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1. Betweenness Relations Induced by Other Structure

1.1. Total Orderings (Huntington and Kline, 1917)

Given a totally ordered set 〈X,≤〉, say c lies between a

and b (in symbols: [a, c, b]O) if either a ≤ c ≤ b or b ≤ c ≤ a.



1.2. Metric Spaces (Menger, 1928)

Given a metric space 〈X, %〉, [a, c, b]M holds if

%(a, b) = %(a, c) + %(c, b).



1.3. Topological Spaces (Ward, 1954; PB, 2013)

Given a topological space 〈X, T 〉, [a, c, b]T holds if every

connected subset of X containing {a, b} contains c as well.

(Other versions include: (1) a and b lie in different sets

forming a separation of X \ {c}; and (2) c lies in every

connected closed subset of X containing {a, b}.)



Consider the closed unit interval [0,1] in the real line, re-

garded as a totally ordered set, a metric space, or a topo-

logical space.

All three notions of betweenness coincide:

[a, c, b]O ⇔ [a, c, b]M ⇔ [a, c, b]T .

(This includes the topological variants of betweenness men-

tioned in the last slide.)



2. Betweenness Relations On Their Own

These are ternary structures 〈X, [·, ·, ·]〉 satisfying the basic

axioms:

(Inclusivity) [a, a, b] ∧ [a, b, b]

(Symmetry) [a, c, b] ⇒ [b, c, a]

(Uniqueness) [a, c, a] ⇒ a = c



Given a basic ternary structure 〈X, [·, ·, ·]〉 and pair {a, b} ⊆
X (a can equal b, and we still call it a pair) the interval

bracketed by a and b is the set

[a, b] := {c ∈ X : [a, c, b] holds}.

In interval notation, the basic axioms become:

(Inclusivity) {a, b} ⊆ [a, b]

(Symmetry) [a, b] = [b, a]

(Uniqueness) [a, a] = {a}



3. Betweenness Functions

Given a basic ternary structure 〈X, [·, ·, ·]〉, the associated
betweenness function is given by the assignment

{x, y} 7→ [x, y].

The domain of this function is the symmetric square

F2(X) := {{a, b} : a, b ∈ X},

and the codomain is the power set

℘(X) := {Y : Y ⊆ X}.

Our interest lies in conditions making the betweenness
function “continuous” at a given pair, and for this it makes
sense to assume X is topologized so that intervals are al-
ways closed. In this case we call 〈X, [·, ·, ·]〉 a closed basic

ternary structure.



For any topological space X = 〈X, T 〉, we denote by 2X the

set of closed nonempty subsets of X. The default topology

on this set is that provided by Vietoris: for each n ∈ N :=

{1,2, . . . } and n-tuple 〈U1, . . . , Un〉, the set ‖U1, . . . , Un‖ is

defined to be

{A ∈ 2X : A ⊆ U1 ∪ · · · ∪ Un and A ∩ Ui 6= ∅, (1 ≤ i ≤ n)}.

Sets of this form give an open-set base for the Vietoris

topology.

When X is a Hausdorff space, F2(X)–with the obvious

topology induced by the cartesian product X2–is a closed

subset of 2X.



Why the Vietoris topology is so important is partially ex-
plained by the following, where we assume X is Hausdorff:

1. 2X is Hausdorff.

2. X is compact iff 2X is compact.

3. X is connected iff 2X is connected.

4. X is metrizable iff 2X is metrizable.

Of particular interest is the following famous theorem of
Curtis and Shori:

3.1 Theorem. 2X is homeomorphic to the Hilbert cube
[0,1]N iff X is a nondegenerate Peano continuum (i.e.,
connected, compact, and metrizable, with more than one
point).



We take the betweenness function

[·, ·] : F2(X) → 2X

to be continuous if it is continuous relative to the Vietoris

topology.

This notion naturally splits in two as follows. Suppose

F : Y → 2X is a (multivalued) function. F is upper (resp.,

lower) semicontinuous at a ∈ Y if for every open set

U ⊆ X such that F (a) ⊆ U (resp., F (a) ∩ U 6= ∅), there is

an open neighborhood of a in Y such that for each b ∈ V ,

F (b) ⊆ U (resp., F (b) ∩ U 6= ∅). Upper semicontinuity is

abbreviated usc; lower semicontinuity is abbreviated lsc.

It is easy to check that F is continuous at a ∈ Y iff it is

both usc and lsc at a.



The intuition behind usc (resp., lsc) at a is that:

As y → a in Y , and the values of F (y) are “large” (resp.,

“small”), then the value of F (a) is “large” (resp., “small”).

(In the usc (resp., lsc) case, “large” means not being con-

tained within (resp., intersecting) a given open set.)



4. Betweenness Functions for Metric Spaces

We first concentrate on semicontinuity for the Menger

betweenness function; i.e., the one for metric spaces.

(So [a, b] := [a, b]M.)

Note that if 〈X, %〉 is a metric space, then 〈X, [·, ·, ·]M〉 is a

closed basic structure. The three axioms constituting basic

are obvious; as for closed, note that for each a, b ∈ X, [a, b]

is the zero set of the continuous map

x 7→ %(a, x) + %(x, b)− %(a, b).



4.1 Example. Let X = S1, the closed unit circle in the

euclidean plane. If % is the metric on X induced by the

euclidean metric, then for any a, b, c distinct,

%(a, b) < %(a, c) + %(b, c).

Thus for each a, b ∈ X, we have [a, b] = {a, b}. This tells

us that the betweenness function is just the inclusion map

from F2(X) to 2X, obviously continuous.

On the other hand, suppose % is the metric on X that

measures the length of the shortest circular arc containing

a given pair. Then the associated betweenness function

is lower semicontinuous (lsc) only at pairs which are not

antipodal.



To see this, note that if a and b are not antipodal, then

there is only one shortest circular arc, so [a, b] consists of

the points on that arc. It is easy to check lsc at such pairs.

However, if a and b are antipodal, then [a, b] = X.

Wlog, suppose a = 〈0,−1〉 and b = 〈0,1〉, with U the inter-

section of X with the open right half-plane. If an → a and

bn → b are two sequences with entries in the left half-plane,

then [an, bn]∩U = ∅ for n ∈ N. However, we have [a, b] not

only intersecting U , but containing U . This violates lsc at

{a, b}: the sequence of intervals [an, bn] consists of “small”

sets (in the sense of being disjoint from U), while [a, b] is

“large” (i.e., intersects U).





The next result shows that the Menger betweenness func-

tion is upper semicontinuous in this example, even at an-

tipodal pairs.

4.2 Theorem. Suppose 〈X, %〉 is a proper metric space; i.e.,

closed bounded subsets are compact. Then the Menger

betweenness function on X is usc at each pair.



Proof: Suppose, on the contrary, that Menger betweenness

is not usc at {a, b}. This means that we have U ⊆ X, open

in X and containing [a, b], with sequences an → a and bn → b

such that [an, bn] \ U 6= ∅ for arbitrarily large n ∈ N. Let

cn witness this fact for each n; wlog we may assume that

%(an, a), %(bn, b) ≤ 1/n. Then %(cn, a) ≤ %(cn, an)+%(an, a) ≤
%(an, bn)+%(an, a) ≤ %(a, b)+2/n+1/n. From this we infer

that the sequence cn is bounded; hence–because the metric

is proper–it has a convergent subsequence. Wlog, assume

cn → c ∈ X. Since %(an, cn) + %(cn, bn) = %(an, bn) for each

n ∈ N, we know c ∈ [a, b]. But this means cn ∈ U for

arbitrarily large n, a contradiction. �



It is easy to show that Menger intervals are not only closed,

but bounded as well (indeed, the diameter of [a, b] is %(a, b)).

So if the metric is proper, intervals are compact.

Note that in the proof of Theorem 4.2 we needed the

metric to be proper to get the sequence c1, c2, . . . to have

a convergent subsequence. If the pair {a, b} is a singleton,

though, it is easy to see that cn → a = b without any

further assumptions at all.

Furthermore, it is a triviality that the Menger betweenness

function is lsc at singletons. Hence we have

4.3 Corollary. Suppose 〈X, %〉 is any metric space. Then

the Menger betweenness function on X is continuous at

each singleton.



5. Betweenness Functions for Geodesic Spaces

Recall from basic calculus the definition of arc length using

the definite integral. This actually makes sense in the

general metric space setting, as follows.

If 〈X, %〉 is a metric space and p : [0,1] → X is a path from

point a to point b, the length L(p) of p is the supremum

of all finite sums

n−1∑
i=1

%(p(si), p(si+1)),

where n ∈ N and 0 = s1 < s2 < · · · < sn = 1.

If L(p) = %(a, b), we call p a geodesic from a to b. 〈X, %〉
is a geodesic space if there is a geodesic from any point

to any other.



The support of a path is the image of the path as a
mapping. It is a not-too-surprising fact that a geodesic
between two distinct points is a topological arc, with the
two points as end points.

5.1 Theorem. If 〈X, %〉 is a geodesic space, then each
Menger interval [a, b] is the union of the supports of all
geodesics from a to b (and is hence connected).

A geodesic space is unique-geodesic at the pair {a, b}
if any two geodesics from a to b have the same support
(equal to [a, b]). The space is unique-geodesic if it is
unique-geodesic at each pair.

In the example above, where X is the unit circle and % is the
length of the shortest circular arc joining two points, we
have a geodesic space which is unique-geodesic precisely
at the nonantipodal pairs.



5.2 Theorem. For a proper geodesic space, being unique-

geodesic at a pair of points implies that the Menger be-

tweenness function is continuous at that pair.

By Theorem 4.2, we already have upper semicontinuity; so

what is needed is a proof for lower semicontinuity. This

requires a fairly involved argument.



6. Betweenness Functions for Normed Vector Spaces

Given a normed vector space 〈X, ‖ · ‖〉 over the real field,

the norm metric is given by

%(a, b) := ‖a− b‖.

We denote by BX (resp., SX the unit ball (resp., sphere)

of X; namely those points of norm ≤ 1 (resp., = 1).

With the norm metric, a normed space is a geodesic space,

as straight line segments are always geodesics.



To see this, let p : [0,1] → X be given by p(s) = sa+(1−s)b.

If 0 = s1 < s2 < · · · < sn = 1, then

n−1∑
i=1

%(p(si), p(si+1)) =
n−1∑
i=1

(si+1 − si)‖a− b‖ = ‖a− b‖.

Thus L(p) = %(a, b), as desired.

Let [a, b]L = bpc, where p is as above. Then, by Theorem

5.1, we have [a, b]L ⊆ [a, b].



A normed space is called strictly convex (or rotund) if

its unit sphere contains no nondegenerate line segments.

6.1 Lemma (folklore). A normed space is strictly convex

iff [a, b] = [a, b]L for all pairs {a, b}. Thus strictly convex is

equivalent to being unique-geodesic for a normed space.

Inner product spaces are strictly convex; hence all Menger

intervals are compact. However, for any normed space,

the norm metric is proper iff the vector space dimension is

finite. We will be interested in the relationship between:

(1) the Menger betweenness function is usc at {a, b}; and

(2) [a, b] is compact.

6.2 Theorem. If 〈X, ‖·‖〉 is a unique-geodesic normed space,

then the Menger betweenness function is continuous at

each pair.



6.3 Example. For 1 ≤ p ≤ ∞, let R2
p be the euclidean

plane with the p-norm; i.e., for p < ∞, we have, for each

~x = 〈x1, x2〉,

‖~x‖p := (|x1|p + |x2|p)1/p;

and

‖~x‖∞ := max{|x1|, |x2|}.

The notation is justified by the observation that

‖~x‖∞ = lim
p→∞ ‖~x‖p

for each ~x ∈ R2.

When p = 1 or p = ∞, the unit sphere is a square, and

hence R2
p is not strictly convex.





For 1 < p < ∞, the unit sphere S is a (radially) symmetric

simple closed curve which contains no line segments–e.g.,

S is the usual unit circle when p = 2–and hence R2
p is

strictly convex. This means that all Menger intervals are

line segments.

In the extremal cases, Menger intervals are usually (solid)

rectangles.





For any finite-dimensional normed space X, the norm met-

ric is proper; hence–by Theorem 4.2–the Menger between-

ness function is usc at at all pairs. But what about for

infinite-dimensional spaces?

6.4 Theorem. Let X be a normed space whose Menger

betweenness function is usc at the pair {a, b}. Then the

interval [a, b] is compact.

6.5 Example. Let X be the sequence space c0–i.e., vectors

are null sequences–with the supremum norm ‖ · ‖∞. Then

no nondegenerate Menger interval is compact. Hence the

Menger betweenness function for X is usc at {a, b} iff a = b.



One can also equip c0 with a norm topologically equivalent

to ‖ · ‖∞, such that there exists a pair {a, b} at which:

(1) the Menger interval [a, b] is compact (indeed a line

segment); but

(2) the betweenness function is not usc.

This tells us that the converse to Theorem 6.4 is false.



With regard to the issue of lower semicontinuity, we are

99% certain that the Menger betweenness function is lsc

(and hence continuous) for every two-dimensional normed

space. However, this does not hold in higher dimensions.

6.6 Example. There is a norm ‖ · ‖ on R3, with respect

to which the Menger betweenness function is not always

lsc. The unit ball B for this space agrees with that of the

∞-norm on the plane z = 0. However, all line segments

in the unit sphere S lie on z = 0; hence all intervals [~0,~a]

are line segments whenever ~a ∈ S has nonzero third coordi-

nate. Let ~b = 〈1,0,0〉. Then [~0,~b] is a square with corners

〈0,0,0〉, 〈1,0,0〉, and 〈12,±1
2,0〉. If ~bn → ~b is a sequence

of points on S, all with positive third coordinate, then the

sequence [~0,~bn] witnesses that the betweenness function is

not lsc at {~0,~b〉.



7. Some Questions

7.1 Is the Menger betweenness function usc at all pairs of

a normed space if all intervals are compact? (By Theorem

4.2, the answer is yes under the assumption that the met-

ric is proper, but in the vector space context, this implies

finite-dimensionality. Lots of infinite-dimensional normed

spaces exist–e.g., Hilbert spaces–where all Menger inter-

vals are not only compact, but line segments.)

7.2 Is every Menger interval in a normed space linearly con-

vex? (We’re pretty certain that in the 2-dimensional case,

they’re not only linearly convex, but M-convex: like usual,

only with Menger intervals replacing line segments. M-

convexity no longer holds for 3-dimensional normed spaces.)



THANK YOU!


