* had
any of these properties for k > , then each of its ultrapowers would have to be
normal. This contradicts (8.2). O

Remark. (8.4) can be deduced directly from the old result of A. H. Stone that " is
not normal for « > w. For since 2° = (2°)", * embeds within 2*; hence 2* is not
hereditarily normal for x > . The properties in question imply hereditary normal-
ity however,

9. Ultraproducts and box products

Box products comprise an important source of counterexamples and open
problems in contemporary point-set topology (see Rudin’s lecture notes [22] for an
excellent summary). Our original motivation in studying ultraproducts was to gain
insight into box products; however most of the insights gained related to the
ultraproducts themselves and the box products remained as enigmatic as ever.
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However oddly-behaved ultraproducts may be, they are generally not as
pathological as box products. Following [22] we list some propetties of countable
box products of regular non-discrete spaces and comment upon their ultraproduct
analogues (where the ultrafilter is assumed to be free on w).

In what follows, {¥.:n < @) is a sequence of nondiscrete regular spaces,
Z =TILZ, (the box product) U is a free ulirafilter on w, and X* = IT.%.

9.1 Theorem. X is neither compact, connected nor first countable. O

9.1* Theorem. X* is totally non-compact, zero dimensional, and non-(first
countable). ]

Remark. Since Iy : ¥ — X * is continuous open, (9.1) follows from (9.1%).

9.2 Theorem. X needn’t be normal, even if the X.’s are separable metric or linearly
orderable. O

Remark. (9.2) is due to van Douwen [26]. His counterexample crosses the
irrationals with countably many copies of the compact ordinal space [0, @].

9.2* Theorem. X* is always normal if the X.’s are metric or linearly orderable, since
the classes of linearly uniformizable and linearly orderable spaces are closed. [J

9.3 Theorem. ¥ needn’t be normal, even if the X.’s are compact. O
Remark. Kunen, in proving 9.3, uses ¥, =27 [16].

9.3* Theorem. X* needn’t be normal, even if the £.’s are compact (8.2). 0

The following is due to Kunen [16].

9.4 Theorem (CH). ¥ is paracompact if the X.’s are compact and either of weight
< ¢ or scattered. O

9.4* Theorem (CH). X* is hereditarily ultraparacompact if the X,’s are of weight
<¢. X* is ulraparacompact if the ¥,’s are compact scattered.

Proof. Mimic the proof of (6.2). ¥* will be a regular P-space which is hereditarily
c-Lindeléf. Now assume the Z,’s are compact scattered. To prove (9.4) for the
scattered case, Kunen first proves that X is c-Lindeldf. Thus, since X* is a
continuous image of X, * is ¢-Lindeldf as well. We thus proceed as in (6.2).[1

Before we leave the topic of box products, we state one nontrivial result about
ultraproducts which does transfer to box products, namely (4.7).
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9.5 Theorem. Suppose (¥,:iC€I)is an inﬁni'te family of nondiscrete regular spaces
such that all the cardinals |I| and {| X,|: i € I} are moderate. Then T Z, cannot be
extremally disconnecied.

Prool. I is infinite so there is a countably incomplete ultrafilter U on I. By 4.7)
II# cannot be extremally disconnected. Now the natural map I'y, is a continuous
open surjection, so we are done once we prove the

Claim. Extremal disconnectedness is preserved by continuous open surjections.

Proof of Claim. Let ¢ : ¥ — ?) be a continuous open surjection with X extremally
disconnected, M C Y open. To show M is open we need to show ¢"'(M) is open.
But ¢7'(M) is closed and contains ¢~'(M), whence ¢~ (M)C ¢~(M). On the
other hand if x € ¢ '(M) and N is an open nbd of x then ¢(N) is an open nbd of
$(x) so there is an element x'€ N with ¢(x’)EM. Thus x'ENN ¢ (M) so
x € ¢7(M); and we have ¢ (M) = ¢ (M) which is open in ¥, (|

Parting Remark. In (9.4), CH is actually equivalent to the statement that countable
box products of compact, weight < ¢ Hausdorff spaces are paracompact. To see the
converse, use the van Douwen—Borges result that (2*2).,, is not normal (vide 8.2);
and assume ¢ = w,, X, =2" each n < w, with A C X the diagonal. Now X is a
countable box product of compact weight =¢ Hausdorff spaces. But clearly
4 =(2*),, and 4 is a retract of ¥; and is hence closed therein. Thus ¥ cannot be
paracompact.

10. Some open problems

We list a few problems which came to our attention during the course of this
investigation and which remain unsolved.

10.1 Problem. Can an ultrapower of a paracompact space be normal without being
paracompact?

10.2 Problem (Button). Are ultraproducts of scattered Hausdorff spaces scat-
tered?

Comment. The class of scattered spaces is easily seen to be open. Button showed
that the class of scattered spaces is not closed under Q-extension; however his
counterexample is not Hausdorff,

10.3 Problem. The quotient maps I'y : [L# — IIu%: are always open. When are
they closed?
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10.4 Problem. Find propetties of ultraproducts (especially for uncountable index
sets) which transfer in a nontrivial fashion to corresponding box products.

Appendix 1. Table of selected preservation resulis

Property Closed Open
discrete yes yes
T, (0=n=<3) yes yes
Tichonov yes no
normal no no
paracompact no no
homogeneous yes no*
fixed point property no yes
compact no yes
connected no yes
zero-dimensional yes no
non-Archimedean yes no*
linearly uniformizable yes no*
linearly orderable yes no*
separable no yes
wy-Open yes no
path-disconnected T, yes ne
first countable no yes (if relativized to Ty}
second countable no yes (if relativized to Ty)
Lindeldf no yes
c.C.C. no yes
metrizable no yes (if relativized to Ty)
extremally disconnected no yes
scattered no (Button) yes

* To be proved in Appendix 2.

Appendix 2. The “space” of all spaces

We “topologize” the class of all topological spaces by using the closed classes as
our ‘“‘closed sets”. The program which we undertake is very much like what is done
in model theory in the study of elementary classes, and our techniques in this
section are very much inspired by classical model theory (hence the relegation to an
appendix). The reasons for including such an appendix will become plain as we
proceed. One obvious dividend is a proof of (6.3) without recourse to any set theory
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beyond ZFC. We will in fact be able to improve on (6.3), thereby filling in the
starred items in our table of preservation results.

Let & denote a class of spaces (closed under homeomorphic images). R is a
2-class if 8 is a (possibly proper class) union of closed classes. R is a [1-class if §*,
the complement of &, is . & is a A-class if § is both = and IL. A union of
Il-classes is 2 ZIl-class, a union of A-classes is a B4 -class and so on,

A 2.1 Theorem. The open classes form a proper-class topology on the class of
topological spaces. Moreover this topology is “small -compact” in the sense that open
covers indexable by sets have finite subcovers.

Proof. Any intersection of closed classes is closed, @ is closed, and U, the universal
class, is closed. Let 8,, & be closed. We show R, UK isalsoclosed. If (¥, :i€ ] Yis
a collection of spaces in 8, UR, with U an ultrafilter on LletJ={i. ¥ Q) If
JE U then II,Z € .. Otherwise I~ J € U, in which case IILZ € R,.

The proof of small compactness lifts right out of the ultraproduct proof of the
Compactness Theorem of first order logic. Assume that for each j € J, &, is closed
and that for each finite i C J, N, R, # 0. We show N8, #0. Let I=P, (J), for
each i€l let # €M, R, and let i"={i'el:iCi), I"={i":i€I}). Then
I* CP(I) has the f.i.p. so extends to an ultrafilter U on I. Let ¥ = IT:%,. Then for
eachjEL {i: X €R)ID{I*E U, s0 Feq. : |

We wish to characterize £ and X4 -classes vis a vis ultraproducts.
A 2.2 Theorem. R is a Z-class iff ® is closed under ultrapowers.

Proof. Clearly 2-classes are closed under ultrapowers. Suppose & is closed under
ultrapowers. We show & = U{R": §' C R, & closed}. For let ¥ € ®. Then £(X), the
closure of X under ultrapowers, is in #. We show K(X)isclosed. Let (X, : i€ D bea
family of ultrapowers of ¥, say %, = va(f ) where V, is an ultrafilter on J, If U is
an ultrafilter on I let W=2X,V, =the U-sum of the Vi’s = that ultrafilter on
ULed{i} x Ji consisting of all R such that {i : {j (i, j)€ R}E€ V,} € U. Then by
standard model-theoretic arguments [1,%, is canonically homeomorphic to [T, (¥).

O

Remark. The class of finite spaces is = but not closed. However, for every class
which we showed not to be closed we provided an ultrapower counterexample.
Thus these classes (e.g. normal, paracompact) are not Z-classes either.

Two spaces X, 9 which have the property that there are ultrafilters U, V with
Iy (%) homeomorphic (though not necessarily in an ultrabox-preserving way) to
I1, @) are called power equivalent and we write X ~ . Clearly this relation is
symmetric and reflexive. We will show that it is indeed an equivalence relation, but
we need some machinery.
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Notation. Let V, be an ultrafilter on J; with U an ultrafilter on I i € I. When each
V. is one V and each J, = J we write ZyVi as U- V.

It is here that we must start resorting to model theory in earnest. A pair
Z = (X, 8) where B is a basis for a topology on X is called 2 basoid. If B is a basis
we let B* denote its generated topology and let £* = (X, B*). If %, P are basoids
and there is a bijection which preserves bases then X, 9 are isomorphic and we
write & = 9). If there is a bijection such that X* = §* then we write =9 (i.e. £, 9
are homeomorphic). Because confusion can easily arise, we will distinguish ultra-
products of basoids (which are basoids that are hardly ever topological spaces) from
their topological completions. Thus % =Tl.(X, 8.y = lX, IIuB:), and
(TT,%,)* is the associated topological space. This notation is at variance with our
earlier notation, but we could afford the abuse then but not now.

The language of basoids consists of all first order formulae built using the usual
quantifiers and connectives plus the following primitive symbols: equality (=),
membership (€ ), and two sorts of variables (x, y, Z, X1, y1, . . - etc. for “points” and
b,c,d, b, cy, ... etc. for “basic open sets”’). The atomic formulae look like x=y,
b=c, and x€ b. If we denote this language by L, an L-structure is a triple
9 = (P, B, E) where P is a set of “points”, B is a set of “basic open sets”, and
E C P x B. Equality is interpreted by the diagonal of (P U BY.

We assume the reader to be on fairly amiable terms with first order logic; and
he/she should have no trouble verifying that there is an L-sentence ¢ such that for
any L-structure U, A= iff A is isomorphic to a basoid, where the basoid
F =(X, B) is interpreted as an L-structure in the obvious way: P=X, B=p
E=e]XxB.

We now state the principal tool of our study, the Keisler-Shelah Ultrapower
Theorem (see [8] or [23]) which states that two models A, B are elementarily
equivalent (in symbols U = B) iff there are ultrafilters U, V (which can be taken to be
equal) such that T, () =I1,(B).

A 2.3 Theorem. “Power equivalence” is an equivalence relation.

.- Proof. Let £,9), 8 be spaces with X~ 9, ¥~ 3, say Mo (#)=M.,®), 1.,@)=

* [1+(3). We recall the canonical isomorphism for iterating ultrapowers of struc-

_ tures, namely I, ([T, (2))=Iu.v (M. We also recall the notion of “elementary

- substructure” (% < B). Now to continue, we know that ¥ < II..(®) (i =1,2) so by
the Keisler—Shelah Theorem there is an ultrafilter V with I, (1, (@)=
Mo 1..(9)). Thus .

N@=[(I®)=[([0)-1{[0)-[([o)=]e. o

_—.——_—_—_—'
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A 2.4 Theorem. A class ® of spaces is a SA-class iff & is closed under power
equivalence.

Proof. Suppose 8 is a union of A -classes, and let X € § with 9 ~ X. Pick a A -class
K'CR so that XE R, and pick ultrafilters U, V with Hu(#)=11.(®). Then
I, ()€ &, hence I, (Y) € &'. Since 9’ is a Il-class, we have 9 & &,
Conversely we show 8 = U{R'CR: R is 4} For if X € &, let R[X] denote the
class of all § ~ X. Then 8[X] G ®. We show this class is 4. R[X] is a Z-class since
Z ~IIy(¥) always. Alsoif ) # X then, by transitivity of ~ , no ultrapower of 9 can
be power equivalent to . Thus £[%] is I, and we are done. O

A 2.5 Corollary. Every ZA-class is >. O

A class 8 is complete if for each X, D € 8, ¥ ~ 2 holds. A very useful result is the
following:

A 2.6 Theorem. The class of perfect regular spaces is complete.

Proof. Let ¥ be a perfect regular space. We show X ~ Q, the ordered space of
rationals, and then apply the transitivity of ~ . First it is a triviality to show ¥ is
infinite and that the property of perfect regularity is first order, so that by the
Lowenheim-Skolem Downward Theorem there is a countable basoid X, <X.NB.
the universe of X, = (X,, 8,) is X, U B,. Then X% is a countable, second countable,
perfect regular space. But all such spaces are homeomorphic to Q by a standard
topological argument. Thus by the Keisler-Shelah Theorem there is an ultrafilter U
such that I, (¥) =1, (#.), whence II, (%)= o@D =0, (Q),ie.~Q. O

And now our long-promised corollary:

A 2.7 Corollary. Every regular space has an ultrapower which is ultrametrizable.
Hence the following properties are not open (or IT): Tichonov, normal, hereditarily
normal, collectionwise normal, paracompact, linearly uniformizable.

Proof. Let X be a regular space. Then ¥ xR is perfect regular, whence ¥ X R~R
by (A 2.6). Let Il (¥ x R) = I1 v (R). V can be chosen to be countably incomplete
so that Iy, (¥ X R) is ultrametrizable (a hereditary property). Now X embeds within
X xR, so II(¥) embeds within IT,,(£ X R). Thus Iy (¥) is ultrametrizable. O

Remark. There are perfect regular spaces ¥ which are not linearly orderable,
homogeneous, or supportive of a topological group structure. Since R has all of
these properties we know that they too fail to be open.

Power equivalence is not a model-theoretic notion. That is, one might ask the
question whether X ~ 2) does in fact imply that there are ultrafilters U, V for which
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[I.(*)=II,(¥) (i.e. open ultraboxes map to open ultraboxes). The question is
answered in the negative by the following:

A 2.8 Theorem. Let X,9) be spaces, let B,y be bases for X,9) respectively with
Fo=(X,B), Do=(Y,v), and Xo=Yo. Then X~ 9). The converse does not hold.

Proof. The first part of the theorem is a straightforward application of the
Keisler-Shelah Theorem. As for the failure of the converse, we find two regular
perfect spaces X, @ such that for no generating basoids X, s it is true that Xo=9),.
Pick X = [0, 1]. Then there is no way to pick a clopen basis for X. Let ¢ be the first
order sentence which says that each basis set has open closure (this is straightfor-
ward to produce). Then F;F—1¢. Now let I be any extremally disconnected
perfect regular space (e.g. the Stone space of an atomless complete Boolean
algebra). Then for any generating basoid Jo, Yo b= ¢. a

We end this report with a few brief comments regarding the facts 2.1, 2.2).
Assume CH. If U, V are free ultrafilters on w and if R denotes the reals, treat R as
an order structure. Then II,(R), Il (R) are c-saturated elementarily equivalent
structures of power ¢ and are hence order isomorphic. This essentially proves (2.1).
To prove (2.2), consider R and Q again as basoids, with ¥, < R a countable second
countable perfect regular basoid. If U is free on w then I, (R) =1, (%) since both
basoids are c-saturated elementarily equivalent of power c¢. Now I, (&)=
I, (%%) =I1,(Q). We can make the same statement for R” so that, in the notation
of Section 2, *R = (*R)%.
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