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We take our initial motivation from convexity theory:

Let X be a real (topological) vector space. If a, b ∈ X,

[a, b]L denotes the line segment {(1 − s)a + sb : 0 ≤ s ≤ 1}
determined by a and b. For K a convex subset of X, we

say e ∈ K is an extreme point of K if “e is never properly

between two points of K;” i.e., whenever a, b ∈ K and

e ∈ [a, b]L, it follows that e = a or e = b.

In this setting, we have the famous Krein-Milman theorem:

If K is a compact convex subset of a locally convex tvs,

then K is the closed convex hull of its set of extreme points.



So how do we carry this notion over to the context of

continua (= connected compact Hausdorff spaces)?

First we need something to correspond to closed convex

hull, and for this we take the subcontinuum hull [S] of

a subset S of continuum X to be the intersection of all

subcontinua of X containing S. ([S] is always a compact

subset of X, but can easily fail to be connected.)

When S = {a, b}, we write [a, b] for [S], the subcontinuum

interval determined by a and b. We now say that e ∈ X is

an extreme point of X if whenever a, b ∈ X are such that

e ∈ [a, b], it follows that either a ∈ [e, b] or b ∈ [a, e].

Why the more complicated–but obviously weaker–conclusion?

(Bear with me.)



The two guiding questions are these:

Question A. How does extreme, as a point type, relate to

other–better known–point types for continua?

Question B. Discover interesting classes C of continua for

which a Krein-Milman theorem analogue applies; e.g., for

each X ∈ C, X is the subcontinuum hull of its set of ex-

treme points.



Intuitively, extreme points are “at the edge” of a contin-

uum.

Recall that a point c of continuum X is a cut point if

X \ {c} is disconnected; a non-cut point otherwise.

We will see that extreme points are non-cut; the point type

non-cut satisfies the Krein-Milman property above for all

continua; namely we have the well-known non-cut point

existence theorem, due to R. L. Moore and G. T. Whyburn.

For any continuum X, X is the subcontinuum hull of its

set of non-cut points.

By way of terminology, we say X is irreducible about S ⊆
X (or, S spans X) if X = [S]. A continuum is irreducible

if it is irreducible about some two-point subset.



A space is continuumwise connected if each pair of

points is contained in a subcontinuum. Each Hausdorff

space is partitioned into its continuum components; i.e.,

maximal continuumwise connected subsets.

If X \ {c} is not only connected, but continuumwise con-

nected, then we call c a strong non-cut point of X. So

c not being a strong non-cut point is called being a weak

cut point. To paraphrase–or to say the same thing in a

different way–c is a weak cut point of X iff c ∈ [a, b] \ {a, b}
for some a, b ∈ X.

Thus we have: A point c ∈ X is a strong non-cut point

iff whenever a, b ∈ X and c ∈ [a, b] it follows that c = a or

c = b.



This is more like the convexity theory definition of extreme

point. If we’d used the weaker conclusion originally in

the convexity theory definition, we would have the same

notion because [·, ·]L satisfies the antisymmetry axiom of

betweenness:

(c ∈ [a, b]L & b ∈ [a, c]L) ⇒ b = c.



A continuum X is antisymmetric if, given any triple 〈a, b, c〉
of points, with b 6= c, we have a subcontinuum containing

a and exactly one of b, c. A continuum is antisymmetric iff

its subcontinuum betweenness interpretation satisfies the

antisymmetry condition. (And, yes, this notion is related

to antisymmetry in binary relations.)

1. Proposition. If X is an antisymmetric continuum, every

extreme point is a strong non-cut point (and vice versa).

We will later see that extreme points can easily be weak

cut.



The point types non-cut and strong non-cut are at the

extremes of a menagerie of point types that say “at the

edge.”

Define a continuum X to be aposyndetic (after F. B. Jones)

if, given any two of its points, each is in the interior of a

subcontinuum that excludes the other. Aposyndetic con-

tinua can be shown to be antisymmetric; so there is no

distinction between extreme and strong non-cut. But more

is true: for aposyndetic continua, “at the edge” has just

one meaning, thanks to the following.

2. Proposition (G. T. Whyburn). Every non-cut point of

an aposyndetic continuum is a strong non-cut point.



So, addressing the Krein-Milman issue (Question B), we

have a trivial corollary of the results of Moore and Why-

burn.

3. Corollary. Every aposyndetic continuum is irreducible

about its set of extreme points.



Two important point types interpolating between strong

non-cut and non-cut are the following.

A point c in continuum X is a:

• non-block point if X\{c} has a continuum component

which is dense in X.

• shore point if for any finite family U of nonempty open

sets of X, there is a subcontinuum of X \ {c} which

intersects each U ∈ U.

The point c being shore means, intuitively, that “there are

arbitrarily large subcontinua missing c.”



4. Proposition. Strong non-cut ⇒ non-block ⇒ shore ⇒
non-cut.

Proof. The first implication is trivial; the third is almost

trivial: If c is a cut point, let U, V partition X \{c} into two

disjoint nonempty open sets. Then no subcontinuum of X

intersecting both U and V can miss c. As for the middle

implication, suppose c is non-block, say A is a continuum

component of X\{c}, with x ∈ A ⊆ A− = X. Let U1, . . . , Un

be nonempty open sets, and fix xi ∈ A∩Ui, 1 ≤ i ≤ n. Then

for each i we have a subcontinuum Ki ⊆ A containing

{x, xi}. Hence
⋃n

i=1 Ki is a subcontinuum of X \ {c} which

intersects each Ui. �

There are known metric examples to show that none of

these implications can be reversed.





The following is an important result for us.

5. Lemma (R. H. Bing, 1948). If X is a metrizable contin-
uum and S is a nonempty proper subset, there is a point
c ∈ X such that the union of all subcontinua that intersect
S and exclude c is dense in X.

The proof relies on the Baire category theorem, as well as
the second countability of X. And while D. Anderson has
shown Bing’s argument can be modified so that only the
separability of X need be assumed, the result is not true
for all continua.

From here it’s a short hop to the following analogue of
the Krein-Milman theorem, which is due to R. Leonel for
shore points in the metrizable case, J. Bobok et al for non-
block points in the metrizable case, and to D. Anderson
for non-block points in the separable case.



6. Proposition. Every separable continuum is irreducible

about its set of non-block points.

Proof. Suppose N is any set of non-block points of X,

with K ⊇ N a proper subcontinuum of X. Then, by (the

separable version of) Bing’s Lemma 5, there is a non-block

point of X in X \K. Hence the full set of non-block points

cannot be contained within a proper subcontinuum. �



A continuum is decomposable if it is the union of two

proper subcontinua, and indecomposable otherwise.

Given a point a of a continuum X, the composant κ(a) of

a in X is the union of all proper subcontinua of X contain-

ing a. Composants are continuumwise connected dense

subsets of X; and when X is indecomposable, the com-

posants are pairwise disjoint.



The number of composants of a nondegenerate metrizable

continuum is c, but D. Bellamy showed in the 1970s that

there are indecomposable continua, of weight ℵ1, which

have just one composant. Clearly an indecomposabe con-

tinuum is irreducible iff it has at least two composants.

So we refer to an indecomposable continuum which is not

irreducible as a Bellamy continuum.

Bellamy continua play an important role in the problem of

whether extreme points are always non-block.



7. Proposition. If an indecomposable continuum is irre-

ducible, then every one of its points is a weak cut point,

as well as a non-block point.

Proof. Suppose X is an indecomposable continuum with

at least two separate composants. Given c ∈ X, first find

a ∈ κ(c)\{c}, then let b ∈ X \κ(c). Then any subcontinuum

of X containing both a and b is all of X; hence c is a weak

cut point.

The continuum components of X \ {c} consist of the con-

tinuum components of κ(c)\{c}, as well as the composants

of X other than κ(c). There is at least one of these, and

it is dense in X. Thus c is a non-block point. �



We now turn to Question A. We already know strong non-

cut ⇒ extreme, and it is relatively easy to show that ex-

treme ⇒ non-cut. The question we want to consider in

the rest of this talk is whether extreme ⇒ non-block. Here

is our first partial answer.

8. Proposition. Every extreme point is a shore point.

Proof. Suppose e ∈ X is an extreme point, with {U1, . . . , Un}
a finite family of nonempty open subsets of X. Let A be

the family of continuum components of X \{e}. Then A−,

for A ∈ A, is a subcontinuum containing e. (This is an easy

application of boundary bumping.) Now suppose there are

A, B ∈ A with incomparable closures. Let a ∈ A \ B− and

b ∈ B \ A−. Then e ∈ [a, b], but B− (resp., A−) witnesses

that a 6∈ [e, b] (resp., b 6∈ [a, e]), so e is not an extreme point

of X, and we have a contradiction.



Thus, if e ∈ X is an extreme point, the family A− := {A− :

A ∈ A} is nested. For 1 ≤ i ≤ n, let xi ∈ Ui\{e}, with Ai ∈ A
such that xi ∈ Ai. WLOG, assume A−

1 contains each of the

other A−
i ; in particular, we know {x1, . . . , xn} ⊆ A−

1 . Thus

there is some yi ∈ A1∩Ui for each 1 ≤ i ≤ n. Fix x ∈ A1 and

subcontinua Ki ⊆ A1 such that {x, yi} ⊆ Ki. Then
⋃n

i=1 Ki

is a subcontinum that misses e and intersects each Ui. This

makes e a shore point of X. �



In the proof above we identified a new point type. Call

c ∈ X nested if the family of closures of the continuum

components of X \{c} is nested. So we know that extreme

⇒ nested ⇒ shore.

9. Question. Is every extreme (or nested) point non-

block? [After the talk: It is consistent with ZFC that a

nested point can also be a block point.]

We will see below that a universal yes answer would solve

a long-standing open problem. On the other hand, it is

relatively easy to see that shore (even non-block) points

needn’t be nested and that nested points needn’t be ex-

treme.



A continuum is unicoherent if it is not the union of two

subcontinua whose overlap is disconnected; it is heredi-

tarily unicoherent if every subcontinuum is unicoherent.

Fact: A continuum X is hereditarily unicoherent iff [S] is

connected for any S ⊆ X.

10. Proposition. If X is hereditarily unicoherent, e ∈ X is

an extreme point, and K is a subcontinuum of X containing

e, then e is an extreme (and hence a shore) point of K.



This proposition may be used to show that certain continua–

e.g., solenoids, H∗–have no extreme points at all. Indeed,

if c is any point of a solenoid X, then all the continuum

components of X \ {c} are dense in X; hence c is nested.

So nested points needn’t be extreme.

Here’s a color-coded picture of the harmonic fan, which is

antisymmetric without being aposyndetic. This is another

instance where you can have a nested point which is not

extreme. (Viz. the blue point.)





In the absence of antisymmetry, extreme points can be

weak cut points. Here’s a color-coded picture of the sin 1
x-

continuum. Here you have a shore–indeed, non-block–

point which is not nested. (Viz.–again–the blue point.)





An indecomposable continuum is hereditarily indecom-

posable if each of its nondegenerate subcontinua is in-

decomposable. This is equivalent to saying that if two

subcontinua overlap, then one is contained in the other.

It is unknown whether a hereditarily indecomposable (non-

metrizable) continuum can have just one composant, but

regardless of that we have the following easy result.

11.Proposition. Every point of a hereditarily indecompos-

able continuum is extreme, as well as weak cut.



Proof. Start with c ∈ X arbitrary. Then (boundary bump-

ing) there is a proper nondegenerate subcontinuum K con-

taining c. Let a ∈ K \{c}, with b ∈ X \K. If M is a subcon-

tinuum containing both a and b, then M overlaps K, but

is not contained in K. Thus M ⊇ K, and so c ∈ M . Thus

c ∈ [a, b] \ {a, b}, making c a weak cut point of X. Also for

any triple 〈a, b, c〉 from X, hereditary indecomposability im-

plies that either c ∈ [a, b] or b ∈ [a, c]. This trivially implies

that any point of X is an extreme point. �

There is also a partial converse to Proposition 11: If X is

hereditarily unicoherent and every point of X is extreme,

then X is hereditarily indecomposable. (You can’t dispense

with hereditary unicoherence, as any simple closed curve

consists entirely of extreme points.)

The following is a contribution to answering Question A.



12. Proposition. Suppose e ∈ X is an extreme point which

is also block. Then X is a Bellamy continuum.

Proof Sketch. Let A be the family of continuum compo-

nents of X \ {e}. Since e is extreme, we know–from the

proof of Proposition 8 above–that A− is a nested family

of subcontinua containing e. Since
⋃
A = X \ {e} is dense,

so too is
⋃
A−. And since e is a block point, each A− is a

proper subcontinuum; i.e., A− has no ⊆-maximal element.



We again use the fact that e is extreme to infer that if

A, B ∈ A are such that A− ( B−, and if K is any subcon-

tinuum of X which intersects both A and B, then A− ⊆ K.

From this we infer that if K is any subcontinuum with

nonempty interior, then A− ⊆ K for all A ∈ A. Since
⋃
A−

is dense, we conclude that K = X. Thus all proper subcon-

tinua of X are nowhere dense; hence X is indecomposable.

If X had more than one composant, all of its points would

be non-block, by Proposition 7. Hence X is a Bellamy

continuum. �



13. Corollary. Suppose X is a continuum which is either

decomposable, irreducible, or metrizable. Then every ex-

treme point of X is non-block

So if we want a counterexample to the assertion extreme

⇒ non-block, we need to look at Bellamy continua. But

not any old Bellamy contnuum will do: H∗ is consistently a

Bellamy continuum, but has no extreme points at all. On

the other hand, what if there were a Bellamy continuum

that is hereditarily indecomposable. (Not known to exist;

wide open problem studied by lots of people.)



14. Proposition. Let X be a hereditarily indecomposable

Bellamy continuum. Then every point of X is both extreme

and block.

Proof. We saw above (Proposition 11) that every point of

X is extreme; so fix c ∈ X, with A a continuum component

of X \ {c}. We may pick a ∈ A and write A =
⋃
K, where K

is a family of subcontinua of A, all containing a. Since X is

not irreducible, there is a proper subcontinuum M ⊇ {a, c}.
If K ∈ K is arbitrary, we know–since a ∈ K ∩M , c ∈ M \K,

and X is hereditarily indecomposable–that K ⊆ M . Hence

A ⊆ M . But then X \ M is a nonempty open set disjoint

from A; so A is not dense. Hence c is a block point. �



15. Parting Questions.

(i) If X is nondegenerate and every point of X is both

extreme and block, is X necessarily a hereditarily uni-

coherent Bellamy continuum? (If so, X is also heredi-

tarily indecomposable.)

(ii) What are some interesting consequences of having a

nested point which is also block? Are nested points in,

say, metrizable continua necessarily non-block? [After

the talk: The continuum H∗ has no extreme points,

and every point is nested. Consistently, every point

is block. So these facts do not seem to affect the

question very much.]



THANK YOU!


