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Introduction.

The basic theme of this talk is the extrinsic description of

objects by means of morphisms. One way to do this is to

say that all monomorphisms from the object are “special”

in some way; the dual of this is to single out epimorphisms

to the object.

Injectivity and projectivity are the most familiar to alge-

braists:



• An abelian group is injective (resp., projective): every

monomorphism from it (resp., every epimorphism to

it) is a coretraction (resp., retraction).

• A normal topological space is an absolute retract: it is

a retract of every normal space in which it is embedded

as a closed subset. (Every closed embedding from it is

a coretraction).



And in model theory, we have:

• A model of a universal theory is existentially closed:

whenever it is embedded in another model of the the-

ory, existential statements (with parameters in the small

model) which are true in the larger model are true in

the smaller model as well. (Every embedding from it

is an existential embedding.)

• A weak version of existential closedness for abelian

groups, where the existential statements have the form

∃ x (nx = a), is called absolute purity.



In this talk our objects are continua (= connected compact

Hausdorff spaces), and our morphisms are epimorphisms

(a.k.a., continuous surjections).

By a mapping characterization theorem we mean a propo-

sition that takes the form:

• Every epimorphism in mapping class F onto Y is also

in mapping class G iff Y is in continuum class K.

For convenience, we refer to the “if” and the “only if”

directions as the universal half and the existential half,

respectively, of the characterization.



Continuum theory is rich in its capacity to describe inter-
esting mapping classes—see [J. J. Charatonik and W. J. Chara-
tonik, Continua determined by mappings, Pub. de L’Institut
Math. 67 (2000), 133-144]. The ones we take up today
are defined by what the pre-images of subcontinua look
like.

Definition. Let f : X → Y be an epimorphism between
continua. Then f is:

• monotone: if f−1[K] is a subcontinuum of X for every
subcontinuum K of Y ; and

• semi-monotone if for each subcontinuum K of Y , there
is a component C of f−1[K] such that f [C] = K and
f−1[Int(K)] ⊆ C.



(Note: The coinage semi-monotone first appears in the
topological literature in [P. B., Defining topological prop-
erties via interactive mapping classes, Top. Proc. 34

(2009), 39-45].)

Two more important properties related to monotonicity
are given in the following

Definition. An epimorphism f : X → Y between continua
is:

• confluent if each component of the pre-image of a
subcontinuum K of Y maps onto K via f ; and

• weakly confluent if some component of the pre-image
of a subontinuum K of Y maps onto K via f .



Here is a schematic of how these properties are implica-
tionally related:

monotone
↙ ↘

semi-monotone confluent
↘ ↙

weakly confluent
↓

epimorphic

Fourteen of the 25 possible “mapping characterization the-
orems” merely state the obvious: K = {all continua} when-
ever F ⊆ G.

Of the eleven remaining, all but one of those where G =
{monotone maps} yield K = {degenerate continua}; the
lone exception is where F = {semi-monotone maps}.



Semi-Monotone ⇒ Monotone.

Our main result is the following.

Theorem 1. Every semi-monotone mapping onto Y is also

monotone iff Y is locally connected.

The universal half of every mapping characterization theo-

rem I know of uses standard topological arguments, and—

with the exception of this theorem—every existential half

takes a Y 6∈ K and conjures up a continuum X of the form

((Y × {0}) ∪ (K × {1}))/ ∼,

where K is a subcontinuum of Y and ∼ identifies a suitably

chosen 〈y,0〉 with its companion 〈y,1〉. The map f ∈ F \G

is the induced first-coordinate projection.



Before proving Theorem 1, let us illustrate a classical map-

ping characterization theorem.

Theorem 2. (H. Cook, A. Lelek and D. R. Read). Ev-

ery weakly confluent mapping onto Y is confluent iff Y is

hereditarily indecomposable.

Proof of Theorem 2 (Universal Half). Fix continuum Y ,

and assume there is an epimorphism f : X → Y that is

not confluent. Then there is a subcontinuum K of Y and

a component C of f−1[K] such that f [C] is properly con-

tained in K.

Let y ∈ K \ f [C] be fixed. Then C is disjoint from f−1[y];

and, by “boundary bumping,” there is a subcontinuum M

of X such that C ⊆ M , C 6= M , and M ∩ f−1[y] = ∅.



Thus f [M ] is a subcontinuum of Y that intersects K be-

cause it contains C. We have y ∈ K \ f [M ] because

M ∩ f−1[y] = ∅, and we have f [M ] \ K 6= ∅ because C

is maximally connected in f−1[K]. This says that Y is not

hereditarily indecomposable. �





Proof of Theorem 2 (Existential Half). If continuum Y

is not hereditarily indecomposable, then there are subcon-

tinua K and M with K∩M , K \M , and M \K all nonempty.

Fix y ∈ K \M , and let

X = ((Y × {0}) ∪ (K × {1}))/ ∼,

where 〈y,0〉 ∼ 〈y,1〉. With f : X → Y induced by the

standard first-coordinate projection, we see that f is weakly

confluent. However, (K ∩ M) × {1} contains components

of f−1[M ] that f does not send onto M ; hence f is not

confluent. �





Proof of Theorem 1 (Universal Half). Suppose Y is a

locally connected continuum, with f : X → Y a semi-

monotone map. To show f to be monotone, it suffices

to prove that f−1[y] is connected for each y ∈ Y .

Indeed, let B be a base at y, consisting of connected

open sets. For each U ∈ B, semi-monotonicity guaran-

tees a (necessarily unique) subcontinuum CU of X such

that f [CU ] = U and f−1[U ] ⊆ CU .

Then, because
⋂
B = {y}, C = {CU : U ∈ B} is a family of

subcontinua of X whose intersection is f−1[y]. Moreover,

it is easy to show that C is directed downwards: for if

U, V ∈ B, there is some W ∈ B with W ⊆ U ∩ V . Then

CW ⊆ CU ∩CV . By elementary continuum theory, f−1[y] =⋂
C is connected. �





Proof of Theorem 1 (Existential Half). Suppose Y is a con-

tinuum that is not locally connected. Our plan is to create

an ultracopower YD, dually analogous with the ultrapowers

from model theory, whose canonical codiagonal epimor-

phism pD : YD → Y (dually analogous with the canonical

ultrapower monomorphism) is not monotone. Codiagonal

maps are always semi-monotone (and much more), so this

will give us our result.

Since Y is not locally connected, there is a point x ∈ Y at

which Y is not connected im kleinen; i.e., there is an open

neighborhood U of x such that for any open neighborhood

V of x contained in U , there is some y ∈ V such that no

subcontinuum of U contains both x and y.



Fix neighborhood W of x such that W ⊆ U , and let {Vi : i ∈
I} be an indexed open neighborhood base for x, consisting

of sets in W . By the failure of connectedness im kleinen

at x, we may pick yi ∈ Vi such that yi and x are not in the

same component of W . Since W is a compactum, there

is a set Hi that is clopen on W , contains yi, and doesn’t

contain x.

For each i ∈ I, let i+ := {j ∈ I : Vj ⊆ Vi}. Then the col-

lection {i+ : i ∈ I} satisfies the finite intersection property

and is hence contained in an ultrafilter D on I.



The next step is to form the topological ultracopower pD :
YD → Y , and show that pD is a semi-monotone mapping
that is not monotone.

The ultracopower, along with its canonical (“co-elementary”)
codiagonal epimorphism, is exactly dual to the model-
theoretic ultrapower, along with its canonical elementary
monomorphism. Ultracopowers of Y may be obtained as
Stone spaces of ultrapowers of lattice bases for Y ; however
a purely topological version of YD arises as follows:

Given the diagram

Y × I
q−→ I

↓ p
Y

where p and q are the standard projection maps, we apply
the Stone-Čech functor to obtain the diagram



β(Y × I)
qβ

−→ β(I)

↓ pβ

Y

Now the ultrafilter D is a point in β(I), and it turns out

that YD is canonically homeomorphic to the pre-image of

D under qβ.

What’s more, the restriction pD := pβ|YD is a semi-monotone

map from YD onto Y . (Indeed, for any subcontinuum K

of Y , the signal component of p−1
D [K] is a canonical copy

of KD in YD.)



The idea at this juncture—details omitted—is to use the
sets {Hi : i ∈ I} and the points {yi : i ∈ I} to form a
subcompactum

∑
DHi of WD and a point

∑
D yi ∈

∑
DHi

such that:

•
∑
DHi is clopen in WD;

• p−1
D [x] ⊆ WD;

• xD ∈ p−1
D [x] \

∑
DHi; and

•
∑
D yi ∈ p−1

D [x] ∩
∑
DHi.

These four assertions immediately imply that p−1
D [x] is dis-

connected; witnessing the fact that pD is a non-monotone,
semi-monotone mapping onto Y . �



Loose Ends.

1. As mentioned before, all three mapping classes {confluent ⇒
monotone},
{weakly confluent ⇒ monotone}, and {epimorphic ⇒
monotone} comprise the class of degenerate continua.

2. {weakly confluent ⇒ semi-monotone} and {confluent ⇒
semi-monotone} both comprise the class of indecom-

posable continua. (This is easy, given the characteri-

zation of indecomposability as the condition that every

proper subcontinuum has empty interior.)



3. Of the remaining instances of F ⇒ G,
{epimorphic ⇒ weakly confluent} has received the most
attention in the literature; but the known results con-
cern metrizable continua only. Lelek’s designation Class(W)
refers to the metrizable members of
{epimorphic ⇒ weakly confluent}, and Grispolakis-Tymchatyn
(1978) have provided interesting characterizations in
terms of hyperspace notions.

4. Once {epimorphic ⇒ weakly confluent} is known,
{epimorphic ⇒ semi-monotone} simply consists of the
members of
{epimorphic ⇒ weakly confluent} that are indecompos-
able (easy, given (2) above). The two classes are dis-
tinct because all arc-like continua are well known to be
in Class(W). In particular, arcs are in {epimorphic ⇒
weakly confluent}, but not in {epimorphic ⇒ semi-monotone}.



5. By the proof of Theorem 2, we see that {epimorphic ⇒
confluent} also comprises the hereditarily indecompos-
able continua. From this, and (4) above, we have
{epimorphic ⇒ confluent} contained in {epimorphic ⇒
semi-monotone}. The two classes are distinct because
the Knaster buckethandle is arc-like and indecompos-
able, and so is in the latter. It is not hereditarily inde-
composable, hence it is not in the former.

6. This leaves the mapping class
{semi-monotone ⇒ confluent}, which clearly contains
both
{semi-monotone ⇒ monotone} and {weakly confluent ⇒
confluent}. So a continuum is in
{semi-monotone ⇒ confluent} if it is either locally con-
nected or hereditarily indecomposable. We don’t know
whether the containment is proper.



7. The question naturally arises whether a non-locally

connected metrizable continuum is the image of a metriz-

able continuum under a semi-monotone mapping that

is not monotone. The answer is yes: more gener-

ally, if Y is not locally connected and pD : YD → Y is

constructed as in the proof of Theorem 1, then—by

means of the Löwenheim-Skolem theorem from model

theory—one may obtain a commutative diagram

YD
g−→ X

pD ↓ ↙ f

Y

where f is “enough like” pD to be semi-monotone but

not monotone, and X has the same weight as Y .



8. In the diagram above we start with Y and D, and

construct X, f , and g. If, on the other hand, we’re

given f : X → Y and are able to find D and g making

the diagram commute, this situation is exactly dual

to the ultrapower characterization of existential em-

beddings in model theory. In this situation, we call

f a co-existential map. Co-existential maps are semi-

monotone, but not necessarily confluent [P. B., Not

every co-existential map is confluent, Houston J. Math.

36 (4) (2010), 1233-1242]. And in view of the char-

acterization of {semi-monotone ⇒ monotone} in The-

orem 1, it is clear that every co-existential map onto

Y is monotone iff Y is locally connected.



So we end with the following question:

What is a suitable (“intrinsically defined”) K to character-

ize {epimorphic ⇒ co-existential}, the class of co-existentially

closed continua?

So far, all we know is that:

• K is contained within the class of hereditarily indecom-

posable continua of covering dimension 1; and

• If X is any continuum, then X is a continuous image of

a co-existentially closed continuum of the same weight

as X.



THANK YOU!


