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Introduction.

A generalized arc is any continuum (= connected com-

pact Hausdorff space) with exactly two noncut points; an

arc is metric generalized arc, well known to be homeomor-

phic to the real unit interval I := [0,1].

By an ultra-arc we mean an ultracopower ID of I via a non-

principal ultrafilter D on the set ω := {0,1, . . . } of natural

numbers.

Alternatively, the ultra-arcs are the components of the

Stone-Čech remainder (I× ω)∗ := β(I× ω) \ (I× ω).







Ultra-arcs were first introduced by Mioduszewski in the mid

1970s in order to study H∗, where H is the real half-line

[0,∞). They naturally embed as the “standard subcon-

tinua” of H∗, but that is not our focus here.

What we are interested in is the problem of deciding when

a continuum is a continuous image of an ultra-arc under

various kinds of mapping.



If we make no restrictions on the mapping, we have the

following important result, due to Dow-Hart (extending a

much older theorem of Bellamy beyond the metric con-

text).

Proposition 1. Every continuum of weight ≤ ℵ1 is a con-

tinuous image of any ultra-arc.

In this talk, we focus down on the classes of monotone and

of co-existential maps. The first is familiar, the second

somewhat less so.



Ultracopowers and Co-Existential Maps.

Given a compactum X and (discrete) set I, first form the

cartesian product X×I, with coordinate maps p : X×I → X

and q : X × I → I. Next apply the Stone-Čech functor,

obtaining the following diagram.





If D is an ultrafilter on I, then it may be viewed as a point

in β(I). Denote by XD the pre-image of {D} under qβ.

This is the D-ultracopower of X.

When X is a continuum, these ultracopowers partition

β(X × I) into its components.

The map

pD := pβ|XD : XD → X

is a continuous surjection, called the ultracopower codi-

agonal map.





A mapping f : Y → X between compacta is co-existential

if there is an ultracopower XD and a surjective map

g : XD → Y such that f ◦ g = pD.





Co-existential maps play a category-theoretic rôle dual to

that played by existential embeddings in model theory.

The classes of monotone and of co-existential maps are

not directly related; however we can make the following

assertion.

Proposition 2. Every co-existential map with locally con-

nected range is monotone. And if a compactum fails to

be locally connected, there is an ultracopower of it whose

associated codiagonal map is not monotone.



Some Preservation Results.

(i) (Hereditary) unicoherence [both co-existential and mono-

tone].

(ii) Hereditary decomposability (but not decomposability)

[both].

(iii) (Hereditary) indecomposability [both].

(iv) Chainability [both].

(v) Irreducibility [monotone only].

(vi) Covering dimension one [co-existential only].



Regularized Ultracopowers.

The usual D-ultraproduct of an I-sequence ~F = 〈Fi : i ∈ I〉
of sets is denoted ~FD or

∏
D Fi.

If X is a compactum the collection F(X,D) of D-ultraproducts

of closed subsets of X constitutes an atomic lattice under

∪ and ∩.

The D-ultracopower XD is the Wallman construction ap-

plied to F(X,D); the points of XD may be viewed as the

maximal filters of this lattice.

This makes it possible to view XD as a dense subset of

XD; its points are the regular points of the ultracopower.

Moreover...



If the topology on X is induced by a total ordering < (say,

when X is a generalized arc), then the ultrapower ordering

<D–also total–induces the subspace topology on XD.

The regular points of an ultra-arc may be viewed as “non-

standard reals”:





Given continuum X, define µ, ν ∈ XD to be R-equivalent if

they contain the same closed-set ultraproducts ~KD, whose

factors are subcontinua of X.

Clearly the R-class of any regular point of XD is degener-

ate, so there are lots of equivalence classes in general.



The topological quotient XRD is called the regularized D-

ultracopower of X.

XRD is a compact connected T0 space, which may fail to

be T1.

However XRD is Hausdorff in certain “nice” cases.

One such case is when X is locally connected, as well as

n-SLC; i.e., each subcontinuum has arbitrarily small neigh-

borhoods whose complements have ≤ n components.

I is locally connected and 2-SLC, so IRD is a continuum.



Ultra-Arcs in More Detail.

Here are some useful facts about the ultra-arc ID.

(i) It is hereditarily unicoherent, as well as irreducible about

{0D,1D}.

(ii) The R-classes–also known as layers–form an upper

semicontinuous partition into nowhere dense subcontinua.

Moreover, these subcontinua are indecomposable.



(iii) The ultrapower ordering <D (obtained from the usual

ordering on I) induces a total ordering of the layers of ID,
so that the regularized ultra-arc IRD is a generalized arc.

(Never metric.)

(iv) Every subcontinuum is either contained in a layer or is

a union of layers.

This suggests imagining an ultra-arc as a “generalized arc

with indecomposable hair”...





Necessary Conditions.

Proposition 3. A nondegenerate monotone image of an

ultra-arc is hereditarily unicoherent and irreducible.

(We do not know whether it is of covering dimension one;

monotone maps can raise dimension.)

Proposition 4. A co-existential image of an ultra-arc is

hereditarily unicoherent and of covering dimension one.

Any metric image is irreducible as well.

(We do not know whether nonmetric images of ultra-arcs

are always irreducible; co-existential maps need not pre-

serve irreducibility.)



Sufficient Conditions I: Generalized Arcs.

The codiagonal maps pD : ID → I witness that the arc is a

co-existential (and monotone) image of any ultra-arc.

We have only a conditional answer to the question of which

nonmetric generalized arcs are such images.

Proposition 5. (CH) Every generalized arc of weight ≤ ℵ1
is a co-existential monotone image of every ultra-arc.

Remark. The proof of Proposition 5 makes essential use

of both the Löwenheim-Skolem Theorem and Keisler’s Ul-

trapower Theorem (CH version).



Sufficient Conditions II: Chainabile + Metric.

Proposition 6. Every nondegenerate chainable metric con-

tinuum is a co-existential image of every ultra-arc.

Proof Idea. Write the nondegenerate chainable metric con-

tinuum X as an inverse limit of arcs and surjective bonding

maps:

I f0←− I f1←− I f2←− . . .

Let ~π = 〈πn : n ∈ ω〉 be the associated sequence of pro-

jection maps from X to I, so that πn = fn ◦ πn+1 always

holds.



Next form the ultracoproduct map

~πD : XD −→ ID

via the rule: ∏
D

Fn ∈ ~πD(µ) iff
∏
D

~π−1
n [Fn] ∈ µ.



The next trick is to define maps gn : ID → I so that the

commutativities

gn ◦ ~πD = πn ◦ pD

and

gn = fn ◦ gn+1

always hold.

(This is possible because every final segment of ω is in D.)





This gives rise to a unique map

g : ID → X

so that

g ◦ ~πD = pD

holds too.





This makes g a co-existential map. �



While co-existential maps preserve chainability, ultra-arcs

are well known not to be chainable themselves.

Could it be that chainability is still a necessary condition

for a metric continuum to be a co-existential image of an

ultra-arc?

We next show the answer to be no.



Sufficient Conditions III: Co-Existentially Closed +

Metric.

A co-existentially closed continuum is a continuum X

such that every continuous map from a continuum onto X

is co-existential.

(Compare this with classic continuum-theoretic notions,

such as Class(C) and Class(W).)



Proposition 7.

(i) Every co-existentially closed continuum is hereditarily

indecomposable, as well as of covering dimension one. (In

particular, it’s nondegenerate.)

(ii) Every nondegenerate continuum is a continuous image

of a co-existentially closed continuum, of the same weight.

(iii) There exists an uncountable family of pairwise non-

homeomorphic metric co-existentially closed continua which

are not chainable.

(iv) (Eagle, Goldbring, Vignati) The pseudo-arc is a co-

existentially closed metric continuum (the only chainable

one, up to homeomorphism).



Harking back to the Dow-Hart Proposition 1, Bellamy orig-

inally showed that every metric continuum is a continuous

image of any nondegenerate subcontinuum of H∗. In par-

ticular:

Proposition 8. Every co-existentially closed metric contin-

uum is a co-existential image of every ultra-arc.

Corollary 9. There exists a nonchainable metric continuum

which is a co-existential image of every ultra-arc.



Proposition 10 (Hoehn, Oversteegen). Every hereditarily

indecomposable metric continuum of span zero is chain-

able.

Corollary 11. There exists a nonzero-span metric contin-

uum which is a co-existential image of every ultra-arc.



When Images are Generalized Arcs.

Proposition 12. If X is a nondegenerate hereditarily de-

composable monotone image of an ultra-arc, then X is a

generalized arc.

Remark. The proof of Proposition 12 makes essential use

of the fact that layers of ultra-arcs are indecomposable

continua. The assertion is no longer true with mono-

tone replaced with co-existential: the sin(1
x)-continuum

is hereditarily decomposable, but is not an arc. Hence it

is not a monotone image of any ultra-arc. On the other

hand, it is chainable, and therefore a co-existential image

of every ultra-arc, by Proposition 8.

(We do not know of a nondegenerate monotone image of

an ultra-arc which is not a co-existential image.)



Proposition 13.

(i) If X is an aposyndetic (resp., metric antisymmetric) co-

existential image of an ultra-arc, then X is a generalized

arc (resp., arc).

(ii) If X is a nondegenerate antisymmetric monotone image

of an ultra-arc, then X is a generalized arc.

Remark. Antisymmetry is strictly weaker than aposyndesis;

the obstruction to being able to just assume antisymmetric

in (i) above is that we do not know whether co-existential

images of ultra-arcs are irreducible, except in the metric

case. (Co-existential maps are known not to preserve this

property in general.)



THANK YOU!


