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1. Amalgamation.

A mapping diagram is called a wedge if it is of the form

Y
f→ X

g← Z

or

Y
f← X

g→ Z.

In the first instance the diagram is inward; in the second,

it is outward. In either case, the object X is the vertex of

the wedge. An amalgamation of the inward wedge above

is an outward wedge

Y
ϕ←W

γ→ Z

such that the resulting mapping square commutes (i.e.,

f ◦ ϕ = g ◦ γ.)





In algebra and model theory we usually study amalgamat-

ing outward wedges of embeddings with inward ones, but

in topology it is often the reverse. In this talk we will look

at the amalgamation of inward wedges of compacta, where

all mappings are quotients.

Let P be a topological property. A compactum X with

property P is a P-base if for every inward wedge with

vertex X and compacta with property P, there is an amal-

gamation whose vertex also has property P.

Our main goal is to describe the P-bases, where P is either

no restriction at all or is the property of connectedness.

The first part is easy:



2. Base Compacta.

Every compactum is a base compactum; the reason is the

pullback construction.

Given quotient maps f : Y → X and g : Z → X between

compacta, the associated pullback is a triple 〈P, p, q〉, where:

• P is the compactum {〈y, z〉 ∈ Y ×Z : f(y) = g(z)}; and

• p : P → Y and q : P → Z are the coordinate projections.

p is surjective because g is; q is surjective because f is.





The pullback not only witnesses this kind of amalgamation,

it is “minimal,” in the following sense: Given 〈X, f, Y, g, Z〉
as above, as well as the amalgamation 〈W, ϕ, γ〉, there is

a unique continuous mapping λ : W → P–given by λ(w) =

〈ϕ(w), γ(w)〉–such that p ◦ λ = ϕ and q ◦ λ = γ.



2. Base Continua.

Not every continuum is a base continuum; the following

example was suggested recently by Logan Hoehn.

2.1 Example. Let X be a simple closed curve, modeled by

the unit circle in the complex plane; and let Y and Z be

arcs, both modeled by the closed unit interval [0,2π] in the

real line. Let f : Y → X be the map t 7→ cos t + i sin t, and

let g = −f . The pullback P of this mapping diagram is

the union A∪B of two disjoint line segments in the square

[0,2π] × [0,2π], defined by the equations y = x ± π. It is

therefore disconnected, despite the fact that X, Y and Z

are continua. Here’s a picture.





But we can say more: If ϕ : W → Y and γ : W → Z are

continuum mappings such that f ◦ ϕ = g ◦ γ, then λ(W ) is

contained in one of A or B; say it’s A. But p does not map

A onto Y . Hence ϕ fails to map W onto Y . This shows

that simple closed curves are not base continua.





Simple closed curves are not base continua; here’s a posi-

tive result.

2.2 Theorem (J. Krasinkiewicz, 2000). Arcs are base con-

tinua.

The rest of this talk is devoted to the unearthing of more

base continua, but first we need to talk about what it

means for a continuum to be “co-existentially closed.”



3. Ultracopowers and Co-Existential Maps.

Given a compactum X and (discrete) set I, first form the

cartesian product X×I, with coordinate maps p : X×I → X

and q : X × I → I. Next apply the Stone-Čech functor,

obtaining the following diagram.





Now if D is an ultrafilter on I, then it may be viewed as a

point in β(I). Denote by XD the pre-image of {D} under

qβ. This is the D-ultracopower of X.

When X is a continuum, these ultracopowers partition

β(X × I) into its components.

The map pD = pX,D = pβ|XD : XD → X is a quotient map,

called the ultracopower co-diagonal map.





We now define a mapping f : Y → X between compacta

to be co-existential if there is an ultracopower XD and a

quotient map g : XD → Y such that f ◦ g = pD.





4. Co-Existentially Closed Continua.

A co-existentially closed continuum is a continuum X

such that every continuous map from a continuum onto X

is co-existential.

4.1 Theorem (PB, 2005).

• Every co-existentially closed continuum is hereditarily in-
decomposable, as well as of covering dimension one. (In
particular, it’s nondegenerate.)

• Every nondegenerate continuum is a continuous image
of a co-existentially closed continuum, of the same weight.

• There exists a metrizable co-existentially closed contin-
uum that is not chainable. (In particular, it’s not a pseudo-
arc.)



4.2 Remark. Recall that a quotient map f : Y → X is

confluent if whenever K is a subcontinuum of X and C is

a component of f−1(K), then f(C) = K. X is confluently

closed (aka Class(C)) if X is only a confluent image of

other continua. A classic theorem of H. Cook, A. Lelek

and D. Read characterizes the confluently closed continua

as the hereditarily indecomposable ones. (In particular, the

pseudo-arc is confluently closed.)

Even though co-existentially closed continua are conflu-

ently closed, it is not the case that co-existential maps are

always confluent (P. B., K. P. Hart).



We know the pseudo-arc is a confluently closed continuum,

by virtue of its being hereditarily indecomposable. Is it also

a co-existentially closed continuum?

Here’s the reason for bringing up co-existentially closed

continua in this talk.

4.3 Theorem (PB, 2005). Every co-existentially closed

continuum is a base continuum.

Proof-by-picture:











4.4 Remark. A metrizable base continuum is a base metriz-

able continuum. That is, given the inward wedge

Y
f→ X

g← Z

of metrizable continua, the amalgamating outward wedge

Y
ϕ←W

γ→ Z

may be chosen such that W is metrizable too. This is

because in the pullback

Y
p← P

q→ Z,

P is clearly metrizable. Now, given any old amalgamation

〈W, ϕ, γ〉, take λ(W ) for our new W , and p|λ(W ), q|λ(W ),

respectively, for our new ϕ and γ. The surjectivity of the

old ϕ and γ ensures the surjectivity of the new.



Recently, using a continuous model theory approach to C∗-
algebras, Christopher Eagle, Isaac Goldbring and Alessan-

dro Vignati have proved the following.

4.5 Theorem. The pseudo-arc is a co-existentially closed

continuum.

As an immediate corollary of this and Theorem 4.3, we

know that the pseudo-arc is a base continuum; in fact a

base metrizable continuum, by Remark 4.4. (Observe that

being a metrizable base continuum is ostensibly stronger

than being a base metrizable continuum.)



However, Logan Hoehn has recently informed us that it fol-

lows from a 1984 paper of L. Oversteegen and E. D. Tym-

chatyn that every metrizable continuum of span zero is a

base metrizable continuum.

This includes arcs and pseudo-arcs, but this result does

not show immediately that they are base continua.

Hoehn and Oversteegen have recently proved that any

hereditarily indecomposable metrizable continuum of span

(or surjective semispan) zero is chainable, and hence a

pseudo-arc. Since we have the existence of non-chainable

co-existentially closed metrizable continua, and all such

are herediarily indecomposable, we have the existence of

metrizable base continua that are not of span zero.



THANK YOU!


