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A continuum is a topological space that is compact, Haus-

dorff, and connected.

In this talk we concentrate on counting composants of

a continum; in particular we are interested in when the

number is as large as possible, relative to the size of the

continuum itself.

The number of composants cannot exceed the number of

points. When these two cardinalities match, we call the

continuum fine.



For any topological space X, |X| is the cardinality of (the

underlying set of points of)X and w(X) is the weight of

X; i.e., the smallest infinite cardinal λ such that X has an

open/closed base of cardinality ≤ λ.



If X is a continuum, a ∈ X, the composant at a is

κ(a) :=
⋃
{K : a ∈ K and K is a proper subcontinuum of X}.

A composant of X is a composant at some point of X.

For example, if X is an arc with end points a, b, then κ(a) =

X \ {b}, κ(b) = X \ {a}, and κ(x) = X for any x ∈ X \ {a, b}.

Also, if X is a simple closed curve, then κ(x) = X for any

x ∈ X.

It is well known that

• Composants of continua are both connected and dense.



For x, y ∈ X, write x ∼ y to mean x ∈ κ(y); equivalently,

y ∈ κ(x). Clearly this gives a relation that is both reflexive

and symmetric.

When is it an equivalence relation?

Suppose ∼ is not transitive for X. Then we have x, y, z ∈ X

such that x ∼ y ∼ z but x 6∼ z. This gives us subcontinua

K, L ⊆ X with {x, y} ⊆ K ⊆ X \{z} and {y, z} ⊆ L ⊆ X \{x}.
Since x and z are contained in the subcontinuum K ∪ L,

and both K and L are proper subcontinua of K ∪ L, we

have X = K ∪ L.

This says that our continuum X is decomposable.



So for X an indecomposable continuum−e.g., a bucket

handle, solenoid, or pseudo-arc−the composants of X form

a partition of X into connected dense subsets.

For a continuum X, a transversal for X is a subset T ⊆ X

such that T hits each composant in at most one point.

Equivalently, for each two points a, b ∈ T , X is irreducible

about {a, b}; i.e., no proper subcontinuum of X contains

both a and b.



For a decomposable continuum X, the number of com-

posants is either three or one, depending on whether or

not X is irreducible about two of its points. Arcs are irre-

ducible, simple closed curves are not.

In any case, no transversal for a decomposable continuum

can have more than two points.

• A metrizable continuum is indecomposable iff it possesses

a transversal of cardinality ≥ 3.

A continuum X is called fine (resp., w-fine) if it pos-

sesses a transversal of cardinality |X| (resp., w(X)). w-fine

continua−including the degenerate ones−are necessarily in-

decomposable.



In a 1920 Fundamenta article, Z. Januszewski and C. Ku-

ratowski proved−using a Baire category argument−that:

• Nondegenerate indecomposable metrizable continua have

uncountably many composants (and are a fortiori w-fine).

Since nondegenerate metrizable continua have cardinality

c := 2ω, this result does not show the existence of fine con-

tinua without the continuum hypothesis (CH), the state-

ment that c = ω1.



A few years later, S. Mazurkiewicz (1927) improved on this

result and showed:

• Every nondegenerate indecomposable metrizable contin-

uum has c composants (and is hence fine).

In this talk we show that w-fine continua of arbitrarily large

size exist; we also provide a consistent (with ZFC) proof

of the existence of arbitrarily large fine continua.

Here are some facts about composant numbers for non-

metrizable indecomposable continua.



• Consider the Stone-Čech remainder H∗ of the half-line

H := [0,∞). H∗ is well known to be an indecomposable

continuum of weight c and cardinality 2c.

Is it (w-)fine?

◦ In 1970, M. E. Rudin used CH to show that H∗ has 2c

composants (and is hence fine).

◦ In 1974 S. Mioduszewski used the near coherence of

filters axiom (NCF) to show that H∗ has just one com-

posant (and is as far as possible from being w-fine).



• D. Bellamy (1978) constructed two indecomposable con-

tinua of weight ω1; one with exactly two composants, the

other with just one.

• M. Smith (1984) constructed a hereditarily indecompos-

able continuum of weight ω1 with exactly two composants.

(It is an open question whether a nondegenerate heredi-

tarily indecomposable continuum can have just one com-

posant.)

Our main theorem is the following.



Theorem 1. Let α be an infinite cardinal.

(1) There is a w-fine continuum Y of weight 2α.

(2) (GCH) There is a fine continuum Y of weight 2α.

(Moreover, in each case, Y may be taken to be hereditarily

indecomposable (or not) and to be of any predetermined

covering dimension.)



Our principal tool is the ultracopower construction.

Recall that if Z is any compactum, I is a discrete infinite

set, and D is an ultrafilter on I (i.e., D ∈ β(I)), then the

D-ultracopower ZD is obtained as follows:

• Let p : Z × I → Z and q : Z × I → I be the coordinate

projections.

• Apply the Stone-Čech functor to obtain pβ : β(Z×I) → Z

and qβ : β(Z × I) → β(I).





• ZD is defined to be the pre-image, under qβ, of the point

D ∈ β(I). The map pD : ZD → Z is the restriction of pβ to

ZD ⊆ β(Z × I).





The map pD is a continuous surjection known as the D-

codiagonal map, and is well known to be weakly confluent;

i.e., subcontinua of the range are images of subcontinua

of the domain.

It is a basic fact that ZD is a continuum (totally discon-

nected compactum) iff the same is true of Z.



Lemma 1. Let Z be a continuum, D an ultrafilter on

discrete infinite set I.

(1) ZD and Z share the same covering dimension.

(2) ZD is (hereditarily) indecomposable iff the same is true

of Z.



The plan is to start with a nondegenerate indecompos-

able metrizable continuum X. Our continuum Y will be

an ultracopower XD, where D is an ultrafilter on a set I of

cardinality α. By Lemma 1, we may start with X hered-

itarily indecomposable−or not−and of any predetermined

covering dimension. However we decide, the same will hold

for Y .

This takes care of the “moreover” part of Theorem 1.



Given a set S and ultrafilter D on I, two I-sequences ~x and

~y in SI are D-equivalent if

{i ∈ I : ~x(i) = ~y(i)} ∈ D.

The set of D-equivalence classes is the D-ultrapower of

S, and is denoted SD.



Lemma 2. If Z is a compactum, then ZD sits naturally as

a (dense) subset of ZD. If Z is a continuum and T ⊆ Z is

a transversal, then TD is a transversal for ZD.

So, given our nondegenerate indecomposable metrizable

continuum X and ultrafilter D ∈ β(I) (where |I| = α), let

T ⊆ X be an infinite transversal. By Lemma 2, TD is a

transversal for Y = XD, and it is easy to show that w(Y )

and |TD| are both ≤ 2α.

We’re done with Theorem 1 (1) once we turn “≤ 2α”

above into “= 2α”. But for this we need the ultrafilter to

have a special combinatorial property.



An ultrafilter D is regular if there exists a family F ⊆ D
such that:

(i) |F| = |I|; and

(ii) for each i ∈ I, {F ∈ F : i ∈ F} is finite.

• It is well known that there are as many regular ultrafilters

on a given infinite set I as there are ultrafilters; i.e., 2(2|I|).

Lemma 3. Let D be a regular ultrafilter on an infinite set

I.

(1) If S is an infinite set, then |SD| = |S||I|.

(2) If Z is an infinite compactum, then w(ZD) = w(Z)|I|.

This completes the proof sketch of Theorem 1 (1).



The approach to proving Theorem 1 (1) yields a continuum

Y , of weight 2α, which possesses a transversal of cardinality

2α. Note that even if we were to let the transversal T on

X have cardinality c−rather than be just infinite−we could

not get |TD| to be any bigger. Since we have no way of

getting |Y | to be anything less than 2(2α), there does not

appear to be a consistent way to make Y fine.

Another approach is called for to prove Theorem 1 (2).



Our proof sketch requires a discussion of ultracopowers

using good ultrafilters.

An ultrafilter D on an infinite set I is good if:

(i) D is countably incomplete; and

(ii) if f : ℘ω(I) → D is monotone (i.e., s ⊆ t ⇒ f(s) ⊇
f(t)), there is a g : ℘ω(I) → D such that g(s) ⊆ f(s), for

s ∈ ℘ω(I), and g is multiplicative (i.e., g(s∪ t) = g(s)∩g(t),

for s, t ∈ ℘ω(I)).

Good ultrafilters are regular, which are in turn countably

incomplete, hence nonprincipal. When the index set is

countable, all four concepts coincide.



H. J. Keisler originally conceived of the notion of good-

ness in order to achieve high degrees of saturatedness in

ultraproducts of models, and proved the existence of good

ultrafilters using GCH. K. Kunen later proved, in ZFC, that

an infinite set has as many good ultrafilters as it has ul-

trafilters.

The approach we take follows the 1920 Janiszewski-Kuratowski

argument involving the Baire category theorem.

For an infinite cardinal λ, a space X is λ-Baire if the union

of any family of ≤ λ nowhere dense subsets of X has empty

interior in X.

In particular, a λ-Baire space cannot be the union of ≤ λ

of its nowhere dense subsets.



The Baire category theorem shows that every compactum

is ω-Baire.

Lemma 4. Let Z be a compactum, with D a good ultrafilter

on a set of infinite cardinality α. Then ZD is α+-Baire.



So let X be any nondegenerate indecomposable metrizable

continuum, with D a good ultrafilter on a set of infinite

cardinality α. Then, by Lemmas 1 and 3, Y = XD is

indecomposable and has weight 2α. Also, by Lemma 4, we

know Y is α+-Baire.

The metrizable version of the following is well known; the

proof in that case extends easily.

Lemma 5. If Z is a continuum of weight λ, then every

composant of Z is a union of ≤ λ proper subcontinua of

Z.



Our continuum Y = XD has weight 2α, and each of its

composants is a union of ≤ 2α proper subcontinua, by

Lemma 5. Also Y is α+-Baire, by Lemma 4.

We now invoke the instance of GCH where 2α = α+, and

assume−for the sake of contradiction−that Y has ≤ α+

composants. Then, noting that proper subcontinua of in-

decomposable continua are nowhere dense, we may write

Y as a union of ≤ α+ nowhere dense subsets, an impossi-

bility.



So now we know that Y has at least α++ composants.

Since its weight is α+, its cardinality must be ≤ 2(α+).

Invoking the instance of GCH where 2(α+) = α++, we

conclude that Y is fine.



Parting Remarks. (1) Let α = ω above. Then, modulo the

two GCH instances 2ω = ω1 (i.e., CH) and 2ω1 = ω2, we

know that there exists a hereditarily indecomposable fine

continuum Y of weight c. Y can also be of any desired

dimension.

(2) If all we want is a fine continuum of weight c, we have

M. E. Rudin’s proof that H∗ is fine using CH alone. This

continuum does have weight c and dimension one, but it

is far from being hereditarily indecomposable.

(3) To get H∗ to be fine, one does not even need the full

power of CH: Rudin’s proof can be made to work using

MA, an axiom consistent with ZFC+¬CH.



Afterword. One can indeed obtain fine continua, in ZFC,

of any given size. M. Smith in 1976 (Generating large

indecomposable continua) proved that for any infinite car-

dial α, there is a continuum M with ≥ 2α composants.

The construction involves an inverse limit using α as the

(directed) index set. One may easily infer from this con-

struction that w(M) ≤ α; hence M is a fine continuum of

weight α. This continuum is not hereditarily indecompos-

able, however, as it contains arcs. Most likely this defect

can be overcome.



THANK YOU!


