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1. The Gap Free Axiom.

For us “betweenness” is a pre-theoretical term, which may

be given a precise meaning in a variety of ways.

The first-order language of betweenness has a single ternary

predicate symbol [·, ·, ·], and we read [a, c, b] as saying: “c

lies between a and b” (with c ∈ {a, b} permitted).

Gap freeness says that any two points have a third point

between them; this is expressed formally as

• Gap Freeness:

∀ ab (a 6= b → ∃x ([a, x, b] ∧ x 6= a ∧ x 6= b))



For example, if we start with a totally ordered set 〈X,≤〉
and define [a, c, b] to mean (a ≤ c ≤ b) ∨ (b ≤ c ≤ a), then

gap freeness in this interpretation means that the ordering

is dense.

We’ll be talking today about gap free betweenness relations

naturally arising in the context of connected topological

spaces.

A connected space that is also compact Hausdorff is called

a continuum; a continuum that is contained in a space is

a subcontinuum of the space.



2. Three Topological Interpretations.

We highlight three such interpretations for a connected
space X and points a, b, c ∈ X. Assuming c 6∈ {a, b}, we
define:

• [a, c, b]Q if there’s a disconnection 〈A, B〉 of X \{c} such
that a ∈ A and b ∈ B (i.e., a and b lie in different
quasicomponents of X \ {c});

• [a, c, b]C if no connected subset of X \{c} contains {a, b}
(i.e., a and b lie in different components of X \ {c});
and

• [a, c, b]K if no subcontinuum of X \ {c} contains {a, b}
(i.e., a and b lie in different continuum components of
X \ {c}).



Clearly [·, ·, ·]Q ⊆ [·, ·, ·]C ⊆ [·, ·, ·]K; hence

Q-gap free ⇒ C-gap free ⇒ K-gap free.

So what about instances where betweenness interpreta-

tions agree?



A continuum is aposyndetic (after F. B. Jones, 1941)

if for each two of its points, one lies in the interior of a

subcontinuum that excludes the other.





2.1 Theorem (PB, unpublished). If X is an aposyndetic

continuum, then [·, ·, ·]K = [·, ·, ·]C. If X is also locally

connected, then [·, ·, ·]K = [·, ·, ·]Q. �

As for disagreement, any comb space or sin(1
x)-continuum

serves to show that [·, ·, ·]C needn’t coincide with [·, ·, ·]K.





However, we have no example of a continuum for which

[·, ·, ·]C 6= [·, ·, ·]Q. A connected metrizable–but not compact–

example of this inequality may be described as follows:

In the plane, let a = 〈12,0〉, b = 〈1,0〉, and c = 〈0,0〉. For

n = 1,2, . . . , let

An = {〈t,
t

n
〉 : 0 ≤ t ≤ 1},

and set

X = (
∞⋃

n=1

An) ∪ {a, b}.

Then {a} and {b} are components of X \ {c}; so we have

[a, c, b]C holding. However, if U is any clopen subset of

X \{c} with a ∈ U , then U also contains almost all sets An.

Hence b ∈ U as well; so [a, c, b]Q does not hold.





Added post-talk: We can now produce a continuum ex-

ample for which [·, ·, ·]C 6= [·, ·, ·]Q: Back in the plane, let

An = [0,1) × {1n}, n = 1,2, . . . , with A = [0, 1
2) × {0} and

B = (1
2,1)×{0}. Pick a ∈ A and b ∈ B. Then A and B are

the components of a and b, respectively, but a and b lie in

the same quasicomponent of X, namely A∪B. X is locally

compact, and none of its components is compact. Hence

its one-point compactification Y = α(X) is a continuum.

Let c ∈ Y be the “point at infinity.” Then, in Y , we have

[a, c, b]C, but not [a, c, b]Q. Y is not C-gap free, however,

so we still do not know whether C-gap free imples Q-gap

free.



3. Q-gap Freeness.

Q-gap freeness is the defining condition for a continuum

being a dendron. Dendrons are locally connected (L. E. Ward,

1954); hence Q=C=K for them (Theorem 2.1).

(Dendrites, the locally connected metrizable continua con-

taining no simple closed curves, are just the metrizable

dendrons.)

A topological space satisfies the connected intersection

property (cip) if the intersection of any two of its con-

nected subsets is connected. The following generalizes a

well-known characterization of dendrites.

3.2 Theorem (Ward, 1991). A continuum satisfies the cip

if and only if it is a dendron. �



4. C-gap Freeness.

Currently we do not know of any literature on the C-

interpretation of betweenness, so here is an opportunity

to ask some questions, especially in relation to continua:

• Do the Q- and the C-interpretations of betweenness

agree for continua? [No, see note added post-talk

above.]

• Or, failing that, does C-gap freeness imply Q-gap free-

ness?



• Assuming Q- and C-gap freeness are distinct notions

for continua, are there any well-known consequences

of Q-gap freeness that are also consequences of C-

gap freeness? (E.g.: local connectedness, aposyndesis,

hereditary unicoherence, hereditary decomposability).

• Or, is there some weakened form of the cip that char-

acterizes C-gap freeness?

We will return to this later on.



5. K-gap Freeness.

Given a continuum X and a, b ∈ X, let K(a, b) constitute

the subcontinua of X that contain both a and b. Then the

K-interval [a, b]K bracketed by a and b is defined to be⋂
K(a, b). Hence [a, c, b]K holds iff c ∈ [a, b]K.

The following is straightforward.

5.1 Proposition. A continuum is hereditarily unicoherent

iff each of its K-intervals is a subcontinuum. �

Hereditary unicoherence clearly implies K-gap freeness, and

it is natural to ask whether this weakening of the cip is

actually a characterization.

The answer turns out to be NO.



A continuum X is a crooked annulus if it has a decom-
position X = M ∪N into subcontinua such that:

• Both M and N are hereditarily indecomposable; and

• M ∩N = A ∪B, where A and B are disjoint nondegen-
erate subcontinua.

5.2 Theorem (PB, 2013). A crooked annulus is K-gap free
without being even unicoherent, let alone hereditarily so.
�

In a crooked annulus one can show that each nondegener-
ate K-interval [a, b]K contains two nondegenerate subcon-
tinua, one containing a and the other containing b. (E.g.,
if a ∈ A and b ∈ B, then [a, b]K = A∪B.) This clearly gives
us K-gap freeness.





6. Strong K-gap Freeness.

Recall the first-order statement of gap freeness from above.

• Gap Freeness:

∀ ab (a 6= b → ∃x ([a, x, b] ∧ x 6= a ∧ x 6= b))

If we replace negations of equality in the conclusion with

negations of betweenness, we obtain a stronger property

(when betweenness is interpreted properly).

• Strong Gap Freeness:

∀ ab (a 6= b → ∃x ([a, x, b] ∧ ¬[x, a, b] ∧ ¬[a, b, x]))



With the Q- and the C-interpretations, strong gap free-

ness is not really stronger than gap freeness because these

interpretations satisfy

• Antisymmetry:

∀ abc (([a, b, c] ∧ [a, c, b]) → b = c)

Antisymmetry in a “reasonable” betweenness interpreta-

tion amounts to saying that each binary relation ≤a, given

by x ≤a y iff [a, x, y] holds, is antisymmetric in the usual

sense. When this happens, the relation ≤a is a tree order-

ing, with root a.



To see why the C-interpretation is antisymmetric, suppose

[a, c, b]C and b 6= c. We want to show that [a, b, c]C fails.

If c = a then clearly ¬[a, b, c]C; so assume c 6∈ {a, b}. Then

there are components A and B of X \ {c} with a ∈ A and

b ∈ B. Thus, by an old theorem of K. Kuratowski, X \ B

is a connected subset of X \ {b} containing a and c; so

¬[a, b, c]C. The Q-interpretation is antisymmetric as well

because it is finer than the C-interpretation.





By Theorem 2.1 (aposyndetic ⇒ C=K), aposyndetic con-

tinua are K-antisymmetric. The converse is not true, as

the comb space is K-antisymmetric without being aposyn-

detic.

The sin(1
x)-continuum is not K-antisymmetric: if a is any

point on the graph of y = sin(1
x), 0 < x ≤ 1, and b and c

are any two points on the line segment {0} × [−1,1], then

both [a, c, b]K and [a, b, c]K hold.

[Indeed, for a continuum X to be K-antisymmetric it is

necessary for |X \ C| ≤ 1 for each composant C of X.]





Recall Ward’s result (Theorem 3.1) that Q-gap freeness in

continua is equivalent to the cip, but (Theorem 5.2) that

K-gap freeness is strictly weaker than hereditary unicoher-

ence. We coin the term λ-arboroid–inspired by a 1974

paper of Ward–to refer to a continuum that is both hered-

itarily unicoherent and hereditarily decomposable. (So that

what is commonly known as a λ-dendroid is just a metriz-

able λ-arboroid.)

6.1 Theorem (PB, 2013). A continuum is strongly K-gap

free if and only if it is a λ-arboroid. �



7. Extra Strong K-gap Freeness.

By extra strong gap freeness in an interpretation of be-

tweenness we mean that both gap freeness and antisymme-

try hold. A continuum is arcwise connected if each two of

its points constitute the noncut points of a subcontinuum;

an arboroid is a hereditarily unicoherent continuum that is

arcwise connected. (The dendroids are the metrizable ar-

boroids; the dendrites are the locally connected dendroids,

the locally connected λ-dendroids, as well as the metriz-

able dendrons. A comb space is a dendroid that is not a

dendrite; a sin(1
x)-continuum is a λ-dendroid that is not a

dendroid.)



We can now state an analogue of Theorem 6.1 for extra
strong K-gap freeness.

7.1 Theorem (PB, unpublished). A continuum is extra
strongly K-gap free if and only if it is an arboroid. �

So, if we were to define being a dendron as satisfying the
cik, our main gap free characterization results for continua
could be summarized as:

Q-gap free ⇔ dendron;

Extra strongly K-gap free ⇔ arboroid; and

Strongly K-gap free ⇔ λ-arboroid.

We currently have no characterizations of C-gap free or of
K-gap free.



8. K-Closedness and C-Gap Freeness.

Define a continuum X to be K-closed if the ternary rela-

tion [·, ·, ·]K is a closed subset of the cube X3.

A comb space is not K-closed: indeed, if a1, a2, . . . are the

end points of the “free teeth” of X and a is the end point

of the “limit tooth,” then we have a = limn→∞ an. If b

any point on the limit tooth other than a, then [a, b, ·]K
contains all the points an, but not a itself. Hence [a, b, ·]K
is not closed in X.





We may relate K-closedness to properties previously dis-

cussed as follows:

8.1 Theorem (PB, unpublished). Aposyndetic continua are

K-closed; and K-closed hereditarily unicoherent continua

are aposyndetic, as well as C-gap free.

Proof (part 1). Suppose X is aposyndetic and that 〈a, c, b〉 6∈
[·, ·, ·]K; i.e., that [a, c, b]K does not hold. Then there is a

subcontinuum M ∈ K(a, b) with c 6∈ M . Using aposyndesis,

we have open sets Ua and Ub, and subcontinua Ma and Mb,

with a ∈ Ua ⊆ Ma ⊆ X \ {c} and b ∈ Ub ⊆ Mb ⊆ X \ {c}. Let

Uc be an open neighborhood of c missing the subcontinuum

Ma ∪M ∪Mb. Then Ua × Uc × Ub is an open neighborhood

of 〈a, c, b〉 ∈ X3 that does not intersect [·, ·, ·]K. Hence X is

K-closed. �





Proof (part 2). Assume X is hereditarily unicoherent, as
well as K-closed, with a and b distinct points of X. Then
[a, b, a]K does not hold; and by K-closedness, there are
open sets Ua and Ub, with a ∈ Ua and b ∈ Ub, such that if
〈x, z, y〉 ∈ Ua×Ub×Ua, then [x, z, y]K does not hold either. In
particular, for each 〈x, z〉 ∈ Ua×Ub, there is a subcontinuum
of X that contains both a and x, but not z. Thus, for each
x ∈ Ua we have [a, x]K ∩ Ub = ∅; and so

M =
⋃

x∈Ua

[a, x]K

contains Ua and misses Ub. By hereditary unicoherence
(Proposition 5.1), each [a, x]K is a subcontinuum of X.
Hence M is a subcontinuum of X that contains a in its
interior and excludes b, thereby establishing aposyndesis
for X. That X is C-gap free now follows from Theorem
2.1 (aposyndetic ⇒ C=K), since hereditary unicoherence
trivially implies K-gap freeness. �





K-closedness is not enough by itself to imply aposynde-

sis: indeed, consider the “topologist’s oscilloscope” X in

the plane, described as the union of the two horizontal

segments [0,1] × {i}, i = ±1, the two vertical segments

{i} × [−1,1], i = 0,1, and the curve {〈x, 1
2 sin(π

x)〉 : 0 < x ≤
1}. X is non-aposyndetic, but its betweenness relation,

being trivial, is just (∆X ×X) ∪ (X ×∆X) ⊆ X3. Thus X

is K-closed.





So, returning to the question of whether C-gap free con-

tinua are aposyndetic: an affirmative answer would give

us

C-gap free ⇔ K-closed + hereditarily unicoherent.

[“K-closed + hereditarily unicoherent ⇒ C-gap free” and

“aposyndetic ⇒ K-closed” come from Theorem 8.1; so we

would have “C-gap free ⇒ K-closed.” Aposyndesis gives

us C=K, hence K-antisymmetry and thus strong K-gap

freeness. Now apply Theorem 6.1 to obtain hereditary

unicoherence.]

Even if we were able to show C-gap free continua are K-

antisymmetric, we could conclude that

C-gap free ⇒ arboroid.



9. C-Gap Freeness and Strong K-Gap Freeness.

The modest result we can prove now is that C-gap free

continua are λ-arboroids, and hence strongly K-gap free,

by Theorem 6.1. (This is definitely not a characterization

because the sin(1
x)-continuum is a λ-dendroid that is not

C-gap free. Indeed, the comb space is a dendroid that is

not C-gap free.)



9.1 Lemma Suppose X is a C-gap free continuum. Then

for each two points a, b ∈ X, there is a third point c such

that c is a cut point of every connected subset of X con-

taining {a, b}. In particular, each nondegenerate connected

subset C of X has a point which is a cut point of every

connected subset of X containing C.

Proof. Let C be a connected subset of X containing the

doubleton {a, b}. By C-gap freeness, we have a third point

c with [a, c, b]C holding. Thus, in particular, c ∈ C. No

connected subset of X \ {c} can contain both a and b;

hence C \ {c} is disconnected, and so c is a cut point of C.

The second sentence follows immediately. �



9.2 Theorem (PB, unpublished). C-gap free continua are

λ-arboroids.

Proof (Hereditary Decomposability). By Lemma 9.1, every

nondegenerate subcontinuum of a C-gap free continuum

has a cut point, and hence must be decomposable.

(Hereditary Unicoherence). If C-gap free continuum X fails

to be hereditarily unicoherent, then there exist points a, b ∈
X and two subcontinua M and N , both irreducible about

{a, b}, with neither contained in the other. Since M \N is

a nonempty open subset of M , boundary bumping ensures

that M \N contains a nondegenerate subcontinuum of X.

Hence, by Lemma 9.1, there is a point c ∈ M \N that is a

cut point of both M and M ∪N .



Let 〈A, B〉 be a disconnection of M\{c}. If, say, A contained

both a and b, then A ∪ {c} would be proper subcontinuum

of M containing {a, b}, contradicting irreducibility. Hence

we may assume a ∈ A and b ∈ B. Suppose A had a discon-

nection 〈U, V 〉, say, with a ∈ U . Then U is clopen in A and

A is clopen in M \ {c}; hence U is clopen in M \ {c}. But

then we have both a and b contained in the subcontinuum

(U ∪ {c}) ∪ (B ∪ {c}), properly contained in M . Again we

contradict irreducibility, and conclude that both A and B

are connected. But then we have (M∪N)\{c} = A∪N∪B,

a connected set; so c is not a cut point of M ∪N , contra-

dicting Lemma 9.1. �





THANK YOU!

Slides available at

http://www.mscs.mu.edu/∼paulb/talks.html


