ON THE FIRST-ORDER EXPRESSIBILITY OF LATTICE
PROPERTIES RELATED TO UNICOHERENCE IN CONTINUA

PAUL BANKSTON

ABSTRACT. Many properties of compacta have “textbook” definitions which
are phrased in lattice-theoretic terms that, ostensibly, apply only to the full
closed-set lattice of a space. We provide a simple criterion for identifying such
definitions that may be paraphrased in terms that apply to all lattice bases of
the space, thereby making model-theoretic tools available to study the defined
properties. In this note we are primarily interested in properties of continua
related to unicoherence; i.e., properties that speak to the existence of “holes”
in a continuum and in certain of its subcontinua.

1. THE EXPRESSIBILITY LEMMA

We continue our study [4] of compacta (i.e., compact Hausdorff spaces), especially of
continua (i.e., connected compacta), from the perspective of model theory. Many
of the classic definitions of properties pertaining to compacta are easily phrased
in finitistic lattice-theoretic terms involving closed sets. (It is convenient to use
closed—rather than, say, open—set phraseology because, in the setting of compacta,
closed sets are compacta themselves.) For any space X, let F(X) be the collection
of all closed subsets of X, viewed as a bounded lattice; i.e., as a special structure
for the first-order alphabet L = {L,M, L, T}. As one would expect, LI is interpreted
as union, M as intersection, 1 as (), and T as X. A sublattice A of F(X) is a lattice
base for X if every member of F/(X) is an intersection of members of A.

What makes the notion of lattice base so important in our study of compacta is
the following Wallman-style representation theorem (see [11]): There is a sentence
in the first-order language Ly, over L, whose models are precisely the lattices that
are isomorphic to the lattice bases for compacta.

The sentence alluded to above is quite easy to describe: In addition to stating the
universal (I19) condition of being a distributive lattice, it includes the two universal-
existential (T19) conditions of normality, VaVy3z'Iy'[(zx Ny = L) — ((x N2’ =
ANy = L) A (@ Uy =T))] (saying that two disjoint lattice elements may
be separated by disjoint open sets whose complements are lattice elements), and
disjunctivity, VaVy3z[(x # y) — ((z # L)A(z < 2)A(zNy = L))V ((z #
Az <y)A(zMNa = 1)))] (saying that for each two lattice elements, there
is a non-bottom lattice element that is dominated by one and disjoint from the
other). (We use the standard abbreviations “z # y” for “=(x = y)” and “x < y”
for “a My = 27 (equivalently for “c Uy = y”).) If A is any L-structure that
satisfies these conditions, and so is a normal disjunctive lattice, then A is naturally
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isomorphic to a lattice base for the compactum S(A), defined by taking the maximal
filters of A for points, and the sets a* := {P € S(A) : a € P}, a € A, for basic
closed sets. The space S(A) is referred to as the mazimal spectrum of A, and is
(up to homeomorphism) the only compactum for which A serves as a lattice base.
The operation S( ) is contravariantly functorial, taking lattice homomorphisms to
continuous maps (which are surjective when the homomorphisms are embeddings).
And though S( ) is quite definitely “many-one” in general, it does indeed become
Stone duality when restricted to the Boolean (i.e., complemented) lattices.

Let us now say that a sentence ¢ in Ly, is an F-exzpression for a property/class
P of compacta if P = {X : F(X) E ¢}; a class is F-expressible if it has an F-
expression. We call a sentence ¢ base free if for any normal disjunctive lattice A,
A = pif and only if F(S(A)) = ¢ (i-e., if the truth of ¢ in A depends only on the
topological type of A). If a class of compacta has a base free F-expression, we say
the class is finitely expressible.

We call a sentence 6 of L, F-valid if F(X) |= 6 for every compactum X. Then
define a sentence ¢ to be relatively base free if there is an F-valid sentence 6 such
that whenever A is a normal disjunctive lattice satisfying 6, we have A = ¢ if and
only if F'(S(A)) = ¢. (So relatively base free becomes base free when it is possible to
choose 6 to be valid for all normal disjunctive lattices.) When it becomes necessary
to specify a sentence 6 witnessing the relative base freeness of ¢, we term 6 a lever
sentence for .

Our main model-theoretic “expressibility” lemma is largely a consequence of
known results, principally the Frayne-Morel-Scott characterization of elementary
classes (see, e.g., [6]).

Lemma 1.1. A property of compacta is finitely expressible if (and only if) it has
a relatively base free F-expression.

Proof. A property P of compacta is finitely expressible just in case the class
STHP] := {A : A is a normal disjunctive lattice and S(A) € B} is the class of
models of a single sentence of L. And this condition is true just in case a cer-
tain classic ultraproduct criterion is satisfied (see [6]), namely that, for any indexed
family {A; : i € I'} and any ultrafilter D on I, the ultraproduct [, A; is in S~ []
if and only if {i € [ : A; € ST'[P]} € D.

So let ¢ be a relatively base free F-expression for the property B of compacta,
and suppose 6 is a lever sentence for ¢. Let D be an ultrafilter on the index set
I, and {A; : i € I} an I-indexed collection of L-structures such that J = {i € I :
A; € STHP]} € D. Then for each i € J, F(S(A;)) = ¢; hence [[ F(S(Ay)) E ¢
as well. But 6 is F-valid, so [[ F(S(A;)) = 6. Thus F(S([Ip F(S(A)))) = ¢
because 6 is a lever sentence for ¢.

Now the space S([[p A;), also denoted >, S(A;), is the topological ultraco-
product introduced in [1]. The notation is justified because the ultracoproduct con-
struction depends only on the constituent compacta, not on the particular choice
of lattice bases for them. In particular, the spaces S(][, A;) and S(I[p F(S(As)))
are homeomorphic; hence we infer that F(S([]p A;)) E ¢. Thus [[5 A; € ST,
as desired.

If J ¢ D, then I\ J € D. For each i € I\ J, F(S(A;)) = —¢. Thus
[1p F(S(A))) = —¢. As above, we have [[, F(S(A;)) = 6, and hence
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gg[(%n]p F(S(A:))) = —¢. Thus F(S([pAi) = —¢; so we have [[pA; ¢
. |

Remark 1.2. As the terminology ultracoproduct suggests, Y 5 X; is the limit of
the inverse system {B({J;c;(Xi x {i})) : J € D} of coproducts in the category of
compacta and continuous maps. (D is ordered by reverse inclusion; the bonding
maps are Stone-Cech lifts of the obvious inclusion maps.) If ¢” denotes the Stone-
Cech lift of the projection map from (J;;(X; x {i}) to the discrete space I, then
> X; may be viewed as the ¢°-fiber over D € 3(I). Furthermore, if each X; is
the same space X, then there is also the projection map p : X x I — X. The re-
striction px p of p? to the ultracopower Xp = > p X € B(X x I) is the canonical
codiagonal map, a continuous surjection onto X = B(X). The codiagonal map is
dual to the usual diagonal embedding from a relational structure into an ultrapower
of that structure, and may be used to define classes of continuous surjections that
mirror well-known classes of embeddings in model theory. Of particular interest is
the class of co-existential maps, first introduced in [2], and mirroring the existen-
tial embeddings. These are maps f : X — Y between compacta such that there
is an ultrafilter D on a set I and a continuous surjection g : Yp — X such that
fog=pyp. We will have more to say about co-existential maps in Section 5.

2. A USEFUL LEVER SENTENCE

In this section we describe a sentence 6 that serves as a lever sentence for a num-
ber of familiar F-expressions. Roughly speaking, 6 says of a lattice base that it
is atomic, and that it contains enough components. To make this precise, we first
state some well-known facts about subcontinua of compacta; then introduce three
very useful formulas in L, .

(C1) Let A be a lattice base for X, with A € A. If R and S are disjoint closed
sets such that A = RU S, then both R and S are in 4. In particular, a
clopen subset of X is in every lattice base for X.

(C2) If a,b € X lie in different components of X, then there is a clopen set A of
X such that a € A and b ¢ A.

From C2 above, we may proceed to the following two facts:

(C3) If A and B are closed subsets of X, then there is a clopen set containing
one and disjoint from the other if and only if there is no connected subset
of X that intersects both A and B.

(C4) If A and B are disjoint closed subsets of X and one of the two is a compo-

nent of X, then there is a clopen set containing one and disjoint from the
other.

Now for the formulas we wish to use.
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(F1) a(z) says of an element that it is an atom; i.e., it is the I formula
Vyl((@ # DAy <z) Ay # 1) = (y =)

If A is a lattice base for a compactum X and A € A, then we write a[A4] to
denote the sentence obtained by substituting each occurrence of the vari-
able x in a(x) by a new constant representing A. Then it is a triviality to
show that A = a[A] if and only if A is a singleton subset of X.

(F2) ~(r) says of an element that it is connected,; i.e., it is the IIY formula

VVe[((z=yU2) A(yMNz=1)) = ((y=1L)V(z=1))]

If A is a lattice base for a compactum X and A € A, then A | ~v[A4] if and
only if A is a connected subset of X. [This follows from C1 above.]

(F3) k(z,x) says of two elements that the first is a component of the second; i.e.,
it is the I3 formula

VwIrds[(z < z) Av(z) Al((w <2) A (wMz=1)) —
(w<r)A(z<s)A(rUs=x)A(rMs= 1))

If A is a lattice base for a compactum X and A,C € A, then A = &[C, A]
if and only if C'is a component of A. [This follows from C3 and C4 above.]

At this point we let 6 be the I1 sentence o A s, where: « is the sentence Vz3y[(z #
1) — ((y < 2)Aa(y))], saying a lattice is atomic; and k is the sentence VaVy3z[((y <
x) Aa(y)) — ((y < z) Ak(z,x))], saying that when a lattice element dominates an
atomic element, the component of the former containing the latter is also a lattice
element.

We sum up the discussion in this section with the following.

Lemma 2.1. Let 6 be the sentence o A k described above. Then 0 is F-valid. Fur-
thermore a lattice base A for a compactum X satisfies 0 if and only if: (i) whenever
A € A is nonempty, there is some a € A such that {a} € A; and (ii) whenever
A€ A and a € A is such that {a} € A, it is the case that the component of A
containing a is an element of A.

3. FINITELY EXPRESSING UNICOHERENCE

In [4] we exhibited base free II3 F-expressions for various well-known properties of
compacta. These include: (i) having covering dimension < n,n = 0,1,... (Proposi-
tion 3.2); (ii) being an indecomposable continuum (Corollary 4.6); and (iii) being a
hereditarily indecomposable continuum (Corollary 4.10). As a result of techniques
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developed in [4] (Theorem 1.2, inspired by the Chang-Lo$-Suszko theorem), these
properties are then automatically closed under co-existential images, as well as the
taking of limits of inverse systems with continuous surjections for bonding maps.

By using a rather cumbersome ultracoproduct argument (Theorem 5.1 in [4]), we
were able to give a nonconstructive proof that the properties of being a continuum
of multicoherence degree < n, n =0,1,... are also finitely expressible. This result,
together with S. B. Nadler’s theorem [10] that multicoherence degree cannot be
raised by the taking of inverse limits with continuous surjections for bonding maps,
shows that, for n = 0,1,..., there is a base free IIy sentence u, that finitely
expresses multicoherence degree < n. It is still an open problem, however, to
formulate these sentences pu, explicitly. Such formulations are desirable because
of their strong potential for providing new and informative characterizations of
properties.

In this section we illustrate how the expressibility lemma (1.1) may be used to
provide a more streamlined (but still nonconstructive) proof of the existence of base
free F-expressions for the class of continua of multicoherence degree < n, for any
fixed natural number n. For simplicity we focus on the case n = 0, there being no
essential loss of generality in doing so. This gives us the class of continua that are
unicoherent; i.e., those continua X satisfying the condition that if X = K U M,
where K and M are subcontinua, then K N M is connected. Cells, dendrites and
indecomposable continua are unicoherent; simple closed curves and figure-eights
are not. (Indeed, they have multicoherence degree 1 and 2, respectively.)

Before proceeding, we record the following useful technical result.

Lemma 3.1. Let X be a compactum, with K, M, R and S closed subsets satisfy-
ing: (i) R and S are nonempty and disjoint; and (i) KNM = RUS (so{R,S}
is a disconnection of K N M ). Let A be a lattice base for X. Then there are K*,
M*, R* and S*, all members of A, such that: (a) K C K*, M C M*, RC R* and
S C S*; and (b) {R*,S*} is a disconnection of K* N M*.

Proof. We first find open sets U and V such that R C U, S C V, and the closures
U and V are disjoint. Set K’ = K\ (UUV) and M’ = M \ (UUV). Then K’ and
M’ are disjoint closed sets, so find K™, M* € A such that K' C K+, M’ C M™*
and Kt N Mt = 0. Next we find R*,S* € A such that U C R*, V C S*, and
R*NS* = (. Finally we set K* = KT U (R*US*) and M* = M* U (R* U S*),
both sets in A.

We have immediately that R C U C U C R*; similarly S C S*. Also K C
K'UuUUV)CKTUWUUV)CKTU(R*US*) = K*; similarly M C M*.

Finally K*NM* = (KT NM")U(R*US*) = R*US*, so {R*,S*} is a discon-
nection of K* N M*.

O

Let us now formulate the textbook definition of unicoherence as the I19 F-expression
Ok

Vavy[y(T) A (@) Ay(y) Az Uy =T)) — y(zMy))
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The following theorem is a paraphrase of earlier work [4], but the proof is new and
in a form that allows for easy generalization.

Theorem 3.2. The F-expression v given above is relatively base free; hence the
property of unicoherence in continua is finitely expressible.

Proof. We recall the F-valid sentence 6 of Lemma 2.1 and show it is a lever sentence
for v.

Let X be a continuum, with A a lattice base for X that is a model of 6. Clearly if
A = —w, then F(X) = —w too (whether or not A = 6). For the converse, suppose
that F'(X) = —w. Then there are subcontinua K and M of X such that KUM = X
and KNM = RUS, where R and S are disjoint nonempty closed sets. By Lemma
3.1, there are K*, M*, R*,S* in A such that K C K*, S C S*, RC R*, S C S*,
and {R*, S*} is a disconnection of K* N M*.

Since both K and M are connected, X = K UM, and K N M is disconnected, we
know that both K \ M and M \ K are nonempty open subsets of X. In particular,
both K and M have nonempty interiors in X. Since A is a lattice base, there exist
nonempty A and B in A such that A C K and B C M. And since A is atomic,
there exist a € A C K and b € B C M such that both {a} and {b} are members of
A. Since A also satisfies the component condition given in Lemma 2.1 (ii), we know
that the component C' of K* containing a and the component D of M* containing b
are both elements of A. Since K is a connected subset of K* containing a, we know
K C C; likewise we know M C D. Thus CUD = X and RUS CCND C R*US*.
Since R C R* and S C S*, we infer that {R* N (C N D),S*N(CND)}is a
disconnection of C'N D. Thus A = —w.

|

4. FINITELY EXPRESSING STRONGER KINDS OF UNICOHERENCE

A continuum is hereditarily unicoherent if every subcontinuum is unicoherent. This
is equivalent to saying that the intersection of any two subcontinua is connected;
and we can phrase this with the following I1J F-expression, which we denote :

Vay[y(T) A ((v(@) Ay(y)) = v(@ My))]

It is an open question whether hereditary unicoherence is finitely expressible; there
are, however, two reasonably nontrivial reasons to believe in a positive answer.
Firstly, hereditary unicoherence behaves in some important ways like the known
finitely expressible property of hereditary indecomposability (specified by saying
that the intersection of any two overlapping subcontinua is one or the other): both
properties are closed under co-existential images, both are closed under the taking
of inverse limits with surjective bonding maps. (See discussions in [4] and [5].)
In particular, hereditary unicoherence is finitely expressible using a I sentence,
if it is finitely expressible at all. The second reason is the half-century-old re-
sult of L. Gillman and M. Henriksen ([8]), saying that the Stone-Cech remainder
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[0,1)* := 8[0,1) \ [0,1) of the half-open unit interval is hereditarily unicoherent.
It follows that when the index set is countable, an ultracopower of the closed unit
interval—easily seen to be embeddable in [0, 1)*—is hereditarily unicoherent as well.

Remark 4.1. Let us call two compacta elementarily tolerant if some lattice base
for one is elementarily equivalent to some lattice base for the other. (This relation
is reflexive and symmetric, as befits the accepted definitaion of tolerance relations.
It may or may not be transitive, but its two-fold composition is an equivalence rela-
tion.) Using Lowenheim-Skolem arguments (see, e.g., [4]), it is possible to construct
a metrizable continuum X, elementarily tolerant to [0, 1], such that X fails to be
either locally connected or hereditarily decomposable. This X may be realized as a
co-existential image of an ultracopower of [0,1] via an ultrafilter on a countable in-
dex set, and so it is also hereditarily unicoherent because of the Gillman-Henriksen
theorem cited above.

A continuum is weakly hereditarily unicoherent if the intersection of any two subcon-
tinua possessing nonempty interiors is connected. This property is clearly weaker
than hereditary unicoherence in general, but the two properties actually agree on
the class of arcwise connected continua (see [7]). It is easy to modify the sentence
X above and thus give a I19 F-expression for this property, which we denote x*:

VaVyVuvv[y(T) A ((v(@) Ay(y) A ((u# T)A
(v#EFTA(wUz=T)A(vUy=T))) = v(xNy))]

With trivial modifications of the proof of Theorem 3.2, we have the following.

Theorem 4.2. The F-expression x*“ given above is relatively base free; hence the
property of weak hereditary unicoherence in continua is finitely expressible.

Proof. In the proof of 3.2, we use the fact that X = K U M only to infer that both
K and M have nonempty interiors. This condition is given to us here.
|

Remark 4.3. The question arises as to the possible level of complexity of a base
free F-expression that could be used to replace x*. We show in the next section
that a I19 sentence is possible.

A continuum is strongly unicoherent if it is unicoherent, and whenever it is the
union of two proper subcontinua, each of those subcontinua is unicoherent also. In
[9] T. Mackowiak proves this definition equivalent to saying that any subcontinuum
with nonempty interior is unicoherent. This shows clearly that strong unicoherence
lies between hereditary unicoherence and weak hereditary unicoherence. (Thus all
three properties coincide in the presence of arcwise connectedness. Also strong uni-
coherence and weak hereditary unicoherence coincide in the presence of hereditary
decomposability (see [7]).)
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The reader will have no difficulty formulating F-expressions for either character-
ization above. However, attempts to extend the methods of Theorem 3.2 to show
the finite expressibility of strong unicoherence seem to break down much as they
do with hereditary unicoherence. In the next section we put some positive spin on
the issue by showing all four unicoherence properties to be closed under images of
co-existential maps and limits of inverse systems with surjective bonding maps.

5. UNICOHERENCE PROPERTIES AND CO-EXISTENTIAL MAPS

We recall the following basic result about co-existential maps (see Theorem 5.15 in

3)-

Theorem 5.1. Let f : X — Y be a co-existential map between compacta. Then
there is a U-semilattice homomorphism f* : F(Y) — F(X) such that:

(1) f*(K) is connected (resp., a singleton) whenever K € F(X) is connected
(resp., a singleton).

(2) f7YHU] C f*(K) whenever K € F(X) and U C K is open in'Y .

(3) fIf*(K) is a co-exzistential map from f*(K) onto K for each K € F(Y).

Let us call the function f* (which depends on the ultracopower of Y that witnesses
the co-existentiality of f) a subinverse for f. Subinverses preserve finite unions,
but do not seem to preserve finite intersections, and hence apparently fall short of
being lattice homomorphisms. They do come close, though, in the following sense.

Corollary 5.2. Let f: X — Y be a co-existential map between compacta, with f*
a subinverse for f. If K and M are subcompacta of Y, then f[f*(K) N f*(M)] =
KnNM.

Proof. By virtue of the fact that f is a function, we have f[f*(K) N f*(M)] C
FIE)] O fIf*(M)]. The right-hand side is just K N M, by Theorem 5.1 (3). On
the other hand, by the fact that f* is U-preserving, it respects inclusion. Hence
FIE)NfIf(M)] 2 fIf*(KNM)] = KN M, again by 5.1 (3). This gives us the
desired equality.

O

In [4] we used the finite expressibility of multicoherence degree < n in continua,
plus Nadler’s theorem (Theorem 1 in [10]), to the effect that multicoherence de-
gree is not raised by the taking of inverse limits with surjective bonding maps, to
infer that co-existential maps do not raise multicoherence degree. We can prove
this directly—and hence give an alternative (though round-about) proof of Nadler’s
preservation result—with the aid of Corollary 5.2.

Theorem 5.3. Let P be any one of the properties: unicoherence, hereditary uni-
coherence, weak hereditary unicoherence, strong unicoherence. If X is a continuum
satisfying property B, and if f : X — Y is a co-existential map, then Y satisfies P
as well.
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Proof. We prove the easy case where B is weak hereditary unicoherence; the ar-
guments for the other cases are similar, but even easier. Suppose K and M are
subcontinua of Y, each with nonempty interior, and let f* : F(Y) — F(X) be
a subinverse for f. By Theorem 5.1, both f*(K) and f*(M) are subcontinua
of X, each with nonempty interior. Since X is weakly hereditarily unicoherent,
f*(K) N f*(M) is connected. By Corollary 5.2, so is K N M.

O

Remarks 5.4. (1) Observe that Theorem 5.3 may be generalized to the preser-
vation of multicoherence degree < n by noting that the number of com-
ponents in the image of a continuous map cannot exceed the number of
components in the domain.

(2) If we are given an inverse system of continua, each with property 3, and
where the bonding maps are continuous surjections, then we may infer that
the inverse limit has property P, as long as 3 is finitely expressible and is
preserved under co-existential images. This works when P is either unico-
herence (already proved in [10]) or weak hereditary unicoherence (possibly
new), but not in the other cases listed in Theorem 5.3. However, it is still
true that these properties are preserved under the appropriate inverse lim-
its: In the case of hereditary unicoherence, there is a straightforward proof
in [10]; in the case of strong unicoherence, one uses the defining condition
given above, plus the argument in [10].

(3) It is easy to see that Corollary 5.2 holds for arbitrary intersections, not
just finite ones—if {K; : ¢ € I} is any family of subcompacta of Y,
then f[,c; f*(K:i)] = ;e Ki— and is a trivial consequence of the ques-
tionable assertion that (;c; f*(K:) = f*((,c; Ki). We do not know
whether subinverses of co-existential maps preserve finite intersections, but
they do not preserve infinite ones. Indeed, suppose f : X — Y is a co-
existential map between compacta, with y € Y and {K; : ¢ € I} the family
of all closures of open neighborhoods of y. Then, by Theorem 5.1 (2),
Micr [¥(K) 2 fH{y}] (actually, equality holds); while (,c; K; = {y}.
Thus, by Theorem 5.1 (1), f*((N;c; Ki) = f*({y}) is a singleton; so the
only way for f* to preserve arbitrary intersections is for f to be a homeo-
morphism.
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